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1. Introduction

For a group G with a family of subgroups H, Abels and Holz in [1] defined the notion of
‘higher generation’ of G by H. Whether or not G is highly generated by H depends on
the connectivity properties of the nerve of the covering of G given by the set of cosets
{gH | g ∈ G, H ∈ H} (for precise definitions, see § 2.1).

Abels and Holz connected higher generating families to the finiteness properties of
groups; recent work in this direction can be found in [15]. Furthermore, in [13], they
were used to study the BNS-invariants of right-angled Artin groups; higher generation
also arises in the context of Deligne complexes [9, 8, Example A.7] and braid groups [8].
However, the best-known example of higher generating families is probably that given in
[1, Theorem 3.3]: the set of parabolic subgroups forms a higher generating family for any
group with a BN-pair. To show this, Abels and Holz use the theory of Tits buildings.

The aim of this note is to show that with small adjustments, the result of Abels
and Holz can be extended to the general setting of groups acting appropriately on
Cohen–Macaulay complexes. Cohen–Macaulayness is a combinatorial property of sim-
plicial complexes defined via local connectivity conditions (see § 2.2). Our main result is
Theorem 2.10, which gives a criterion for obtaining higher generating families from group
actions on Cohen–Macaulay complexes. We also give a characterization of the class of
pairs (G,H) which can be obtained that way in Theorem 2.12.

As an application of this, we construct new higher generating families. The first
one is the family of Levi subgroups in groups with a BN-pair (see Theorem 3.3 and
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Corollary 3.4), and the second one is the family of ‘parabolic’ subgroups of Aut(Fn), the
automorphism group of the free group (see Definition 3.7 and Theorem 3.8). The cor-
responding Cohen–Macaulay complexes are the opposition complex and the free factor
complex, respectively.

2. Definitions and general results

Throughout this text, we will often identify a simplicial complex X and its geometric
realization ‖X‖ if what is meant is clear from the context.

2.1. Higher generating subgroups

Definition 2.1. Let X be a set and U a collection of subsets of X such that U covers
X. Then the nerve N(U) of the cover U is the simplicial complex that has vertex set U ,
where the vertices U0, . . . , Uk ∈ U form a simplex if and only if U0 ∩ . . . ∩ Uk �= ∅.

Definition 2.2. Let G be a group and H a family of subgroups of G.

1. The collection of cosets U := {gH | g ∈ G, H ∈ H} is a covering of G, and we define
the coset complex CC(G, H) to be the nerve N(U). This complex is endowed with
a natural action of G given by left multiplication.

2. We say that H is m-generating for G if CC(G, H) is (m− 1)-connected, i.e.
πi CC(G, H) = {1} for all i < m.

Interesting examples of coset complexes are given by the ‘coset poset’ of all subgroups
of a finite group, as studied in [7,17]. The term ‘higher generating subgroups’ was coined
by Holz in [11] and is motivated by the following. The family H is 1-generating for G if
and only if the union of the subgroups in H generates G. It is 2-generating if and only
if G is the free product of the subgroups in H amalgamated along their intersections.
Roughly speaking, the latter means that the union of the subgroups generates G and
that all relations that hold in G follow from relations in these subgroups. 3-generation
can similarly be defined using identities among relations (see [1, 2.8]).

Remark 2.3. The cosets g0H0, . . . , gkHk with gi ∈ G and Hi ∈ H intersect non-
trivially if and only if there is g ∈ G such that

g0H0 ∩ . . . ∩ gkHk = g(H0 ∩ . . . ∩Hk).

Hence, the set of k-simplices of CC(G, H) is in bijection with the set

{g(H0 ∩ . . . ∩Hk) | g ∈ G, Hi ∈ H, Hi �= Hj for i �= j}.
Assume that H is a finite family of subgroups of G. Then CC(G, H) has dimension

|H| − 1 and H itself is the vertex set of a facet, i.e. a maximal simplex, of the coset
complex. We will write this facet as CH. This (and hence any other) facet is a fundamental
domain for the action of G; this means that for all 0 ≤ k ≤ |H| − 1, the set of k-faces
of CH contains exactly one element of each G-orbit of k-simplices of CC(G, H). The
following converse of this observation is due to Zaremsky.
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Lemma 2.4 (see [8, Proposition A.5]). Let G be a group acting by simplicial
automorphisms on a simplicial complex X, with a single facet C as fundamental domain.
Let

P := {StabG(v) | v is a vertex of C}.
Then the map

ψ : CC(G, P) → X

g StabG(v) 	→ g.v

is an isomorphism of simplicial G-complexes.

2.2. The Cohen–Macaulay property

For the remainder of this section, let k be a field or the ring of integers Z.

Definition 2.5. LetX be a simplicial complex of dimension d <∞. ThenX is Cohen–
Macaulay over k if it is (d− 1)-acyclic over k, i.e. H̃i(X,k) = {0} for all i < d, and the
link of every s-simplex is (d− s− 2)-acyclic over k.
X is homotopy Cohen–Macaulay if it is (d− 1)-connected and the link of every

s-simplex is (d− s− 2)-connected.

The notion of Cohen–Macaulayness over k was introduced in the mid-1970s and came
up in the study of finite simplicial complexes via their Stanley–Reisner rings (see [19]).
The homotopical version was introduced by Quillen in [14]. While it can be shown that
‘being Cohen–Macaulay over k’ depends only on the geometric realization ‖X‖ and not
on its specific triangulation, the homotopical version is not a topological invariant but a
property of the simplicial complex X itself. One has implications:

homotopy CM ⇒ CM over Z ⇒ CM over any field k,

which are all strict. For more details on Cohen–Macaulayness and its connections to other
combinatorial properties of simplicial complexes, see [4]. We will talk about examples of
complexes having these properties in §§ 2.3 and 3.

Definition 2.6. A topological space is d-spherical if it is homotopy equivalent to a
wedge of d-spheres; as a convention, we consider a singleton to be homotopy equivalent
to a (trivial) wedge of n-spheres for all n.

Remark 2.7. By the Whitehead theorem, a d-dimensional complex is d-spherical if
and only if it is (d− 1)-connected.

An advantage of a complex that is Cohen–Macaulay over one that is merely spherical
is that it allows for inductive methods using its local structure. We will make use of this
in the proof of the following lemma.

Lemma 2.8. Let X be a d-dimensional complex and let Xs := ‖X‖ \ ‖X(s)‖ denote
the complement of the s-skeleton of ‖X‖. The following hold true.
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1. If X is Cohen–Macaulay over k, the homology with k-coefficients of Xs is
concentrated in dimension d− s− 1, i.e. H̃i(Xs,k) is trivial if i �= d− s− 1.

2. If X is homotopy Cohen–Macaulay, Xs is (d− s− 1)-spherical.

Proof. The proofs of the two statements are completely parallel and will be done
by induction on s. Setting X−1 := ‖X‖, the statements hold for s = −1 as ‖X‖ itself is
assumed to be (d− 1)-acyclic or (d− 1)-connected, respectively. For all s, the space Xs−1

is the union of Xs and the open s-simplices of ‖X‖, so we will successively adjoin these
simplices to Xs while keeping track of the homotopy type. Assume that we have already
constructed X ′ as the union of Xs and a set of open s-simplices of ‖X‖. Then for every
s-simplex σ in ‖X‖ that is not contained in X ′, there is an open contractible neigh-
bourhood U of the interior of σ in X ′′ := X ′ ∪ σ̊ such that U ∩X ′ = U \ σ̊ is homotopy
equivalent to the link of σ in X. As X is Cohen–Macaulay, this link is (d− s− 2)-acyclic
in the homological and (d− s− 2)-connected in the homotopical setting. This means that
X ′′ can be constructed by gluing together X ′ and U , which is contractible, along the open
subset U \ σ̊, which is (d− s− 2)-acyclic or (d− s− 2)-connected. Hence, the inclusion
X ′ ↪→ X ′′ induces for all i ≤ d− s− 2 an isomorphism on homology groups H̃i(·,k) or
homotopy groups πi, respectively.

By induction, we can conclude that if X is Cohen–Macaulay over k, we have
{0} = H̃i(Xs−1,k) ∼= H̃i(Xs,k), and if it is homotopy Cohen–Macaulay, we have {1} =
πi(Xs−1) ∼= πi(Xs) for i ≤ d− s− 2. Noting that the complement of the s-skeleton of
any simplicial complex of dimension d is homotopy equivalent to a complex of dimen-
sion (d− s− 1) (contract all the simplices of dimension (s+ 1) to their barycentres), the
result follows. �

A simplicial complex is called pure if all of its facets have the same dimension. A pure
simplicial complex X is called a chamber complex (or strongly connected) if every pair of
facets σ, τ ∈ X can be connected by a sequence of facets σ = τ1, . . . , τk = τ such that for
all 1 ≤ i ≤ k, the intersection of τi and τi+1 is a face of codimension 1. The facets of a
chamber complex are also called chambers.

Remark 2.9. Every Cohen–Macaulay complex is pure and a chamber complex (see
e.g. [4, Proposition 11.7]). The preceding lemma is a generalization of this well-known
fact in the following sense. Let X be a pure, d-dimensional simplicial complex, d ≥ 1.
Define a graph Γ whose vertices are given by the facets of X and where two vertices are
joined by an edge if and only if the corresponding facets intersect in a face of codimension
1. The graph Γ, which is also called the chamber graph of X, is homotopy equivalent to
the complement of the (d− 2)-skeleton of X. Furthermore, X is a chamber complex if
and only if Γ is connected, which is equivalent to H̃0(Γ) = {0}. So if we assume that X
is Cohen–Macaulay, Lemma 2.8 implies that it is a chamber complex.

2.3. Higher generation by actions on Cohen–Macaulay complexes

We now want to combine Lemma 2.4 with the observations of the preceding subsection
in order to obtain higher generating families of subgroups for groups acting on Cohen–
Macaulay complexes. Our main result here is as follows.

https://doi.org/10.1017/S0013091519000415 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000415


Higher generating subgroups and Cohen–Macaulay complexes 279

Theorem 2.10. Let G be a group acting by simplicial automorphisms on a simplicial
complex X, with a single facet C as fundamental domain. If X is homotopy Cohen–
Macaulay and has dimension d, the set

Pk := {StabG(σ) | σ is a k-dimensional face of C}
is (d− k)-generating for all 0 ≤ k ≤ d. Furthermore, the corresponding coset complex
CC(G, Pk) is (d− k)-spherical.

Proof. By Lemma 2.4, we can identify X with the coset complex CC(G, P0).
As C is a fundamental domain for the action of G, the stabilizer of a k-face F of C is

equal to the intersection of the stabilizers of all the vertices of F . Hence, the elements of
Pk are given by all the intersections of (k + 1) pairwise distinct elements from P0.

By Remark 2.3, the vertices of CC(G, Pk) are in one-to-one correspondence with the
k-simplices of CC(G, P0) ∼= X. Moreover, a set of vertices in CC(G, Pk) forms a simplex
if and only if the corresponding k-simplices in X are all faces of one common facet. It
follows that the geometric realization ‖CC(G, Pk)‖ is homotopy equivalent to ‖Y ‖, where
Y is the induced subcomplex of the barycentric subdivision B(X) whose vertices are the
barycentres of all simplices of X that have dimension greater or equal to k.

The complex ‖Y ‖ is homotopy equivalent to the complement of the (k − 1)-skeleton of
‖X‖. As X is Cohen–Macaulay, we can use Lemma 2.8 to conclude that CC(G, Pk) is
(d− k)-spherical. This finishes the proof. �

Before we apply this theorem to obtain higher generating families of subgroups for
specific examples in the next section, we now characterize the class of pairs (G,H) which
can be obtained using Theorem 2.10. By Lemma 2.4, the conditions of Theorem 2.10
are fulfilled if and only if CC(G, P0) is homotopy Cohen–Macaulay. We will give an
alternative characterization of this condition for coset complexes.

A pure simplicial complex X of dimension d is called coloured (or completely balanced)
if there is a map c : X(0) → {0, . . . , d} restricting to a bijection on each facet. In this
setting, for each J ⊆ {0, . . . , d}, let XJ be the induced subcomplex of X with vertex set
c−1(J). As stated below, the following result is due to Walker.

Theorem 2.11 (see [5, Theorem 5.2, 4, Theorem 11.14]). Let X be a pure
d-dimensional coloured complex. Then X is Cohen–Macaulay over k if and only if XJ is
(|J | − 2)-acyclic over k for every J ⊆ {0, . . . , d}. It is homotopy Cohen–Macaulay if and
only if XJ is (|J | − 2)-connected for every J ⊆ {0, . . . , d}.

Every finite-dimensional coset complex is a pure simplicial complex which can be given
a colouring

c : CC(G, {H0, . . . , Hd}) → {0, . . . , d}
by setting c(gHi) := i. Hence, the following is an immediate consequence of Theorem 2.11.

Theorem 2.12. Let G be a group and H a finite family of subgroups of G.

1. CC(G, H) is Cohen–Macaulay over k if and only if for all H′ ⊆ H, the coset complex
CC(G, H′) is (|H′| − 2)-acyclic over k.
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2. CC(G, H) is homotopy Cohen–Macaulay if and only if every H′ ⊆ H is (|H′| − 1)-
generating for G.

Being a coset complex imposes rather strong restrictions. In addition to being coloured,
every such complex is endowed with a facet transitive group action. One might ask
whether in this setting, Cohen–Macaulayness implies already stronger combinatorial con-
ditions such as shellability. A finite complex is shellable if and only if the set of its
facets admits a sufficiently nice ordering, called a shelling ; for the precise definition, see
[4, § 11.2]. In general, being shellable is strictly stronger than being homotopy Cohen–
Macaulay. Buildings form a class of coset complexes which are shellable (see § 3 and [3]).
The following example, however, shows that there are also coset complexes which are
Cohen–Macaulay over Z but are not homotopy Cohen–Macaulay, and so in particular are
not shellable.

Let Alt5 be the alternating group on the set {1, 2, 3, 4, 5} and consider the following
subgroups:

H1 := StabAlt5({2}),
H2 := NAlt5(〈(1, 2, 3, 4, 5)〉),
H3 := NAlt5(〈(1, 3, 5)〉),

where StabAlt5 and NAlt5 denote the stabilizer and normalizer in Alt5. The group H1 is
isomorphic to Alt4, and H2 and H3 are isomorphic to the dihedral groups D5 and D3,
respectively. Let H := {H1,H2,H3}. The coset complex CC(Alt5, H) has dimension 2
and consists of 21 vertices, 80 edges and 60 two-simplices. This complex was first found
by Oliver; an explicit description of it as a coset complex can be found in [16]. For further
details and a picture, see [12, § 7.3]; note that CC(Alt5, H) is isomorphic to the complex
N0 in [12].

Lemma 2.13. The coset complex CC(Alt5, H) is Cohen–Macaulay over Z but is not
homotopy Cohen–Macaulay.

Proof. In [12], Lutz shows that ‖CC(Alt5, H)‖ is homeomorphic to a cell complex
Q obtained by taking the boundary of a dodecahedron and identifying opposite pen-
tagons by a coherent twist of π/5. The complex Q arises in triangulations of the Poincaré
homology 3-sphere Σ3. It is Z-acyclic and one has π1(Q) ∼= π1(Σ3) (see [6, p. 57]). As
this fundamental group is non-trivial, Q and therefore CC(Alt5, H) cannot be homotopy
Cohen–Macaulay.

It remains to show that CC(Alt5, H) is Cohen–Macaulay over Z. By Theorem 2.12, it
suffices to show that for all H′ ⊆ H, the complex CC(Alt5, H′) is (|H′| − 2)-acyclic. For
H′ = H, this is true as Q is Z-acyclic, and for |H′| = 1, there is nothing to show. Hence,
one only needs to check that for all two-element subsets H′ of H, the corresponding sub-
complex of CC(Alt5, H) is connected. This can easily be verified, e.g. by using Figure 7.5
of [12]. �

A further question in the same direction which might be interesting to consider is
whether every coset complex that is homotopy Cohen–Macaulay is already shellable.
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A counterexample to that (if existent) would have to be a pure, completely balanced
simplicial complex with a facet-transitive group action that is homotopy Cohen–Macaulay
but not shellable. To us, it seems likely that such a complex exists, but we are not currently
aware of any examples.

3. Applications

In what follows, we give three applications of Theorem 2.10. All of them are either directly
or in spirit connected to the theory of buildings. The first two examples make direct use
of this theory; definitions and background material needed for these subsections can be
found in [2]. The third application concerns higher generating families of subgroups in
Aut(Fn), the automorphism group of the free group.

3.1. Parabolic subgroups and buildings

Our first application recovers [1, Theorem 3.3] of Abels and Holz. We will be brief here
and refer to their text for further details.

Let G be a group with a BN-pair. Denote by Δ the corresponding building and by
Ch(Δ) the set of its chambers. If the corresponding Weyl group W has rank r, this build-
ing is homotopy equivalent to a wedge of (r − 1)-spheres by the Solomon–Tits theorem
(see [18]); it is in fact contractible if W is infinite. The link of a simplex of dimen-
sion k in Δ is again a building of rank r − k − 1, which implies that Δ is homotopy
Cohen–Macaulay.

The action of G is transitive on the chambers of Δ, so we can apply Theorem 2.10 to
deduce that for any choice of chamber C ∈ Ch(Δ), the family Pk of stabilizers of the k-
dimensional faces of C is (r − 1 − k)-generating forG. If we take C to be the ‘fundamental’
chamber associated with the Borel subgroup B, these stabilizers are exactly the standard
parabolic subgroups of rank r − k − 1. Hence we get the following.

Theorem 3.1 (see [1, Theorem 3.3]). The family of rank-m standard parabolic
subgroups is m-generating for G.

3.2. Levi subgroups and the opposition complex

To show that the families of standard parabolic subgroups in a group G with a BN-pair
are higher generating, we only needed to use the chamber transitivity of the action of G
on the associated building. However, this action is known to satisfy stronger transitivity
conditions; we will exploit these to find other families of higher generating subgroups in
this subsection.

Let Δ be a spherical building. The chamber distance d(−,−) induces an opposition
relation op between chambers of Δ which is defined by

C opC ′ :⇔ d(C,C ′) = max{d(C1, C2) | C1, C2 ∈ Ch(Δ)}.
This opposition relation can be extended to arbitrary simplices σ, σ′ ∈ Δ of equal
dimension by saying that σ is opposite to σ′ if and only if the following holds true.

For every chamber C ≥ σ in Δ, there is a chamber C′ ≥ σ′ such that C op C′, and for
every chamber C′ ≥ σ′, there is a chamber C ≥ σ such that C op C′.
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Using this opposition relation, one can define a new complex from Δ as follows.

Definition 3.2. The opposition complex Opp(Δ) is the simplicial complex whose
simplices are of the form (σ, σ′) with σ, σ′ ∈ Δ, σ opσ′, where the face relation is given
by

(τ, τ ′) ≤ (σ, σ′) :⇔ τ ≤ σ and τ ′ ≤ σ′.

Opp(Δ) has the same dimension as Δ, and it was shown to be homotopy Cohen–
Macaulay by von Heydebreck in [20]. The complex is pure and its facets are given by
pairs (C,C ′) of opposite chambers C,C ′ ∈ Ch(Δ).

Every building Δ comes with a map

δ : Ch(Δ) × Ch(Δ) →W,

where W is the Weyl group of Δ. This function is called the Weyl distance function
(of Δ), and it is related to the gallery distance as follows:

d(C,C ′) = lS(δ(C,C ′)),

where lS denotes the Coxeter length function on W . If a group acts by type-preserving
automorphisms on Δ, we say that the action is Weyl transitive if for each w ∈W , the
action is transitive on the set of order pairs of chambers (C,C ′) with δ(C,C ′) = w.

Theorem 3.3. Let G be a group acting Weyl transitively by type-preserving auto-
morphisms on a spherical building Δ of dimension d. Choose any pair (C,C ′) of opposite
chambers C,C ′ ∈ Ch(Δ). Then the set

Pk := {StabG(σ) ∩ StabG(σ′) | σ, σ′k-dimensional faces of C,C ′; σ opσ′}
is (d− k)-generating for G.

Proof. As the action of G on Δ preserves distances and adjacency relations, it induces
a simplicial action on Opp(Δ) given by

g.(σ, σ′) := (g.σ, g.σ′).

We claim that the simplex (C,C ′) ∈ Opp(Δ) is a fundamental domain for this action
of G. Because Δ is spherical, its Weyl group W is finite and has a unique element wS

of maximal length. Hence, two chambers D,D′ ∈ Ch(Δ) are opposite to each other if
and only if δ(D,D′) = wS , and by Weyl transitivity, G acts transitively on such pairs of
opposite chambers. This implies that the set of vertices of (C,C ′) contains a representative
of each G-orbit of vertices in Opp(Δ). Furthermore, the type of any vertex of the chamber
C is preserved by all the elements of G. Hence, no two distinct vertices of (C,C ′) lie in
the same G-orbit, which proves that this facet is indeed a fundamental domain.

As a consequence, Theorem 2.10 shows that the set Pk of stabilizers of k-simplices in
Opp(Δ) is (d− k)-generating. Since a k-simplex in Opp(Δ) is a pair (σ, σ′) of k-simplices
σ, σ′ ∈ Δ, this finishes the proof. �

In particular, the conditions of the preceding theorem are fulfilled in the following
situation. If G is a group having a BN-pair of rank r with finite Weyl group W = 〈S〉,
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it acts Weyl transitively on the associated spherical building. The chambers associated
with B and B− = wSBwS are opposite to each other and, after setting C := B and
C ′ := B−, the family Pk defined in Theorem 3.3 is the set of standard rank-(r − k − 1)
Levi subgroups. We state this as follows.

Corollary 3.4. Let (G,B,N, S) be a Tits system with finite Weyl group. Then the
family of standard rank-m Levi subgroups is m-generating for G.

Example 3.5. As an illustration, we spell out the following special case of this result.
If Δ is the flag complex of proper subspaces of the vector space kn, i.e. a building of type
An−1, the opposition complex Opp(Δ) is the complex with vertex set

{(U,U ′) | U, U ′ are proper subspaces of kn and U ⊕ U ′ = kn},

in which (U0, U
′
0), . . . , (Uk, U

′
k) form a simplex if and only if (possibly after reordering)

one has U0 < U1 < · · · < Uk and U ′
0 > U ′

1 > · · · > U ′
k.

Let {e1, . . . , en} be the standard basis of kn. The flags

C := 〈e1〉 < 〈e1, e2〉 < · · · < 〈e1, . . . , en−1〉 and

C ′ := 〈e2, . . . , en〉 > 〈e3, . . . , en〉 > · · · > 〈en〉

form opposite chambers of Δ. The building Δ has dimension n− 2 and GLn(k) acts Weyl
transitively on it. The corresponding family of stabilizers Pk with 0 ≤ k ≤ n− 3 consists
of all subgroups of the form

⎛
⎜⎜⎜⎜⎝

GLn1(k) 0 · · · 0

0 GLn2(k)
...

...
. . . 0

0 · · · 0 GLnk+2(k)

⎞
⎟⎟⎟⎟⎠

≤ GLn(k).

So the number of blocks in the corresponding matrices is k + 2, and the ni are natural
numbers such that

∑k+2
i=1 ni = n. These are exactly the standard rank-(n− 2 − k) Levi

subgroups of GLn(k), and by Theorem 3.3 this family is (n− 2 − k)-generating.

3.3. Parabolics in Aut(Fn) and the free factor complex

Hatcher and Vogtmann in [10] defined a simplicial complex associated with Aut(Fn),
the automorphism group of the free group on n letters. It is defined similarly to and
shares many properties with the building associated with GLn(Z) = Aut(Zn).

Definition 3.6. A subgroup A of Fn is called a free factor if there is a subgroup
B ≤ Fn such that Fn can be written as a free product Fn = A ∗B.

The free factor complex FCn is the simplicial complex whose vertices are proper free
factors of Fn, where the vertices H0, . . . ,Hk form a simplex if and only if they form a
flag H0 ≤ H1 ≤ · · · ≤ Hk.
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FCn is a chamber complex of dimension n− 2 and comes with a simplicial action
of Aut(Fn) given by g.(H0 < H1 < · · · < Hk) := g(H0) < g(H1) < · · · < g(Hk). A funda-
mental domain for this action is given by any maximal flag H0 < · · · < Hn−2 of free
factors in Fn.

Definition 3.7. Fix a basis b1, . . . , bn of Fn. This gives rise to a ‘standard flag’

C := 〈b1〉 < 〈b1, b2〉 < · · · < 〈b1, . . . , bn−1〉
of free factors in Fn. Now, analogous to the situation in buildings, we define a standard
rank-m parabolic subgroup to be the stabilizer of a sub-flag of C that has length n−m− 1.
To match the numbering of § 2.3, we use the corank to number the parabolic subgroups
and define Pn−m−2 to be the set of standard rank-m parabolics.

Again, we use Theorem 2.10 to show the following.

Theorem 3.8. For all 1 ≤ m ≤ n− 2, the family Pn−m−2 of standard rank-m
parabolic subgroups is m-generating for Aut(Fn). The corresponding coset complex
CC(Aut(Fn), Pn−m−2) is m-spherical.

Proof. As noted above, Aut(Fn) acts on the free factor complex with the facet
C = 〈b1〉 < 〈b1, b2〉 < · · · < 〈b1, . . . , bn−1〉 as a fundamental domain. The standard rank-
m parabolics are exactly the stabilizers of the (n−m− 2)-faces of C. Since Hatcher and
Vogtmann showed that FCn is homotopy Cohen–Macaulay (see [10, § 4]), the statement
is an immediate consequence of Theorem 2.10. �
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