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SUMMARY
The workspace boundary of 6-DOF parallel manipulators is
a two-dimensional surface consisting of many patches that
can be obtained by solving different sets of four constraint
equations. This paper proposes algorithms for finding the
equations to generate each patch of the boundary. Methods
involving a searching technique are first developed to
generate some small subsets of the boundary. The obtained
data are then used to predict the equations for generating the
rest of the boundary.

KEYWORDS: Reachable workspace; 6-DOF parallel manipulator;
Link interaction.

I. INTRODUCTION
The workspace of a manipulator has been studied by
many researchers over the past three decades. Currently,
the research interests are focused on the workspace of
parallel manipulators. This paper investigates the reachable
workspace of 6-DOF Stewart-Gough parallel manipulators.

The reachable workspace can be determined by a
discretization method.1 A point is in the workspace if the
point can be approached by at least one orientation of the
platform. However, many boundary points can be reached by
only one orientation. To find the exact orientation for these
boundary points is a very time-consuming task. A geometric
approach is a more reliable method for developing the exact
boundary of the workspace. Haug et al. developed algorithms
for mapping boundaries of manipulator workspaces.2,3 For
the 6-DOF Stewart platform, singular curves in the z-level
cutting plane are obtained by solving 20 equations (in 21
variables) developed from the kinematic constraints (related
to limited actuator’s strokes) and the row rank deficiency of
a matrix. Barrier analysis is then performed to determine the
boundary of the workspace.

The admissible solutions (real solutions that do not
violate any kinematic constraint) of all possible sets of
four constraint equations generate many two-dimensional
singular surfaces. The intersections of these singular surfaces
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are many one-dimensional curves called bifurcation curves.
Bifurcation curves divide the singular surfaces into many
two-dimensional patches. The boundary of workspace
consists of some outmost external patches that the reference
point on the platform cannot penetrate. This paper presents
the rules for determining the equations to generate each patch
of the boundary. Algorithms based on these rules are then
proposed to develop the boundary of workspace.

II. CONSTRAINT EQUATIONS
Figure 1 shows a spatial 6-DOF, 6SPS parallel manipulator.
Two coordinate frames A (X, Y, Z) and B (u, v, w) are at-
tached to the fixed base and moving platform, respectively.
The attachment points Ai for i = 1 to 6 are on the fixed base,
and attachment points Bi for i = 1 to 6 are on the platform.
The constraint equations for developing the boundary surface
can be found in the literature.4–6 In general, the equations can
be expressed as

fi(x, y, z, α, β, γ ) = qi (1)

where x, y, z, α, β and γ denote the six parameters that
specify the position and orientation of the platform, and qi

represents limb length ρ i, the angle (denoted by φi) between
the straight line associated to limb i and the axes of symmetry
of a spherical joint, or the distance between limbs i and j
(denoted by dij). Let Qi and Qj be the intersecting points of
the common perpendicular of limbs i and j with the two limbs
respectively. If all six limbs are approximated by cylinders
with a diameter D, then limbs i and j interfere if Qi is on limb
i, Qj is on limb j, and dij ≤ D. The equations with qi at limited
positions are used as the constraint equations for developing
boundary patches. We assume that the combinations of four
constraints from Eq. (1) and possible kinematic singularities
of a manipulator do not generate boundary patches. In theory,
it is possible that these combinations can generate boundary
patches for some very special designs. In this case, the effects
of kinematic singularities cannot be neglected.

In this paper, the boundary of workspace is represented by
the consecutive intersecting curves of the boundary surface
and the vertical planes through the z-axis of the reference
frame. A vertical plane (denoted by ZX+) is a half-plane
spanned by the positive x′-axis and the z′-axis of frame A′
(X′, Y′, Z′) obtained by the rotation matrix about the z-axis
of the fixed frame. A typical intersecting boundary curve on
a ZX+plane is shown in Fig. 2, where Pi for i = 1 to (n − 1)
denote bifurcation points. For most symmetric manipulators,

https://doi.org/10.1017/S0263574706002682 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002682


606 Parallel manipulators

ρi

X

Y

Z

O

u

v

w

A1
A2

A3

A4 A5

A6

B6

B1B2

B3

B4

B5

Fig. 1. A 6-DOF parallel manipulator.
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Po and Pn are extreme points with ρ j max = ρ j and ρ j min = ρ j

(for j = 1 to 6), respectively. The segments between points Po

and Pm (the point of maximum reach in the x′-direction) and
the segments between points Pm and Pn are termed upper and
lower boundary curves respectively. The segments (generated
by different sets of four constraint equations) on these curves
are connected by bifurcation or extreme points. Any point on
the boundary obtained by any existing method can be used as
the initial point to develop boundary. Starting from the initial
point, we let y = 0, x = x +� x (with A′ as the reference
frame) and solve the four corresponding constraint equations
to compute the next boundary point. The solution of z, α,
β, γ can be easily obtained if the current values of z, α, β

and γ are used as the initial values. If the solution does not
converge at some isolated singular points, then we change �x
to avoid singularities. The process is repeated until the path
reaches a bifurcation point or an extreme point. At bifurcation
or extreme points, there are many possible combinations of
constraint equations to generate the next segment, so we need
an efficient method for determining the correct combination
to generate the next segment on the boundary curve.

Taking the time derivatives of Eq. (1), we have

∇fi · T = q̇i (2)

with T = [α̇ β̇ γ̇ ẋ ẏ ż]t

where q̇i = 0 if ρ i max = qi, ρ i min = qi, φi max =φi, or D = dij.
Suppose that there are m constraint equations (m ≤ 6)
reaching their corresponding limited positions and their
gradients are independent. Then we can develop a 6×6 matrix
M with the m gradients as the first m rows and the remaining
(6-m) rows can be the gradients of other constraint equations
or any constant vectors such that M is not singular. Let

H = M−1 ≡
[

e1 e2 · · · e6

h1 h2 · · · h6

]
(3)

If m = 4, then the last two columns of H are orthogonal to the
gradients of the four constraint equations. Therefore, the two
columns span the set of all possible vectors of T, and vectors
h5 and h6 span the plane tangent to the singular surface
generated by the four constraint equations. In what follows,
vectors h1, h2, . . . , h6 (after being transformed to frame A′)
are used to find the correct combination of equations for
generating the next segment at a bifurcation or an extreme
point.

III. BIFURCATION AND EXTREME POINTS
Five constraint equations reach limited positions at a bifur-
cation point, so we have to loosen one kinematic con-
straint in order to generate the next segment on the boundary
curve. Note that the reference point on the platform is allowed
to move in only one direction, positive hk or negative hk,
when we loosen the kth kinematic constraint. Therefore,
we must change the direction of hk (that is, let hk = −hk)
at ρkmax = ρk, or φkmax =φk because ρ̇k or φ̇k cannot be
positive at the limited position. Suppose that the ith kinematic
constraint is released from the limited position. Then vectors
± h6 and hi span a half-plane as shown in Fig. 3a. If the
half-plane, denoted by HPi6, intersects the ZX+ plane, then
the four remaining constraint equations may generate a one-
dimensional singular curve on the ZX+ plane with the inter-
section line of planes HPi6 and ZX+ as its tangent vector. The
tangent vector of the curve on the ZX+ plane is given by

ti6 =

⎡
⎢⎣

0

1

0

⎤
⎥⎦ × (hi×h6) (4)

Unit vector êi in Fig. 3a satisfies êi · h6 = 0 and êi · hi > 0.
The singular curve is generated in forward direction (moving
away from the z-axis) if êi(x) > 0 or generated in backward
direction if êi(x) < 0. The x, y, or z in parentheses following
a vector denotes the x-, y-, or z-component, respectively, of
the vector. The steps for finding the constraint constraints to
generate the next boundary segment are given below:

1. Compute hi for i = 1, 2, . . . , 6.
2. Develop unit vector êj for j = 1 to 5.
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3. (a) For forward motion, choose hj with êj(x) > 0 and
compute tj6. Find the pair, hj and h6, with the maximum
slope, defined as tj6(z)/tj6(x), for the upper boundary
segments or the pair with the minimum slope for the lower
boundary segments.
(b) For backward motion, choose hj with êj(x) < 0 and
compute tj6. Find the pair with the maximum slope for the
lower boundary segments or the pair with the minimum
slope for the upper boundary segments.

Except at the point of maximum reach, the remaining four
equations (with jth equation excluded) will generate the next
boundary segment.

Bifurcation curves intersect at some isolated extreme
points where six constraint equations are at their limited
positions. At an extreme point, all six rows of M are generated
by the gradients of the constraint equations. Therefore, we
have to loosen two kinematic constraints in order to generate
a curve on the ZX+ plane, meaning that there are 15 possible
combinations to choose from. Suppose that the ith and jth
kinematic constraints are released from the limited positions.
Then the two corresponding (unidirectional) vectors, hi and

hj, span a quarter-plane (denoted by QPij). If the quarter-
plane intersects the ZX+ plane (as illustrated in Fig. 3b),
then the four remaining constraint equations may generate a
one-dimensional singular curve on the ZX+ plane with the
intersection line of QPij and ZX+ as its tangent vector. The
two planes intersect if hi (y) ∗ hj (y) ≤ 0. Let ĥk ≡ hk/‖hk‖.
Then the moving direction, forward or backward, of the curve
can be determined by the sum of the two x-components: ĥi(x)
and ĥj(x). The steps for determining the equations to generate
the next segment at an extreme point are given below:

1. Develop matrix H and compute ĥk for k = 1, 2, . . . , 6.
2. Find all possible pairs of ĥi and ĥj satisfying ĥi(y) ∗

ĥj(y) ≤ 0 and ĥi(x) + ĥj(x) > 0 for forward motion (or
ĥi(x) + ĥj(x) < 0 for backward motion).

3. If two or more pairs of ĥi and ĥj are obtained in Step 2,
then find the pair with maximum slope for forward
motion on the upper boundary segments (or for backward
motion on the lower boundary segments), or find the pair
with minimum slope for backward motion on the upper
boundary segments (or for forward motion on the lower
boundary segments).

With ith and jth equations removed from the set of six equa-
tions, the remaining four equations will generate the next
segment.

IV. ALGORITHMS

IV.1. Algorithm for developing a boundary curve
Starting from the initial point, we develop the boundary in
forward direction until x cannot be increased. The maximum
point reached, in general, is a bifurcation point or an extreme
point. In this case, we can find the new constraint equations
to generate boundary segments in backward direction. The
process is repeated until the curve returns to the z-axis. If
the maximum point reached is a general boundary point with
infinite slope, then we let z = z − �z (or z = z +�z if the
initial point is on a lower boundary segment) and solve for
x to make the path go backward in the correct direction.
The path is then moved backward until the curve returns to
the z-axis. Next, we develop the rest of the boundary (from the
initial point to the z-axis in backward direction) to obtain a
closed boundary curve.

Algorithm (I)

1. Obtain a boundary point and use it as the initial point.
(If necessary, barrier analysis of singular surfaces2 can be
employed to check if a correct boundary point is obtained).

2. Repeat letting x = x +�x and solving for z, α, β, γ until
a bifurcation point or an extreme point is reached, or the
path can not go forward. Go to Step 4 if the path cannot
go forward.

3. Employ the rules at a bifurcation or an extreme point to
obtain the constraint equations for developing the next
segment. Go to Step 2.

4. Go to Step 7 if the maximum point reached is not a
bifurcation or an extreme point. Employ the rules at
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Fig. 4. Different types of boundary segments.

a bifurcation or extreme point to find the constraint
equations for going backward.

5. Repeat letting x = x − �x and solving for z, α, β, γ until
a bifurcation point or an extreme point is reached, or the
path returns to the z-axis. Go to Step 8 if the path returns
to the z-axis.

6. Employ the rules at a bifurcation or an extreme point to
obtain the constraint equations for developing the next
segment. Go to Step 5.

7. Let z = z −�z (or z = z + �z if the initial point is on the
lower boundary) and solve for x, α, β, γ Go to Step 5.

8. Develop the rest of the boundary following a similar
procedure. Exit.

IV.2. Algorithm for developing boundary surface
The x- and y-coordinates (with respect to the fixed reference
frame) of a point on the ZX+ plane at θ satisfy y = x tanθ . The
equation and the five equations that generate a bifurcation
point on the current ZX+plane at θ can be used to obtain
a corresponding bifurcation point on the next ZX+plane at
θ + δθ . The solution (x, y, z, α, β, γ ) can be easily obtained
using a numerical technique with the current values as the

initial values. The equations, however, may yield inadmiss-
ible solutions: complex solutions or real solutions that violate
some kinematic constraints. Let P′

1, P′
2, . . . , P′

n−1denote the
corresponding bifurcation points of the boundary at θ + δθ .
Then some possible changes of boundary segments and their
relations with the solutions of P′

1, P′
2, . . . , P′

n−1 are discussed
below:

1. Figure 4a shows that a bifurcation curve emanates from
extreme point Po (with ρ imax = ρ i for i = 1, 2, . . . , 6) at
angle θ c between θ and θ + δθ . If the boundaries are
developed from θ to θ + δθ , then bifurcation point P1

gradually approaches extreme point Po, and segment PoP1

vanishes when the solution of P′
1 turns inadmissible.

Segment PoP1 is denoted as a Type 1 segment, which has
one bifurcation point and one extreme point at the two
ends.

2. Bifurcation points Pk and Pk+1 in Fig. 4b or 4c are
on two different bifurcation curves. The two curves
intersect at extreme point E. When θ > θ c, the bifurcation
points (and the segment between them) corresponding to
the inadmissible solutions vanish, and new bifurcation
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points and segments may emerge at θ + δθ . The segment
between the two bifurcation points (generated by different
sets of constraint equations) is denoted as a Type 2
segment.

3. The bifurcation curve in Fig. 4d intersects twice the ZX+
plane. The bifurcation points and the segment (called a
Type 3 segment in this work) between them will vanish
when the solutions of P′

k and P′
k+1 become inadmissible.

If the boundary curves are developed from θ + δθ to θ ,
then the emergence of Type 1 or Type 3 segments cannot
be detected by the solutions of P′

1, P′
2, . . . , P′

n−1. Therefore,
we cannot develop the boundaries simply by solving for
the bifurcation points. In this paper, we first develop the
boundaries of two sections at θ a and θb = θ a +�θ . In this
case, whether any Type 1 or Type 3 segment emerges at
the opposite section can be detected. The related data of
the two boundaries are then used to facilitate the process of
developing the boundaries between the two sections.

If any new Type 1 or Type 3 segment emerges in one of
the two sections, then it is easier to develop the boundaries
from the section to the other. The extra segments will vanish
somewhere between θ a and θb. On the other hand, if the
boundaries are developed in the opposite direction, then we
have to determine where new Type 1 or Type 3 segments
emerge. Angle θ c in Fig. 4a can be computed if we know
which bifurcation curve emanates from the extreme point.
Suppose that the union of the equations that generate the
first segments at θ a and θb does not include the ith constraint
equation. Then we can loosen the ith constraint from the
extreme point to find θ c. By letting ρ i = ρ imax − δρ i and
solving the forward kinematics, we can obtain parameters x,
y, z, α, β and γ . Angle θ c, termed critical angle in this work,
can be determined by θ c = a tan 2(x,y). The Type 1 segments
change when θ passes θ c.

The emergence of any Type 2 segment can be detected by
solving for the bifurcation points at the next section. Segment
PkPk+1 in Fig. 4b or 4c will vanish at θ + δθ if the solutions
of P′

k and P′
k+1 are inadmissible. In this case, the standard

procedure (the steps used in Algorithm (I)) can be used to
develop the segments from P′

k−1 to P′
k+2. Let S(a) and S(b)

denote the sets of Type 3 segments on the boundaries of
θ a and θb, respectively. Then the following algorithm can
be used to obtain the boundaries between the two sections
if (i) S(a) and S(b) are nil sets; (ii) S(a) = S(a) ∪ S(b); or
(iii) S(b) = S(a) ∪ S(b). The statements in parentheses are
used when the boundaries are developed from θb to θ a.

Algorithm (II)

1. If two boundaries at θ a and θb are generated by the same
sequence of constraint equations, then the boundaries
between θ a and θb are developed by the same sequence
of constraint equations. Exit.

2. Let Type1U = Type1L = 0. Go to Step 5 if S(a) and S(b)
are nil sets.

3. If S(a) = S(a) ∪ S(b), then develop the boundaries from
θ a to θb. Go to Step 5.

4. If S(b) = S(a) ∪ S(b), then develop the boundaries from
θb to θ a.

5. If the Type 1 segments on the upper boundary curves at
θ a and θb are different, then compute the corresponding
critical angle θ c. Let Type1U = 1.

6. If the Type 1 segments on the lower boundary curves at
θ a and θb are different, then compute the corresponding
critical angle θ ′

c. Let Type1L = 1.
7. Let θ = θ + δθ (or θ = θ − δθ). Exit if θ ≥ θb (or θ ≤

θ a).
8. Solve for P′

1, P′
2, . . . , P′

n−1.
9. Go to Step 11 if Type1U 	=1 and Type1L 	=1.

10. Use the equations that generate the Type 1 segment at
θb(θ a) to generate the new Type 1 segment if a critical
angle is reached.

11. If two solutions of P′
i and P′

i+1(with corresponding Pi

and Pi+1 are the two end points of a Type 3 segment
at the previous section) become inadmissible, then
remove the two bifurcation points along with the segment
from the current sequence.

12. If the solution of P′
k or the solutions of P′

k and P′
k+1

corresponding to a Type 2 segment become inadmissible,
then develop the boundary from P′

k−1 to P′
k+1 or from

P′
k−1 to P′

k+2 using the standard procedure.
13. Develop the rest of segments. The segment between two

legitimate bifurcation points P′
j and P′

j+1 is developed
using the equations that generate the segment between
Pj and Pj+1.

14. Modify the current sequence. If the current sequence is
the same as the sequence that generates the boundary at
θb (θ a), then develop the remaining boundaries following
the current sequence. Exit.

15. Go to Step 7.

Two boundaries at θ a and θb with different Type 3 segments
are illustrated in Fig. 5. The case shown in Fig. 5a is easier
to handle because each section between θ a and θb has at
most one Type 3 segment. If we take �θ =�θ/2 in Fig. 5b,
then a Type 3 segment will vanish at θ ′

b when we develop
the boundaries from θd = θa +�θ/2 to θ a, and a Type 3
segment at θd will vanish at θ ′

a when the boundaries are
developed from θd to θb. By this approach, the boundaries
between θ a to θd (and the boundaries between θd to θb)
can be developed using the second algorithm. The steps
for developing the boundaries between two sections with
different Type 3 segments are as follows:

1. Develop the boundaries from θ a to θb (with positive
increment) until θ reaches an angle (θ ′

a in Fig. 5) where
all Type 3 segments vanish.

2. Develop the boundaries from θb to θ a (with negative
increment) until θ reaches an angle (θ ′

b in Fig. 5) where
all Type 3 segments vanish.

3. If θ ′
a ≤ θ ′

b, then develop the boundaries between θ ′
a and θ ′

b
using the second algorithm. Exit.

4. Repeat (i) let �θ = �θ/2 and θb = θ a +�θ ; (ii) develop
the boundary of θb until two boundaries at θ a and θb

satisfy S(a) = S(a) ∪ S(b) or S(b) = S(a) ∪ S(b).
5. Use the second algorithm to develop the boundaries

between θ a and θb. Exit.
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The following algorithm applies these steps and the first two
algorithms to develop the boundary of workspace.

Algorithm (III)

1. Let θ e = 2π . If the manipulator is symmetric, then θe =
2π/3. Use the first algorithm to develop the boundary at
θ a = 0. Record the related data.

2. Let θb = θ a + �θ . Exit if θb ≥ θ e. Develop the boundary
at θb. Record the related data.

3. If two boundaries at θ a and θb do not have different
Type 3 segments, then develop the boundaries between
θ a and θb using the second algorithm. Let θ a = θb. Go to
Step 2.

4. Develop the boundaries following the steps for the case
that two sections have different Type 3 segments. Let
θ a = θb. Go to Step 2.

V. NUMERICAL EXAMPLE
Figure 6 shows the distribution of the spherical joints on the
base and platform of a Symmetric Simplified Manipulator1

with 55 ≤ ρ i ≤ 60 for i = 1, 2, . . . , 6, φjmax = 50
◦

for all the
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Fig. 7. Isometric view of the boundary.

spherical joints, and D = 3. The boundary obtained is shown
in Fig. 7. No passive joint limit or link interaction is detected
for the given link parameters. Next, we reduce φjmax to 25

◦
.

In this case, some passive joints reach their limited positions.
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The cross-section of workspace at θ = 0
◦

is shown in Fig. 8
(with two shaded regions excluded from the workspace
for φjmax = 25

◦
), where the numbers with (′) denote the

corresponding limbs are at the lower limited positions, and
character Ai or Bj denotes the corresponding passive joint
reaches its limit position. The top views of the upper and
lower boundaries are presented in Fig. 9. It shows that the
workspace can be determined by the boundary curves from
θ = 0

◦
to π/2 for a symmetric manipulator.

VI. CONCLUSION
This paper presents algorithms for searching the equations
that generate the workspace boundary. Some boundary
curves were first obtained by searching techniques. The
related data of these boundaries along with the solutions of
bifurcations points of neighboring sections were then used
to predict the equations for generating the rest of the
boundary curves. In theory, there are hundreds of possible
combinations of equations that can generate two-dimensional
singular surfaces. Although the proposed algorithms obtain
directly the workspace boundary, it is still a very complicated
task to develop the boundary if all possible limited
positions can be reached. For safety reasons, most parallel
manipulators are designed in a way that they can stay away
from passive joint limits, link interactions, and singular
positions (by choosing proper ranges of actuator strokes).
Developing the boundary of those manipulators is relatively
simple because only a very small subset of the boundary is
developed by searching techniques. For future workspace,
the method can be extended to other types of parallel
manipulators or used to design parallel manipulators with
maximum reachable workspace.
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