
J. Appl. Prob. 53, 880–887 (2016)
doi:10.1017/jpr.2016.46

© Applied Probability Trust 2016

DISTRIBUTION OF THE SMALLEST VISITED POINT
IN A GREEDY WALK ON THE LINE

KATJA GABRYSCH,∗ Uppsala University

Abstract

We consider a greedy walk on a Poisson process on the real line. It is known that the
walk does not visit all points of the process. In this paper we first obtain some useful
independence properties associated with this process which enable us to compute the
distribution of the sequence of indices of visited points. Given that the walk tends to +∞,
we find the distribution of the number of visited points in the negative half-line, as well
as the distribution of the time at which the walk achieves its minimum.
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1. Introduction

We consider a stationary Poisson process � with rate 1 on the real line and define a greedy
walk on � as follows. The walk starts from point S0 = 0 and always moves on the points of �

by picking the point closest to its current position that has not been visited before. In other
words, the sequence of the visited points of � of the walk (Sn)n≥0 is defined recursively by

Sn+1 = arg min{d(X, Sn) : X ∈ � \ {S0, S1, . . . , Sn}}, (1)

where d is the usual Euclidean distance. Note that the sequence (Sn)n≥0 is almost surely (a.s.)
well defined, i.e. there is a.s. a unique point which is arg min in the definition of the walk (1).
Moreover, 0 /∈ � a.s.

The distance between the current position and the closest nonvisited point on the other side
of 0 increases with each step. Using the Borel–Cantelli lemma, one can show that the walk a.s.
jumps over 0 finitely many times. Therefore, {S1, S2, . . . } �= � a.s. and, moreover,

P

(
lim

n→∞ Sn = +∞
)

= P

(
lim

n→∞ Sn = −∞
)

= 1
2 . (2)

In this paper we study the distribution of the number of visited points of � which are less than 0
and the distribution of the index of the last point in the sequence (Sn)n≥0 which is less than or
equal to 0. We denote these random variables by N and L, respectively.

The greedy walk is a model in queueing systems where the points of the process in our
case represent positions of customers and a server (the walker) moving towards customers.
Applications of such a system can be found, for example, in telecommunications and computer
networks or transportation. As described in [1], the model of a greedy walk on a point process
can be defined in various ways or/and on different spaces. For example, Coffman and Gilbert [2]
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and Leskelä and Unger [5] studied a dynamic version of the greedy walk on a circle with new
customers arriving to the system according to a Poisson process. Two modifications of the
greedy walk model on a homogeneous Poisson process on the real line were studied by Foss
et al. [3] and Rolla et al. [6]. In the first paper, the authors considered a space-time model,
starting with a Poisson process at time 0 and the time and position of arrivals of new points are
given by a Poisson process on the space-time half-plane. Moreover, the expected time that the
walk spends at a point is 1. In this case the walk, a.s., jumps over the starting point finitely
many times and the position of the walk diverges logarithmically in time. In the second paper,
the points of a Poisson process were assigned one or two marks at random. The walk always
moves to the point closest to the current position which still has at least one mark and then
removes exactly one mark from the point. The authors showed that introducing points with two
marks will force the walk to change sides infinitely many times and, thus, to visit all the points
of �. There is not much known about the behaviour of the greedy walk on a homogeneous
Poisson process in higher dimensions. For example, it is an open problem whether the greedy
walk on the points of a homogeneous Poisson process on R

2 visits all points [6].
The paper is organized as follows. In Section 2 we calculate the probability that the server

visits the points of � in a particular order. The distributions of random variables N and L are
studied in Section 3 and Section 4, respectively.

2. The probability to visit points in a predefined order

The points of � ∪ {0} can be written in order as

· · · < X−3 < X−2 < X−1 < X0 = 0 < X1 < X2 < X3 < · · · .

For n ∈ Z, let
Yn = Xn − Xn−1.

Since � is a stationary Poisson process with rate 1, {Yn}n∈Z are independent and exponentially
distributed random variables with parameter 1.

Lemma 1. Let {Yi}i≥1 be independent and exponentially distributed random variables with
mean 1 and let Dn = ∑n

i=1Yi . Then

P(Dn < Yn+1) = 1

2n

and the events {Dn < Yn+1}n≥1 are independent.

Proof. For n = 1 this is P(D1 < Y2) = P(Y1 < Y2) = 1
2 . Using the memoryless property

of the exponential random variable Yn+1, we have

P(Dn < Yn+1) = P(Dn < Yn+1 | Dn−1 < Yn+1)P(Dn−1 < Yn+1)

= P(Yn < Yn+1)P(Dn−1 < Yn+1)

= 1
2 P(Dn−1 < Yn+1).

Thus, by induction, we obtain P(Dn < Yn+1) = 1/2n.
The event {Dn > Yn+1} can be written as

{Dn > Yn+1} =
{

Yn+1

Dn+1
<

1

2

}
=

{
Dn

Dn+1
>

1

2

}
.

Therefore, in order to show the independence of the events {Dn > Yn+1}n≥1, we prove the
independence of the random variables {Dn/Dn+1}n≥1.
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For i < j , let Ui,j = Di/Dj . For any � > 0, choose integers i1 < i2 < · · · < i�.
The random variable Ui1,i2 = Di1/Di2 is independent of Di2 (see, for example, [4, Theorem
8.4.1]) and it is also independent of Di3 − Di2 , . . . , Di� − Di�−1 . This implies that the random
variable Ui1,i2 is independent of the random variables {Uij ,ij+1}�−1

j=2 since

Uij ,ij+1 = Di2 + ∑j−1
k=2

(
Dik+1 − Dik

)
Di2 + ∑j

k=2

(
Dik+1 − Dik

) for 2 ≤ j < �.

We can use the same argument to show that, for 2 ≤ k < �−1, the random variableUik,ik+1 is also
independent of {Uij ,ij+1}�−1

j=k+1. Therefore, the random variables {Uij ,ij+1}�−1
j=1 are independent

for any choice of � and for any increasing sequence i1, i2, . . . , i� and, thus, the random variables
{Un,n+1}n≥1 = {Dn/Dn+1}n≥1 are independent as well. �

Let

S =
{
(in)n≥0 ∈ Z

∞ : i0 = 0 and in ∈
{

min
0≤j≤n−1

ij − 1, max
0≤j≤n−1

ij + 1
}

for all n ∈ N

}
.

If the sequence (Sn)n≥0 satisfies (1) then there exists a sequence (in)n≥0 ∈ S such that Sn = Xin

for all n ≥ 0. Furthermore, denote by π(Sn) = in the index of the nth visited point. In the
following lemma we compute the probability that the sequence (π(Sn))n≥0 is (in)n≥0 ∈ S.

Lemma 2. Let (in)n≥0 ∈ S and let

δ1 =
{

0 if i1 = 1,

1 if i1 = −1,
and, for n ≥ 2, δn =

{
0 if |in − in−1| = 1,

1 otherwise.

Then

P((π(Sn))n≥0 = (in)n≥0) =
∞∏

n=1

(
1 − 1

2n

)1−δn
(

1

2n

)δn

.

In other words, the random variables {δn}n≥1 are independent and δn has a Bernoulli distribu-
tion with parameter 2−n.

Proof. Let Mn = max0≤j≤n ij and let mn = min0≤j≤n ij . Moreover, define random
variables {Zn}n≥1 as

Z1 = Y0, Z2 = Y1, Zn =
{

Yin−2+1 if in−2 > 0,

Yin−2 if in−2 < 0,
n ≥ 3.

Assume that the event {(π(Sj ))
n
j=0 = (ij )

n
j=0} occurs and, without loss of generality, assume

that in = Mn. If in+1 = Mn + 1 then δn+1 = 0 and

P(π(Sn+1) = in+1 | (π(Sj ))
n
j=0 = (ij )

n
j=0)

= P(XMn+1 − Xin < Xin − Xmn−1 | (π(Sj ))
n
j=0 = (ij )

n
j=0)

= P

(
YMn+1 <

Mn∑
j=mn

Yj

∣∣∣∣ (π(Sj ))
n
j=0 = (ij )

n
j=0

)

= P

(
Zn+2 <

n+1∑
j=1

Zj

∣∣∣∣ (π(Sj ))
n
j=0 = (ij )

n
j=0

)
. (3)
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Since {Zn}n≥1 are independent and identically distributed exponential random variables with
parameter 1 and the event {(π(Sj ))

n
j=0 = (ij )

n
j=0} is the intersection of the events {Zk+2 <∑k+1

j=1Zj }n−1
k≥0 or their complements, from Lemma 1, it follows that the value of (3) is 1−2−(n+1).

If in+1 = mn − 1 then δn+1 = 1 and

P(π(Sn+1) = in+1 | (π(Sj ))
n
j=0 = (ij )

n
j=0)

= P(XMn+1 − Xin > Xin − Xmn−1 | (π(Sj ))
n
j=0 = (ij )

n
j=0).

We deduce, again from Lemma 1, that the probability above is 2−(n+1). Thus, we can write

P(π(Sn+1) = in+1 | (π(Sj ))
n
j=0 = (ij )

n
j=0) =

(
1 − 1

2n+1

)1−δn+1
(

1

2n+1

)δn+1

,

and the claim of the lemma follows. �

Corollary 1. The expected number of times the sequence (Sn)n≥1 changes sign is 1
2 .

Proof. The sequence changes sign after visiting point Sn, n ≥ 1, if δn+1 = 1. Since {δn}n≥1
are independent random variables with P(δn = 1) = 2−n, the expected number of times the
sequence changes sign is

E

( ∞∑
n=2

δn

)
=

∞∑
n=2

P(δn = 1) =
∞∑

n=2

1

2n
= 1

2
. �

Remark 1. Corollary 1 implies that the number of times the sequence (Sn)n≥0 changes sign
is a.s. finite and, thus, the walk a.s. does not visit all the points of �. This is another way to
prove the fact that {S1, S2, . . . } �= � a.s.

3. Distribution of the random variable N

In this section we study the distribution of the random variable N , the number of visited
points of � which are less than S0 = 0. We can write N = − minn≥0 π(Sn). From (2), we
know that N is a defective random variable with P(N = ∞) = 1

2 and the law of N , when N is
finite, is given in the following theorem.

Theorem 1. Let

C(k, �) =
∑

1≤i1<j1<i2<j2<···<i�<j�∑�
m=1(jm−im)=k

1

(2i1 − 1)(2j1 − 1) · · · (2i� − 1)(2j� − 1)
for k, � ≥ 1.

Then,

P(N = 0) =
∞∏

n=1

(
1 − 1

2n

)

and, for k ≥ 1,

P(N = k) =
∞∏

n=1

(
1 − 1

2n

) k∑
�=1

C(k, �).
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Moreover, for k ≥ 0,

P(N = k) = c

2k
+ O

(
1

22k

)
,

where c is a positive constant that does not depend on k.

Proof. If N = 0, the walk visits points X0, X1, X2, . . . successively. This implies that
(π(Sn))n≥0 = (n)n≥0 and the sequence (δn)n≥0, defined in Lemma 2, is identically 0. Now,
the result follows directly from Lemma 2.

If N = k ≥ 1, the set of indices of visited points is {π(S0), π(S1), π(S2), . . . } = {−k, −k+
1, −k + 2, . . . }. Then there is �, 1 ≤ � ≤ k, and sequences i1, i2, . . . , i� and j1, j2, . . . , j�

such that 0 < i1 < j1 < i2 < j2 < · · · < i� < j� and the sequence (Sn)n≥0 is negative when
im ≤ n ≤ jm −1, m ∈ {1, 2, . . . , �} and nonnegative otherwise. Since the walk visits exactly k

points on the left, we have
∑�

m=1(jm − im) = k, δn = 1 for n ∈ {i1, i2, . . . , i�, j1, j2, . . . , j�}
and δn = 0 otherwise.

Therefore, from Lemma 2, we obtain

P(N = k)

=
∑

(in)n≥0∈S
{i0,i1,i2,...}={−k,−k+1,−k+2,...}

P((π(Sn))n≥0 = (in)n≥0)

=
k∑

�=1

∑
1≤i1<j1<i2<j2<···<i�<j�∑�

m=1(jm−im)=k

∏
i /∈{i1,...,i�,j1,...,j�}

(
1 − 1

2i

) ∏
i∈{i1,...,i�,j1,...,j�}

1

2i

=
∞∏

n=1

(
1 − 1

2n

) k∑
�=1

∑
1≤i1<j1<i2<j2<···<i�<j�∑�

m=1(jm−im)=k

1

(2i1 − 1)(2j1 − 1) · · · (2i� − 1)(2j� − 1)

=
∞∏

n=1

(
1 − 1

2n

) k∑
�=1

C(k, �).

In order to find the asymptotic value of the expression above, we first obtain an upper bound
for 2kC(k, �) by using the inequalities 1/(2k − 1) ≤ 2/2k and 1/(4k − 1) ≤ 2/4k . Thus,

2kC(k, �)

=
∑

1≤i1,i2,...,i�
1≤k1,k2,...,k�−1∑�−1

i=1 ki<k

2k

(2i1 − 1)(2i1+k1 − 1) · · · (2i1+···+i�+k1+···+k�−1 − 1)(2i1+···+i�+k − 1)

≤
∑

1≤i1,i2,...,i�
1≤k1,k2,...,k�−1∑�−1

i=1 ki<k

22�

22�i1 22(�−1)i2 · · · 22i�22(�−1)k1 22(�−2)k2 · · · 22k�−1

= 22�

(4� − 1)(4�−1 − 1)2(4�−2 − 1)2 · · · (4 − 1)2
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≤ 22�22�−1

4�2

= 1

22�2−4�+1
. (4)

Let

c� =
∑

1≤i1,i2,...,i�

1

2i1+···+i�

∑
1≤k1,k2,...,k�−1

1

(2i1 − 1)(2i1+k1 − 1) · · · (2i1+···+i�+k1+···+k�−1 − 1)
.

Similarly as in (4) one can show that c� ≤ 1/(22�2−4�+2) and, moreover,

|c� − 2kC(k, l)|
≤

∑
1≤i1,i2,...,i�

1

2i1+···+i� (2i1+···+i�+k − 1)

×
∑

1≤k1,k2,...,k�−1∑�−1
i=1 ki<k

1

(2i1 − 1)(2i1+k1 − 1) · · · (2i1+···+i�+k1+···+k�−1 − 1)

+
∑

1≤i1,i2,...,i�

1

2i1+···+i�

×
∑

1≤k1,k2,...,k�−1∑�−1
i=1 ki≥k

1

(2i1 − 1)(2i1+k1 − 1) · · · (2i1+···+i�+k1+···+k�−1 − 1)

≤ 1

2k

∑
1≤i1,i2,...,i�

∑
1≤k1,k2,...,k�−1

22�

2(2�+1)i1 2(2�−1)i2 · · · 23i�22(�−1)k1 22(�−2)k2 · · · 22k�−1

+
∑

1≤i1,i2,...,i�

∑
1≤k1,k2,...,k�−1∑�−1

i=1 ki≥k

22�−1

22�i1 22(�−1)i2 · · · 22i�22(�−1)k1 22(�−2)k2 · · · 22k�−1

≤ 1

2k

1

22�2−3�+1

+ 1

22k

22�−1

(4� − 1)(4�−1 − 1) · · · (4 − 1)

∑
1≤k1,k2,...,k�−2

2

22(�−2)k1 22(�−3)k2 · · · 22k�−2

≤ 1

2k

1

22�2−3�+1
+ 1

22k

1

22�2−6�+4

= O

(
1

2k

1

2�2

)
. (5)

Since c� ≤ 1/(22�2−4�+2) then
∑∞

�=k+1 c� ≤ 1/(22k2−1). This, together with (5), gives

2k
P(N = k) =

∞∏
n=1

(
1− 1

2n

) k∑
�=1

2kC(k, �) =
∞∏

n=1

(
1− 1

2n

) k∑
�=1

c�+O

(
1

2k

)
= c+O

(
1

2k

)
,

where c = ∏∞
n=1(1 − 1/2n)

∑∞
�=1 c�. �
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4. Distribution of the random variable L

In this section we study the distribution of the index of the last point in the sequence (Sn)n≥0,
which is less than or equal to S0 = 0; that is, the distribution of the random variable L =
max{n : Sn ≤ 0}. Again, from (2), we have P(L = ∞) = 1

2 . Just as in the previous section,
we find the exact distribution of this random variable as well as an asymptotic result.

Theorem 2. We have P(L = 0) = ∏∞
n=1(1 − 1/2n) and, for k ≥ 1,

P(L = k) = 1

2k+2

∞∏
n=k+2

(
1 − 1

2n

)
.

Moreover, for k ≥ 0,

P(L = k) = 1

2k+2 + O

(
1

22k

)
.

Proof. The value of P(L = 0) follows directly from Theorem 1 since {N = 0} = {L = 0}.
If L = k, k ≥ 1, for the sequence (π(Sn))n≥0 ∈ S it holds that π(Sk) < 0 and π(Sk+�) > 0

for all � ≥ 1. Thus, for the corresponding sequence (δn)n≥1, which was defined in Lemma 2,
we have δk+1 = 1 and δk+�+1 = 0 for all � ≥ 1. The only constraint for the first k members
in both sequences, other than the constraints given by the definition of the sequences, is that
π(Sk) < 0. This has probability 1

2 due to symmetry. Thus, by Lemma 2, we have

P(L = k) =
∑

(in)n≥0∈S
ik<0, ik+�>0 for �≥1

P((π(Sn))n≥0 = (in)n≥0)

= 1

2

∑
δ1,δ2,...,δk∈{0,1}

k∏
n=1

(
1 − 1

2n

)1−δn
(

1

2n

)δn 1

2k+1

∞∏
n=k+2

(
1 − 1

2n

)

= 1

2k+2

∞∏
n=k+2

(
1 − 1

2n

)
.

Furthermore, we can write

P(L = k) = 1

2k+2

(
1−

∞∑
n=k+2

1

2n
+· · ·

)
= 1

2k+2

(
1− 1

2k+1 +· · ·
)

= 1

2k+2 +O

(
1

22k

)
. �
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