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On nonmonogenic number fields defined
by x6

+ ax + b
Anuj Jakhar and Surender Kumar

Abstract. Let q be a prime number and K = Q(θ) be an algebraic number field with θ a root of an
irreducible trinomial x6 + ax + b having integer coefficients. In this paper, we provide some explicit
conditions on a, b for which K is not monogenic. As an application, in a special case when a = 0, K is
not monogenic if b ≡ 7 mod 8 or b ≡ 8 mod 9. As an example, we also give a nonmonogenic class of
number fields defined by irreducible sextic trinomials.

1 Introduction

In Algebraic Number Theory, it is an important problem to know whether a given
algebraic number field is monogenic. This problem has been widely studied and of
interest to several mathematicians (cf. [1, 2, 4–8, 10, 11]). Let K be an algebraic number
field generated by a complex root θ of a monic irreducible polynomial f (x) having
degree n with coefficients from the ring Z of integers. Let ZK denote the ring of
algebraic integers of K. It is well-known that ZK is a free abelian group of rank n. Let
ind θ denote the index of the subgroup Z[θ] in ZK . If ind α = 1 for some α ∈ ZK , then
{1, α, . . . , αn−1} is a power integral basis ofZK . In such a case, K is called monogenic. If
there does not exist any such α ∈ ZK , then K is called nonmonogenic. In 2016, Ahmad
et al. [1] proved that the sextic number field generated by m 1

6 is not monogenic if
m ≡ 1 mod 4 and m /≡ ±1 mod 9. In 2017, Gaál and Remete [8] obtained some new
results on monogenity of number fields generated by m 1

n with m a square free integer
and 3 ≤ n ≤ 9 by applying the explicit form of the index equation. In 2021, Yakkou
and Fadil [11] studied the monogenity of number fields generated by m

1
qr , where m

is a square-free integer and q be a prime number. In this paper, based on prime ideal
factorization, we prove some results regarding the nonmonogenity of a number field K
defined by an irreducible trinomial of the type x6 + ax + b having integer coefficients.
As an application of our result, we show that in the special case a = 0, if b ≡ 7 mod 8
or b ≡ 8 mod 9, then K is not monogenic. We illustrate our results through examples.

Throughout the paper, ZK denotes the ring of algebraic integers of an algebraic
number field K. For a prime number q and a nonzero m belonging to the ring Zq of
q-adic integers, vq(m) will be defined to be the highest power of q dividing m.

Precisely, we prove the following result.
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Theorem 1.1 Let K = Q(θ) be an algebraic number field with θ a root of an irreducible
polynomial f (x) = x6 + ax + b having integer coefficients. If a and b + 1 are both
divisible by either 8 or 9, then K is not monogenic.

The following result is an immediate consequence of the above theorem.

Corollary 1.2 Let b be an integer. Let f (x) = x6 + b be an irreducible polynomial
having a root θ and K = Q(θ). If b ≡ 7 mod 8 or b ≡ 8 mod 9, then K is not monogenic.

It may be pointed out that the above corollary also follows from the results of [4].

Theorem 1.3 Let K = Q(θ) and f (x) = x6 + ax + b be as in Theorem 1.1. Let a ≡ 2
mod 4 and b ≡ 1 mod 4. Let D denote the discriminant of f (x) given by 55a6 − 66b5

and D2 = D
v2(D) . If v2(D) is even with D2 ≡ 3 mod 4 and bD2 /≡ 7 mod 8, then K is not

monogenic.

The following corollary is an immediate consequence of Theorem 1.3.

Corollary 1.4 Let a, b be integers such that a = 192r + 78 and b = 160r + 65 with r ∈
Z. Let K = Q(θ) with θ a root of an irreducible polynomial x6 + ax + b, then K is not
monogenic.

We now provide some examples of nonmonogenic number fields defined by
irreducible sextic trinomials.

Example 1.5 Let q be a prime number1 of the form 8k − 1 with k ∈ Z. Let m be an
odd integer such that q divides m. Consider f (x) = x6 + 8m + q. Note that f (x) is
irreducible over Q as f (x) satisfies Eisenstein criterion with respect to prime q. If θ
is a root of f (x) and K = Q(θ), then K is not monogenic in view of Theorem 1.1.

Example 1.6 Let K = Q(θ) with θ a root of f (x) = x6 + 78x + 65. Note that f (x)
satisfies Eisenstein criterion with respect to 13, hence it is irreducible over Q. By
Corollary 1.4, we see that K is not monogenic.

2 Preliminary results

Let ZK denote the ring of algebraic integers of an algebraic number field K = Q(θ)
with θ a root of an irreducible polynomial f (x) having integer coefficients. Let q be a
prime number. Suppose q does not divide ind θ. Then, in 1878, Dedekind [3] proved
a significant theorem which relates the decomposition of f (x) modulo q with the
factorization of qZK into a product of prime ideals of ZK . The following lemma plays
an important role in the proof of Theorem 1.1, which is an immediate consequence of
Dedekind’s theorem. We shall denote by Fq the field with q elements.

1It is immediate from Dirichlet’s theorem on primes in arithmetical progressions that there exists
infinitely many primes of the form 8k − 1, k ∈ Z.
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Lemma 2.1 Let K be a number field and q be a prime number. For every positive
integer f, let N f denote the number of irreducible polynomials of Fq[x] of degree f and
Pf denote the number of distinct prime ideals of ZK lying above q having residual degree
f. If Pf > N f for some f, then for every generator α ∈ ZK of K, q divides ind α.

For a prime number q, to find the number of distinct prime ideals ofZK lying above
q, we shall use a weaker version of the classical Theorem of Ore. Before stating that,
we first introduce the notions of Gauss valuation, ϕ-Newton polygon and q-regular
where ϕ(x) belonging to Zq[x] is a monic polynomial with ϕ(x) irreducible over Fq .

We shall denote by vq ,x the Gauss valuation of the Qq(x) of rational functions in
an indeterminate x which extends the valuation vq of Qq and is defined on Qq[x] by

vq ,x (∑
i

b i x i) =min
i
{vq(b i)}, b i ∈ Qq .(2.1)

Now, we define the notion of ϕ-Newton polygon with respect to some prime q.

Definition 2.1 Let q be a prime number and ϕ(x) ∈ Zq[x] be a monic polyno-
mial, which is irreducible modulo q. Let f (x) ∈ Zq[x] be a monic polynomial not

divisible by ϕ(x) and
n
∑
i=0

a i(x)ϕ(x)i with deg a i(x) < deg ϕ(x), an(x) ≠ 0 be the ϕ-

expansion of f (x) obtained on dividing it by successive powers of ϕ(x). To each non-
zero term ak(x)ϕ(x)k , we associate the point (n − k, vq ,x(ak(x))) and form the set

P = {(k, vq ,x(an−k(x))) ∣ 0 ≤ k ≤ n, an−k(x) ≠ 0}.

The ϕ-Newton polygon of f (x) with respect to prime q is the polygonal path formed
by the lower edges along the convex hull of the points of P. The slopes of the edges are
increasing when calculated from left to right.

Example 2.2 Let f (x) = (x + 5)4 − 5. Here, take ϕ(x) = x. Then the x-Newton
polygon of f (x) with respect to prime 2 consists of only one edge joining the points
(0, 0) and (4, 2) with the lattice point (2, 1) lying on it (see Figure 1).

(0, 0)

(2,1)

(4, 2)
(1, 2) (3, 2)

Figure 1: x-Newton polygon of f (x) with respect to prime 2.
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Definition 2.2 Let ϕ(x) ∈ Zq[x] be a monic polynomial which is irreducible mod-
ulo a prime q having a root α in the algebraic closure Q̃q of Qq . Let f (x) ∈ Zq[x] be
a monic polynomial not divisible by ϕ(x) having degree a multiple of deg ϕ(x) with
ϕ(x)-expansion ϕ(x)n + an−1(x)ϕ(x)n−1 +⋯+ a0(x). Suppose that the ϕ-Newton
polygon of f (x)with respect to q consists of a single edge, say S having positive slope
denoted by d

e with d , e coprime, i.e.,

min{
vq ,x(an−i(x))

i
∣ 1 ≤ i ≤ n} =

vq ,x(a0(x))
n

= d
e

,

so that n is divisible by e, say n = et and vq ,x(an−e j(x)) ≥ d j for 1 ≤ j ≤ t. Thus, the
polynomial an−e j(x)

qd j = b j(x) (say) has coefficients in Zq and hence b j(α) ∈ Zq[α]
for 1 ≤ j ≤ t. The polynomial T(y) in an indeterminate y defined by T(y) = yt +

t
∑
j=1

b j(α)yt− j having coefficients in Fq[α] is said to be the polynomial associated to

f (x) with respect to (ϕ, S); here, the field Fq[α] is isomorphic to the field Fq[x]
⟨ϕ(x)⟩ .

Example 2.3 Consider f (x) = (x + 5)4 − 5. Then, as in Example 2.2, the x-Newton
polygon of f (x) with respect to prime 2 consists of only one edge joining the points
(0, 0) and (4, 2)with the lattice point (2, 1) lying on it. With notations as in the above
definition, we see that e = 2, d = 1 and the polynomial associated to f (x)with respect
to (x , S) is T(y) = y2 + y + 1 belonging to F2[y].

The following definition extends the notion of associated polynomial when f (x)
is more general.

Definition 2.3 Let ϕ(x), α be as in Definition 2.2. Let g(x) ∈ Zq[x] be a monic
polynomial not divisible by ϕ(x) such that g(x) is a power of ϕ(x). Let λ1 < ⋯ < λk
be the slopes of the edges of the ϕ-Newton polygon of g(x) and S i denote the edge
with slope λ i . In view of a classical result proved by Ore (cf. [9, Theorem 1.1]), we
can write g(x) = g1(x)⋯gk(x), where the ϕ-Newton polygon of g i(x) ∈ Zq[x] has
a single edge, say S′i which is a translate of S i . Let Ti(y) belonging to Fq[α][y]
denote the polynomial associated to g i(x) with respect to (ϕ, S′i ) described as in
Definition 2.2. For convenience, the polynomial Ti(y) will be referred to as the
polynomial associated to g(x) with respect to (ϕ, S i). The polynomial g(x) is said
to be q-regular with respect to ϕ if Ti(y) is irreducible in the algebraic closure of
Fq , 1 ≤ i ≤ k. In general, if f (x) belonging to Zq[x] is a monic polynomial and
f (x) = ϕ1(x)e1⋯ϕr(x)

er is its factorization modulo q into irreducible polynomials
with each ϕ i(x) belonging to Zq[x] monic and e i > 0, then by Hensel’s Lemma
there exist monic polynomials f1(x), . . . , fr(x) belonging to Zq[x] such that f (x) =
f1(x)⋯ fr(x) and f i(x) = ϕ i(x)e i for each i. The polynomial f (x) is said to be
q-regular (with respect to ϕ1 , . . . , ϕr) if each f i(x) is q-regular with respect to ϕ i .

We now state a weaker version of Theorem 1.2 of [9].
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Theorem 2.4 Let L = Q(ξ) be an algebraic number field with ξ satisfying a monic
irreducible polynomial g(x) ∈ Z[x] and q be a prime number. Let ϕ1(x)e1⋯ϕr(x)

er

be the factorization of g(x) modulo q into a product of powers of distinct irreducible
polynomials over Fq with each ϕ i(x) ≠ g(x) belonging to Z[x] monic. Assume that
the ϕ i -Newton polygon of g(x) has k i edges, say S i j having slopes λ i j = d i j

e i j
with

gcd(d i j , e i j) = 1 for 1 ≤ j ≤ k i . If g(x) is q-regular with respect to ϕ1 , . . . , ϕr , then

qZL =
r
∏
i=1

k i

∏
j=1
℘e i j

i j ,

where℘i js are distinct prime ideals ofZL having residual degree deg ϕ i(x) × deg Ti j(y)
and Ti j(y) is the polynomial associated to g(x) with respect to (ϕ i , S i j), 1 ≤ j ≤ k i .

3 Proof of Theorems 1.1, 1.3

Proof of Theorem 1.1 We first consider the case when 8 divides both a and b + 1.
In this case, f (x) ≡ (x2 + x + 1)2(x + 1)2 mod 2. Set ϕ1(x) = x2 + x + 1 and ϕ2(x) =
x + 1. The ϕ1-expansion of f (x) is given by

f (x) = (x2 + x + 1)3 − 3x(x2 + x + 1)2 + (2x − 2)(x2 + x + 1) + ax + b + 1.

Using the fact that min{v2(a), v2(b + 1)} ≥ 3, it is easy to see that the ϕ1-Newton
polygon of f has two edges of positive slope, say S1 and S2 joining the point (1, 0)with
(2, 1) and the point (2, 1)with (3, min{v2(a), v2(b + 1)}). The polynomial associated
to f (x) with respect to (ϕ1 , S i) is linear for i = 1, 2. Note that the ϕ2-expansion of
f (x) is given by

f (x) = (x + 1)6 − 6(x + 1)5 + 15(x + 1)4 − 20(x + 1)3 + 15(x + 1)2

+ (a − 6)(x + 1) + (−a + b + 1).

It can be easily verified that the ϕ2-Newton polygon of f has two edges of positive
slope, say S′1 and S′2 joining the point (4, 0) with (5, 1) and the point (5, 1) with
(6, v2(−a + b + 1)) respectively. The polynomial associated to f (x) with respect to
(ϕ2 , S i) is linear for i = 1, 2. So f (x) is 2-regular with respect to ϕ1 , ϕ2. Hence,
applying Theorem 2.4, we see that there are two distinct prime ideals ofZK lying above
2 having residual degree two each. Since there is only one irreducible polynomial over
F2 of degree two, in view of Lemma 2.1, 2 divides ind α for every generator α ∈ ZK . So
K is not monogenic.

Now consider the case when 9 divides both a and b + 1. In this case, f (x) ≡ (x −
1)3(x + 1)3 mod 3. Set ϕ1(x) = x − 1 and ϕ2(x) = x + 1. It is easy to check that the
ϕ1-expansion of f (x) is given by

f (x) = (x − 1)6 + 6(x − 1)5 + 15(x − 1)4 + 20(x − 1)3 + 15(x − 1)2

+ (a + 6)(x − 1) + (a + b + 1).

Since 9 divides both a and b + 1, we have a + 6 ≡ 6 mod 9 and a + b + 1 ≡ 0 mod 9.
Therefore, it can be easily seen that the ϕ1-Newton polygon of f (x) has two edges
of positive slope. The first edge, say S1 is the line segment joining the point (3, 0)

https://doi.org/10.4153/S0008439521000825 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000825


On nonmonogenic number fields defined by x6 + ax + b 793

with (5, 1) and the second edge, say S2 is the line segment joining the point (5, 1)
with (6, v3(a + b + 1)). The polynomial associated to f (x) with respect to (x − 1, S i)
is linear for i = 1, 2.

Recall that the ϕ2-expansion of f (x) is given by

f (x) = (x + 1)6 − 6(x + 1)5 + 15(x + 1)4 − 20(x + 1)3 + 15(x + 1)2

+ (a − 6)(x + 1) + (−a + b + 1).

One can verify that the ϕ2-Newton polygon of f (x) has two edges of positive
slope. The first edge, say S′1 is the line segment joining the point (3, 0) with (5, 1)
and the second edge, say S′2 is the line segment joining the point (5, 1) with
(6, v3(−a + b + 1)). The polynomial associated to f (x) with respect to (x + 1, S′i)
is linear for i = 1, 2.

Thus f (x) is 3-regular with respect to ϕ1 , ϕ2. Hence, applying Theorem 2.4, we see
that there exist four distinct prime ideals of ZK lying above 3 having residual degree
one. Since there are only three irreducible polynomials ofF3[x] of degree 1, by Lemma
2.1, K is not monogenic. ∎

Proof of Theorem 1.3 By hypothesis, we have a ≡ 2 mod 4, b ≡ 1 mod 4. In this
case, f (x) ≡ (x2 + x + 1)2(x + 1)2 mod 2. Set ϕ1(x) = x2 + x + 1. The ϕ1-expansion
of f (x) is given by

f (x) = (x2 + x + 1)3 − 3x(x2 + x + 1)2 + (2x − 2)(x2 + x + 1) + ax + b + 1.(3.1)

Since min{v2(a), v2(b + 1)} = 1, the ϕ1-Newton polygon of f (x) with respect to
prime 2 has a single edge of positive slope, say S joining the point (1, 0) with (3, 1).
The polynomial associated to f (x) with respect to (ϕ1 , S) is linear.

Since a ≡ 2 mod 4, b ≡ 1 mod 4, we have v2(D) ≥ 8. Since v2(D) is even, denote
v2(D)−6

2 by u. Consider a rational number δ = 2u−3b
5a2

with a2 = a
2 . Note that v2(δ) = 0.

Now set ϕ2(x) = x − δ. The ϕ2-expansion of f (x) is given by

f (x) = (x − δ)6 + 6δ(x − δ)5 + 15δ2(x − δ)4 + 20δ3(x − δ)3 + 15δ4(x − δ)2

+ f ′(δ)(x − δ) + f (δ).(3.2)

We claim that

v2( f (δ)) = 2u + 2, v2( f ′(δ)) = u + 1.(3.3)

Substituting δ = 2u−3b
5a2

in f (δ) = δ6 + aδ + b, we have

56a6
2 f (δ) = (2u − 3b)6 + a(2u − 3b)(5a2)5 + b(5a2)6;

the above equation on applying binomial theorem and rearranging terms can be
rewritten as

56a6
2 f (δ) = 26u − 9 ⋅ 25u+1b + 135b224u − (3b)3 ⋅ 5 ⋅ 23u+2 + 15(3b)422u

+ (b − 2u+1)(36b5 − 55a6
2).
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Dividing the above equation by 22u and taking congruence modulo 8, we see that

56a6
2 f (δ)
22u ≡ −bD2 − 1 mod 8.(3.4)

By hypothesis we have a ≡ 2 mod 4, b ≡ 1 mod 4, D2 ≡ 3 mod 4 and bD2 /≡ 7 mod 8.
So by (3.4), we have v2( f (δ)) = 2u + 2. Now substituting x = δ in the relation 6 f (x) −
x f ′(x) = 5ax + 6b and keeping in mind that 5aδ + 6b = 2u+1 together with the fact
v2( f (δ)) = 2u + 2, we see that v2( f ′(δ)) = u + 1. This proves our claim.

Using (3.2) and (3.3), one can see that the ϕ2-Newton polygon of f has a single
edge of positive slope, say S′ joining the points (4, 0) and (6, 2u + 2) with the lattice
point (5, u + 1) lying on it. The polynomial associated to f (x)with respect to (ϕ2 , S′)
is Y 2 + Y + 1 which has no repeated roots. Therefore, f (x) is 2-regular with respect
to ϕ1 , ϕ2. Applying Theorem 2.4, we see that there are two distinct prime ideals of
ZK lying above 2 having residual degree two each. Since there is only one irreducible
polynomial over F2 of degree two, by Lemma 2.1, K is not monogenic. ∎
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