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The spreading and stability of a surfactant-laden
drop on an inclined prewetted substrate
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(Received 11 December 2014; revised 1 April 2015; accepted 7 April 2015;
first published online 7 May 2015)

We consider a viscous drop, loaded with an insoluble surfactant, spreading over
an inclined plane that is covered initially with a thin surfactant-free liquid film.
Lubrication theory is employed to model the flow using coupled nonlinear evolution
equations for the film thickness and surfactant concentration. Exploiting high-
resolution numerical simulations, we describe the late-time multi-region asymptotic
structure of the spatially one-dimensional spreading flow. A simplified differential–
algebraic equation model is derived for key variables characterising the spreading
process, using which the late-time spreading and thinning rates are determined.
Focusing on the neighbourhood of the drop’s leading-edge effective contact line,
we then examine the stability of this region to small-amplitude disturbances with
transverse variation. A dispersion relationship is described using long-wavelength
asymptotics and numerical simulations, which reveals physical mechanisms and new
scaling properties of the instability.
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1. Introduction
The coating of a solid surface by a thin liquid film is ubiquitous in nature. It is

important in a wide range of biological (such as the thin mucus layer coating the
walls of mammalian lung airways and tear films coating the eyeball) and industrial
(such as in paint coating and computer microchip production) applications. In these
applications, understanding the physics of the spreading process is of great importance
in order to minimise undesirable effects leading to dry areas and imperfections. The
spreading or coating process develops as a balance between viscous and surface
tension forces; in some configurations, body forces, such as gravity, are also relevant
to drive the spreading flow. In many technological applications, surfactants are used
to control the spreading of liquids, owing to their ability to modify the surface
tension at the liquid–air interface (Rosen 2004). Common applications that exploit
the properties of surfactants include detergents, crop spraying, coating processes,
microfluidics and oil recovery. Surfactants also occur naturally in the mammalian
lung. They reduce the surface tension of the mucus layer lining the lung airways,
which assists in preventing the collapse of the smaller airways (Grotberg 1994, 2001).
In the lungs of premature infants, the quantity of surfactant produced is insufficient,
as the lungs are underdeveloped. This leads to a respiratory distress syndrome, which
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is treated by surfactant replacement therapy (SRT). SRT involves delivering artificial
surfactant into the lung exogenously. It then spreads under the action of surface
tension gradients and to a lesser extent gravity so as to coat the airways, ideally as
uniformly as possible.

Thin liquid films spreading on solid substrates driven by external forces such as
gravity, or due to surfactant-related effects, exhibit intriguing instabilities resulting in
the formation of a range of striking patterns. The gravity-driven spreading of a drop
or sheet down an inclined substrate develops a finger-like instability due to transverse
perturbations in the flow. This experiment was first conducted by Huppert (1982) and
then expanded on by Silvi & Dussan (1985), Jerrett & de Bruyn (1992) and Hocking,
Debler & Cook (1999), among others. Triangular sawtooth-like patterns have been
observed experimentally at small inclination angles or for a completely wetting fluid.
For larger inclination angles or for a partially wetting fluid, the instability looks more
finger-like, with the sides of the fingers rounded and almost parallel. A completely
different fingering instability is observed in the case when surfactant is present.
This fingering behaviour was first observed by Marmur & Lelah (1981) and then
expanded on by Afsar-Siddiqui and co-workers (Afsar-Siddiqui, Luckham & Matar
2003a,b,c, 2004). In contrast to the fingering instability observed during gravity-driven
spreading, the fingers here are more dramatic (often referred to as dendritic) and are
of a much smaller length scale. The interested reader is referred to the recent articles
by Craster & Matar (2009) and Matar & Craster (2009) for a thorough review of
experimental and theoretical research in surfactant-related fingering instabilities in
thin-film spreading flows. As the angle of inclination is increased from the horizontal,
the effects of gravity will begin to compete with that due to surfactant. To the best of
our knowledge, there are no experiments for surfactant and gravity-driven spreading
on inclined planes to describe these competing effects. To gain a better theoretical
understanding of this, we consider here a model problem involving the spreading
and stability of a surfactant-laden drop on an inclined plane coated with an initially
uniform (and surfactant-free) liquid film.

To set this problem in context, it is useful first to recall some key features of
drop spreading on a solid substrate. One is the existence of a free surface at the
liquid–vapour interface, which evolves in time as a consequence of the balance
between the driving forces. The other is the presence of a moving contact line at the
boundary between the liquid, the vapour and the solid substrate. The combination
of these two characterises the stability of the spreading flow, with non-trivial shapes
of the free surface and corrugations of the contact line. At the moving contact line,
imposing a no-slip condition leads to a non-integrable stress singularity, the so-called
‘contact-line paradox’ (Huh & Scriven 1971; Dussan & Davis 1974). Numerous
regularisations have been proposed to remedy this, such as allowing the liquid to
slip on the solid substrate (referred to as a slip condition) or assuming that the solid
substrate is prewetted with a precursor liquid film. Incorporating a precursor film,
such that the spreading front of the drop only has effective or apparent contact with
the precursor film, allows the no-slip boundary condition still to be imposed without
being contradictory. In this work, we use a precursor film, owing to the simplicity in
its implementation in comparison to the other regularisations.

The gravity-driven spreading of a viscous drop or sheet on a prewetted inclined
plane has been the focus of numerous theoretical studies. This problem was first
studied for flow down a vertical plane by Huppert (1982), who identified a similarity
solution for the spatially one-dimensional fluid sheet thickness, h∼√x (where x is the
distance in the flow direction and ∼ denotes ‘scales like’). This work was extended,
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particularly, by Troian et al. (1989) and Hocking (1990), who revealed a late-time
multi-region asymptotic solution structure, with the bulk drop or sheet, characterised
by Huppert’s similarity solution, connecting two short transition regions at the leading
and trailing edges where surface tension (or capillary) effects are important and are
comparable to gravitational forces. Using matched asymptotic analysis, they showed
that the one-dimensional flow in the transition region at the leading edge of the drop
is characterised by a family of quasi-steady solutions parametrised by the ratio of
the precursor film thickness and the drop height far upstream of this region. These
solutions accommodate a bulge in the drop height referred to as a capillary ridge.
A linear stability analysis of this region to transverse perturbations was performed
by extracting the growth rate of the perturbations to a ‘frozen’-in-time base state
represented by a particular solution curve in the family of quasi-steady solutions. The
dispersion relation between the growth rate and transverse wavenumber showed that
this region is linearly unstable to long-wavelength perturbations with a well-defined
maximum growth rate and wavenumber, with short wavelengths stabilised by surface
tension. A small-wavenumber analysis showed the leading-order behaviour to be
O(q2) (where q is the wavenumber) and a stability criterion was obtained revealing
that the capillary ridge is necessary for the instability to develop. This suggested that
the transition region at the leading edge of the spreading drop could be a precursor
to the fingering instability observed in experiments. Hocking (1990) also showed that
the bulk drop spreads in time t like t1/3 and thins like t−1/3. Bertozzi & Brenner
(1997) extended the analysis to the general case of flow down an inclined plane from
a constant-flux fluid source. They showed the existence of a travelling wave solution
for the one-dimensional flow. A linear stability analysis of this solution to transverse
perturbations showed that flow becomes less linearly unstable as the inclination angle
decreases, and below a critical angle the flow is linearly stable. This is necessarily
due to a decrease in the thickness of the capillary ridge, which is less pronounced
at low inclination angles. The constant-flux configuration has been used in several
subsequent studies to analyse a variety of effects, such as viscoelasticity (Spaid &
Homsy (1996) – who also compared the effects of a precursor film and slip condition
at the moving contact line and found the results to be similar). Two-dimensional
numerical studies (Schwartz 1989; Eres, Schwartz & Roy 2000; Kondic & Diez
2001, 2002) have been able to reproduce the fingering patterns, providing quantitative
agreement with experiments.

In comparison, the theoretical study of surfactant-driven spreading is relatively
young (Craster & Matar (2009) and Matar & Craster (2009) provide good reviews of
the latest analytical and numerical research in this area). The main focus has been
on drop spreading on a horizontal prewetted and surfactant-free substrate. Troian,
Herbolzheimer & Safran (1990) first investigated theoretically the one-dimensional
axisymmetric flow structure, which included, ahead of the leading edge of the
spreading bulk drop, a propagating fluid front (also referred to as a spreading
monolayer) with a kinematic shock at its leading edge. The large initial surfactant
concentration gradient that exists between the edge of the drop and the surfactant-free
precursor film results in a large surface-tension gradient, causing fluid to be ‘sucked’
from the precursor film by the Marangoni effect forming the fluid front, which
propagates ahead of the bulk drop. This results in strong stretching of the film’s
interface, causing severe thinning of the precursor film just ahead of the drop’s
effective contact line. The drop therefore has to spread over an extremely thin
surfactant-loaded liquid film. In doing so, the advancing contact line can develop the
fingering patterns observed in experiments. Troian et al. (1990) proposed qualitatively
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a physical mechanism giving rise to the observed fingering. Identifying an ‘adverse
mobility gradient’ between the thicker bulk drop and thinner precursor film, they
suggested an analogy with the viscous fingering in a Hele-Shaw cell where a more
mobile (less viscous) fluid displaces a less mobile (more viscous) one (Homsy 1987).
The fluid front and kinematic shock have been independently analysed in a related
problem of an insoluble surfactant monolayer spreading on an initially planar film.
Jensen & Grotberg (1992) described the spatially one-dimensional structure using
a variety of similarity solutions (see also Jensen 1994). Of particular relevance to
this work is their similarity solution for a planar geometry, which at leading order
showed that the thickness of the front varies linearly in the streamwise direction,
the thickness at its leading edge is equal to twice the precursor thickness and it
spreads in time t like t1/3. Warner, Craster & Matar (2004) extended the study
by Troian et al. (1990), describing the flow using two coupled nonlinear partial
differential equations (PDEs) for the evolution of the drop height or film thickness and
the surfactant concentration. Their spatially one-dimensional simulations revealed a
structure broadly similar to that described by Troian et al. (1990), with the bulk drop
connecting to the fluid front via an ultra-thin film. They also examined the stability
of their spatially one-dimensional numerical solution to small-amplitude transverse
perturbations using a transient growth analysis, where the growth of perturbations
is measured by a suitable norm. Their stability analysis showed sustained growth
of disturbances concentrated around the edge of the bulk drop’s effective contact
line. Their two-dimensional computations revealed fingering patterns resembling those
seen in experiments. Jensen & Naire (2006) revisited the problem and, by exploiting
high-resolution numerical simulations, they were able to describe, using matched
asymptotic analysis, the late-time multi-region asymptotic spatially one-dimensional
flow structure, using which the spreading and thinning rates were determined. In
particular, they were able to show that the local solution structure near the drop’s
effective contact line can be described using the Landau–Levich equation. They
examined the linear stability of this region to transverse perturbations and showed it
to be linearly unstable to long-wavelength perturbations with a well-defined maximum
growth rate and wavelength. Using long-wavelength asymptotics, they showed the
leading-order behaviour of the dispersion relation between the growth rate and the
transverse wavenumber to be O(q) and derived a stability criterion that revealed the
destabilising influence of surfactant via the Marangoni effect.

Only a few studies have examined theoretically the spreading of a surfactant-laden
drop on a prewetted and inclined substrate. This problem was first studied by
Edmonstone, Matar & Craster (2004, 2005a,b, 2006) for both constant-volume
and constant-flux configurations. Their spatially one-dimensional constant-volume
numerical simulations revealed a solution structure that showed the spreading bulk
fluid drop with a capillary ridge at its leading edge, reminiscent of gravity-driven
spreading. Ahead of and behind the leading and trailing edges of the spreading
drop, respectively, there are propagating fluid fronts driven by the Marangoni effect,
with the front ahead of the drop’s leading edge looking more like a ‘step’ for
small precursor film thicknesses. They also observed a slight upwelling of fluid
(so-called ‘fluid hump’) between the main bulk drop and the capillary ridge due to
the Marangoni effect. Figure 2 shows a numerical simulation illustrating the above
features. Their spatially one-dimensional flow results also showed surfactants to slow
down the spreading of the bulk drop compared to spreading due to gravity alone.
They used transient growth analysis and fully nonlinear simulations to explore the
stability of their spatially one-dimensional solution to transverse perturbations in the
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flow and surfactant concentrations. They found that the flow is linearly unstable to
long-wavelength perturbations, with sustained growth of disturbances concentrated
near the drop’s leading-edge effective contact line. They speculated that the base flow
was always linearly unstable for all inclination angles, in contrast to gravity-driven
spreading, which is linearly stable below a critical angle (Bertozzi & Brenner 1997).
Their two-dimensional numerical simulations confirmed the results from the transient
growth analysis, clearly showing perturbations to develop into long distinct fingers.
Edmonstone et al. (2006) extended the study to include surfactant solubility effects.
They showed that solubility effects add to the destabilising influence of surfactants.
These works were further extended by Mavromoustaki (2011) and Mavromoustaki,
Matar & Craster (2012a,b) to investigate the climbing of a surfactant-laden film
against the influence of gravity. They also explored the linear and nonlinear
stability of the spatially one-dimensional flow using transient growth analysis and
two-dimensional simulations. They found that the surfactant concentration gradient
behind the leading-edge effective contact line was important in the development of
the fingering instability.

Levy & Shearer (2006) theoretically investigated the slightly simpler scenario of
a spatially one-dimensional flow of a surfactant-laden fluid layer down an inclined
and prewetted substrate from a constant-flux source, neglecting surface tension
and surface diffusion effects. They showed that the one-dimensional flow structure
admits a combination of travelling waves, some in which the fluid height is piecewise
constant and the surfactant concentration is piecewise linear and continuous. The entire
long-time structure is shown to be a single travelling wave in which disturbances
propagate towards the leading edge. Below a critical ratio of upstream to downstream
height, they derived an exact solution representing a triple-step travelling wave in
which the height is piecewise constant and the surfactant concentration is piecewise
linear and has compact support. A subsequent study by Levy, Shearer & Witelski
(2007) expanded on this work, including surface tension effects to describe the
leading-edge effective contact-line region of the spreading film. They showed that the
length of this region scales like Ca1/3, where Ca is a capillary number. A travelling
wave solution structure was postulated based on the numerical solutions, resulting in a
third-order differential equation for the height of the fluid layer coupled to a first-order
differential equation for the surfactant concentration. A partial analysis of these
differential equations was done using a combination of asymptotics and phase-plane
analysis. We remark that, although the solution structure for the surfactant-laden
drop spreading problem presented in our work here has close analogies with that
described by Levy and co-workers, it has no travelling wave structure. Moreover, the
presence of long-lived transient dynamics also makes any analytical description of
the long-time asymptotic structure much more complicated than the travelling wave
analysis (as described in § 4).

In this paper, we revisit the spatially one-dimensional spreading of a drop treated
by Edmonstone et al. (2004, 2005a,b) for a constant-volume configuration (see
figure 1 for a schematic of this). We use high-resolution numerical simulations
and asymptotic approximations to describe the late-time multi-region self-similar
solution structure. These include the drop’s leading-edge effective contact-line region,
which is described as a family of quasi-steady solutions for the drop height and
surfactant concentration parametrised by the effective contact-line speed, the ratio
of the downstream and upstream film thicknesses, and the ratio of the upstream
and downstream surfactant concentration gradients. A differential–algebraic equation
(DAE) model is derived for the evolution of key variables characterising the spreading
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Surfactant

Precursor film
Drop

Inclined substrate

0

FIGURE 1. Schematic of a surfactant-laden drop spreading on an inclined and
prewetted plane.

process, using which spreading and thinning rates are determined. We then examine
the stability of the leading-edge effective contact-line region. Assuming that this
region evolves slowly enough that we may treat the base state as ‘frozen’ in time
(represented by a particular solution curve in the family of quasi-steady solutions),
a linear stability analysis reveals an exponential growth rate for disturbances as a
function of the transverse wavenumber. We describe this relationship in the limit
of small wavenumber asymptotically and finite-wavenumber effects numerically.
This enables us to identify physical mechanisms and new scaling properties of the
instability.

2. The model
We consider the spreading of a drop of surfactant-laden liquid down a plane inclined

at angle θ to the horizontal that is prewetted with a thin layer of the same liquid,
uncontaminated by surfactant (see figure 1). Initially, the drop has maximum height
H? and width H?/ε (for some ε � 1); the precursor layer has thickness δH? (for
some δ � 1) and uniform surface tension σ ?. The liquid has constant viscosity µ?,
density ρ? and the spreading motion is assumed slow enough that inertial effects may
be neglected. Insoluble surfactant is present on the drop initially at concentration Γ ?,
lowering the surface tension of the drop to σ ? − S? (S? being the drop’s spreading
coefficient). The surfactant concentration is assumed sufficiently dilute that S? � σ ?,
so that the equation of state relating surface tension to surfactant concentration may
be assumed linear (with slope −S?/Γ ?). The surfactant diffuses on the interface with
diffusivity D?

s .
Lubrication theory can be used to derive evolution equations governing the

spreading of the surfactant-laden drop over the precursor film (see Edmonstone
et al. 2004, 2005a,b). We scale the drop height on H?, distance along the plane
on H?/ε, pressure on (ρ?g? sin(θ)H?)/ε, time on µ?/(ερ?g? sin(θ)H?) and surfactant
concentration on Γ ?. These are derived based on a characteristic velocity U? =
(ρ?g? sin(θ)H? 2)/µ? obtained by balancing the horizontal component of gravity with
viscous forces, where g? is the acceleration due to gravity. The evolution equations
for the film thickness, h(x, y, t), and surfactant concentration, Γ (x, y, t), are

ht =∇ · (− 1
3 Ca h3∇∇2h+ 1

3 Dh3∇h+ 1
2 h2M∇Γ )− ( 1

3 h3)x, (2.1a)

Γt =∇ ·
(
−1

2
Ca h2Γ∇∇2h+ 1

2
Dh2Γ∇h+MhΓ∇Γ

)
−
(

1
2

h2Γ

)
x

+ ∇
2Γ

Pe
, (2.1b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

21
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.212


Spreading of surfactant-laden drop on inclined prewetted substrate 541

respectively. The spreading of the drop and the transport of surfactant are driven by
the vertical and horizontal components of gravity (second and fourth terms on the
right-hand side of (2.1), respectively), capillary pressure gradients (first term on the
right-hand side of (2.1)) and surface tension gradients (third term on the right-hand
side of (2.1)). Surface diffusion also contributes to surfactant transport (fifth term
on the right-hand side of (2.1b)). The vertical components of gravity and surfactant
diffusion are assumed to have a weak influence on the spreading dynamics, and are
included here only to regularise numerical solutions. We note that the above scalings
and our model (2.1) are not valid for inclination angles sufficiently close to the
horizontal. In this case, one would use the scalings and model of Edmonstone et al.
(2004, 2005a,b), which are valid in the limit of the inclination angle tending to zero.

We work in the domain −∞< x<∞, 0 6 y 6 2π/k for some fixed k, and impose
the boundary conditions h→ δ and Γ → 0 as x→±∞ and periodicity in y. Following
Edmonstone et al. (2004, 2005a,b), the initial conditions are as follows: h(x, y, 0)=
(1 + δ − x2)[H(1 − x) − H(−1 − x)] + δ[H(x − 1) + H(−1 − x)] and Γ (x, y, 0) =
H(1 − x) − H(−1 − x), where H(x) = [1 + tanh(Kx)]/2. This represents a parabolic
drop shape with leading edge at x= 1 and trailing edge at x=−1 connecting onto a
precursor film of thickness δ. The surfactant concentration is uniform over the drop,
with steep concentration gradients at the leading and trailing edges.

The problem is parametrised by: δ, the dimensionless precursor thickness; K,
controlling the shape of the initial conditions; Ca= ε3σ ?/(µ?U?), an inverse capillary
number (compares surface tension to viscous forces); M = εS?/(µ?U?), a Marangoni
number (compares surface tension gradient to viscous forces and is related to the
strength of the surfactant system); D= ε cot(θ), related to the inclination angle θ ; and
Pe = U?H?/(εD?

s), a Péclet number (compares the magnitude of surfactant transport
due to advection and diffusion).

In § 3 we use a finite difference method to compute y-independent solutions of (2.1)
satisfying

ht +Qx = 0, Q≡ 1
3 Ca h3hxxx − 1

3 Dh3hx − 1
2 Mh2Γx + 1

3 h3, (2.2a)

Γt + qx = 0, q≡ 1
2

Ca h2Γ hxxx − 1
2

Dh2Γ hx −MhΓ Γx + 1
2

h2Γ − 1
Pe
Γx, (2.2b)

where Q and q are fluid and surfactant fluxes, respectively. Our numerical scheme
employed a fixed but spatially non-uniform grid, with grid points clustered in regions
where we anticipated rapid spatial variation. We used implicit time stepping and
validated convergence using grid refinement. For the simulations shown, the grid
spacing varied from 10−4 where the film was extremely thin (particularly around the
trailing edge of the drop) to 10−3 elsewhere. The overall features of the flow are as
reported by Edmonstone et al. (2004, 2005a,b). Our finer computational grid allows
us to resolve some important details not described previously. Moreover, we compute
solutions to much longer times than reported previously, which allows us to describe
theoretically their asymptotic structure.

3. Drop spreading: numerical results

Figure 2(a,b) shows numerical simulations of (2.2) at late times (t= 103–106) for h
and Γ , respectively. The parameter values are: Ca= 10−3, M = 1, δ = 10−3, θ = 90◦,
Pe = 105 and K = 100. At these times, the solution exhibits the structure shown in
figure 2(c,d) (which shows the evolution of h and Γ at t= 5× 105). This illustrates
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FIGURE 2. Late-time evolution of (a) film thickness h and (b) surfactant concentration
Γ for t = (0.001, 0.01, 0.1, 0.2, 0.5, 1) × 106 (see text for parameter values). Late-time
solution structure of (c) film thickness h and (d) surfactant concentration Γ at t= 5× 105.
Insets in (c) show the capillary ridge, fluid fronts near the leading and trailing edges of
the drop, and the ultra-thin film near the drop’s trailing edge. The inset in (d) shows
the steep drop in surfactant concentration immediately ahead of the maximum surfactant
concentration.

the dramatic variation in film thickness between the bulk drop (where h = O(1)),
the precursor film thickness (where h = δ = 10−3) and the ultra-thin film behind the
trailing-edge contact line (see inset in figure 2c, where h decreases to around 10−4).
The spreading of the bulk drop is characteristic of gravity-driven spreading with a
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FIGURE 3. Late- to late-late-time evolution of film thickness h upstream of the trailing
edge of the drop. The parameter values are: Ca= 10−3, M = 1, δ = 10−3, θ = 90◦, Pe=
105 and K = 100. The inset shows the early development of a structure resembling the
leading-edge capillary ridge.

capillary ridge at its leading edge (see inset in figure 2c). The height of the capillary
ridge decreases as the inclination angle decreases. The influence of surfactant is
evident in the upwelling of fluid just behind the capillary ridge (see figure 2c;
hereafter referred to as a fluid ‘hump’) and fluid fronts (where h = O(δ)) observed
both upstream and downstream of the spreading drop (see insets in figure 2c). This is
caused by gradients in surface tension arising due to surfactant concentration gradients.
At the downstream fluid front, the surfactant concentration is linear and decreasing
(see figure 2d), the resulting Marangoni flow causing this front to develop and spread
down the inclined plane. At the upstream fluid front, the surfactant concentration is
linear and increasing (see figure 2d), the resulting reverse Marangoni flow causing this
front to spread up the inclined plane (against the direction of the horizontal component
of gravity). It is worth noting that, for the value of the precursor thickness δ = 10−3

chosen in the numerical simulations shown here, the downstream fluid front appears
to look like a ‘step’ (see inset in figure 2c). As the precursor thickness is increased,
the slope of this fluid front increases and it looks more like the fluid front at the
upstream end (Edmonstone et al. 2005b). The fluid hump behind the capillary ridge
is also due to a reverse Marangoni flow (the surfactant concentration is almost linear
and increasing; see figure 2d) impeding the downward flow due to gravity, resulting
in the fluid swelling up. The surfactant concentration in the majority of the bulk drop
is roughly constant (figure 2d). For later reference, we also note the steep drop in the
surfactant concentration immediately ahead of the maximum surfactant concentration
(see inset in 2d). The ultra-thin film (see figure 2c) is a consequence of flow being
sucked away from the precursor film into the upstream fluid front, causing it to thin
severely.

The structure of the bulk drop and the downstream fluid front shown in figure 2(c,d)
is robust for a range of parameter values (for inclination angle not close to the
horizontal) and persist even at very late times. However, the structures behind the
trailing edge are not. Figure 3 shows the evolution of the film thickness at late to
late-late times (t = 103 to 5× 106), where the surfactant concentration gradient there
has reduced significantly for it not to be able to counteract the downward flow due
to horizontal gravity. The fluid in the front now flows back due to gravity, and we
speculate that it will eventually result in a structure resembling the capillary ridge
at the leading edge of the drop. An early indication of this can be observed in
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h
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x

I C II A III
B

IV

FIGURE 4. A sketch of the late-time asymptotic structure shown in figure 2, showing film
thickness h and surfactant concentration Γ as functions of distance x from the trailing
edge of the drop. Dashed lines demarcate asymptotic regions: the main bulk drop (I),
the fluid hump (II), the fluid front (III), the precursor film (IV), the drop’s leading-edge
effective contact line (A), and the shock-like structures (B) and (C).

figure 3 at t = (4, 5) × 106 (see solid and dash-dotted lines in the inset shown).
Indeed, late-time simulations for smaller Marangoni numbers (not shown here) clearly
indicate the formation of a satellite capillary ridge region, which connects directly
onto the trailing edge of the bulk drop.

As might be anticipated from figure 2(a,b), much of the late-time spreading is
locally self-similar, with solution structure illustrated in figure 2(c,d). The upstream
structures resemble closely (at least for the times considered here) those observed
when a surfactant-laden drop spreads on a horizontal plane, whose self-similar
structure is discussed in detail in Jensen & Naire (2006); hence we do not include
their description here. Moreover, numerical simulations show almost negligible fluid
or surfactant flux across the trailing edge of the drop, which enables us to decouple
the spreading dynamics of the bulk drop and downstream structures from the upstream
ones. Our main focus here is in describing the spreading dynamics of the bulk drop
and the structures downstream whose self-similar structure we examine in more detail
in § 4.

4. Drop spreading: asymptotic approximation
We postulate a late-time asymptotic structure consisting of seven regions, four

long (I, II, III and IV) and three short (A, B and C) (sketched in figure 4), from
which we derive an approximate DAE model describing the evolution of the system.
Figure 4 also shows some key variables that characterise the spreading process:
xL, the location of the minimum pressure immediately ahead of the capillary ridge,
which also corresponds to where Γ is maximum, representing the drop’s leading-edge
effective contact line; xSL, the location of the leading edge of the downstream fluid
front, satisfying Γ (xSL, t)= 10−4; xM, representing the leading edge of the main bulk
drop, located where h first changes curvature between regions I and C; xT , location of
the minimum pressure closest to x=−1 (the initial location of the trailing edge of the
drop), representing the location of the drop’s trailing edge; hL− , representing the drop’s
maximum height when surface tension is neglected; hL+ , representing the upstream
thickness of the fluid front; hT , representative of the drop’s minimum thickness at its
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trailing edge xT ; hM− , representing the maximum height of the main bulk drop region
I; hM+ , representing the upstream height of region II; surfactant concentrations ΓL,
maximum in surfactant concentration, ΓM, representing the almost uniform surfactant
concentration in the bulk drop, determined numerically as the minimum of Γ between
x= xT and xM, and ΓT , local maximum in surfactant concentration near x= xT ; and the
surfactant concentration gradients kL− and kL+ , representative slopes of the surfactant
concentration profiles on the upstream and downstream side, respectively, of xL, and
kM+ , representative slope of the surfactant concentration profile on the downstream
side of xM.

Figure 5(a–d) (solid lines) shows the time evolution of the above variables
determined from the numerical solution of the PDEs. The observed power-law
behaviour is described later using an approximate DAE model (shown by dashed
lines in figure 5), from which the power-law exponents shown are derived. We now
discuss each region in turn, neglecting hereafter the effects of surfactant diffusion.
The vertical component of gravity is also neglected everywhere except in the region
labelled A, where it appears as a second-order diffusion term smoothing the capillary
ridge. Surface tension or capillary forces are negligible everywhere except in the
short transition regions labelled A and B. The precursor film thickness δ� 1.

4.1. Region I
The main part of the bulk drop is in xT 6 x 6 xM(t) (xM � 1), where the surfactant
concentration is almost uniform, Γ = ΓM(t). The dominant spreading mechanism
for the fluid and surfactant is due to the horizontal component of gravity, with
Marangoni forces contributing near x = xT and x = xM. We write Γ = ΓM + Γ̂ (x, t),
taking |Γ̂ (x, t)| � ΓM. To leading order in Γ̂ (x, t)/ΓM, (2.2) becomes

ht +
[

h3

3
− 1

2
Mh2Γ̂x

]
x

= 0, Γ̇M +
[

1
2

h2ΓM −MhΓMΓ̂x

]
x

= 0. (4.1a,b)

(The dot notation used above represents the time evolution of ΓM and is used,
henceforth, to denote the time evolution of any characteristic variable, unless stated
otherwise.) Integrating (4.1b), applying the boundary conditions h = hT , Γ̂x = 0 at
x= xT , gives the surfactant flux,

1
2 h2ΓM −MhΓMΓ̂x =−Γ̇M(x− xT)+ 1

2 h2
TΓM. (4.2)

Substituting (4.2) in (4.1a) gives the evolution equation of the drop height,

ht + 1
12
(h3)x +

[
−1

2
Γ̇M

ΓM
(x− xT)h+ 1

4
h2

Th
]

x

= 0. (4.3)

Equation (4.3) has solution

h(x, t)= hM−

√
x− xT

xM
+ h2

T

h2
M−
, (4.4)

if the following compatibility conditions are satisfied (assuming (xMhM−)t≈ 0 and ẋT ≈
0, i.e. pinning the drop’s trailing edge, which are confirmed by the numerical solution):

ẋM

h2
M−
= 1

3
,

Γ̇MxM

ΓMh2
M−
=−1

2
,

ḣT

hT
=−3

2
ẋM

xM
(or hT = h(0)T x−3/2

M ), (4.5a−c)
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FIGURE 5. Evolution of the key variables (indicated in each panel, and defined in the
text): solid lines are from the numerical solution of the PDEs; and dashed lines are from
the DAE model, using which the power-law exponents shown are obtained.

where h(0)T is an integration constant. Numerical solutions confirm that the above
relationships are approximately satisfied at late times (see figure 6). This solution for
h (setting xT = hT = 0) is the same as that derived for gravity-driven spreading of
a drop (Huppert 1982; Troian et al. 1989; Hocking 1990). On substituting (4.4) in
(4.2) and using the relationships in (4.5), we obtain Γ̂x = 0, implying Γ (x, t)= ΓM(t)
in this region. The solutions for h (rescaled by hM−) and Γ (rescaled by ΓM) versus
x − xT (rescaled by xM) in this region are shown in figure 7(a,b) (dashed lines).
They match the numerical solution closely except that Γ is non-uniform, particularly,
near x = xT (where Γ decreases as x increases) and x = xM (where Γ increases as
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FIGURE 6. Numerical validation of the relationships in (4.5).
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FIGURE 7. Evolution of (a) h and (b) Γ in region I using data shown in figure 2(a,b).
Dashed lines show the similarity solution for this region.

x increases). We first describe the solution behaviour near x = xT . Here, the above
linearised analysis is not valid since changes in Γ from ΓM are appreciable (see
figure 7b) and does not allow any meaningful approximation to be made. However,
a qualitative understanding can be obtained as follows. Integrating (2.2b) (neglecting
capillary effects and the vertical component of gravity) and applying the boundary
conditions h= hT , Γ =ΓT >ΓM, Γx= 0 at x= xT gives the Marangoni surfactant flux,

−MhΓ Γx =−
∫ x

xT

Γt dx+ 1
2
(h2

TΓT − h2Γ ). (4.6)

The contribution from the unsteady term (first term on the right-hand side of (4.6))
is positive since Γt < 0 for all x. For x near xT , this dominates the contribution
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from horizontal gravity (second term on the right-hand side of (4.6)), which is
negative, resulting in a positive (or forward direction) Marangoni surfactant flux.
For this scenario to occur, Γx < 0 or Γ decreases. As x gets larger, the negative
contribution from horizontal gravity increases (due to h increasing), offsetting the
positive contribution from the unsteady term, resulting in the Marangoni surfactant
flux becoming zero and Γ = ΓM, as described by the linearised analysis above. We
note that, away from x = xT and x = xM, the cancellation between the unsteady and
horizontal gravity terms predicted theoretically via the compatibility conditions in
(4.5) for Γx = 0 and Γ = ΓM is not exactly achieved in the numerical results. This
explains the slight deviation from ΓM observed in figure 7(b). We also note from (4.4)
that the derivatives of h become large as x→ xT , implying that the terms neglected
here, particularly, the capillary term, need to be included to regularise the solution.
This suggests the existence of an inner region near the trailing edge of the drop
where gravity, Marangoni and surface tension forces compete. This is not discussed
here. Next, we analyse region C to describe the evolution of h and Γ near x= xM.

4.2. Region C
Near x= xM, between the main bulk drop (region I) and the fluid hump region (region
II), there is an abrupt positive jump in the drop height (hM− to hM+) and the surfactant
concentration gradient (kM− to kM+) (see figure 2 at late times). This is due to a reverse
(or backward direction) Marangoni flux slowing down the forward direction horizontal
gravity flux without reversing the flow. This results in fluid accumulating towards this
end and the formation of a shock-like structure. This structure develops over a length
scale long enough for surface tension and diffusive effects to be negligible at leading
order. Continuity of fluid flux across the region is ensured by the Rankine–Hugoniot
condition

ẋM = 1
3

[
h3

M+ − h3
M−

hM+ − hM−

]
− M

2
h2

M+kM+

hM+ − hM−
. (4.7)

Continuity of surfactant flux across the region is ensured by imposing

h2
M+

2
−MhM+kM+ − h2

M−

2
= 0 H⇒ kM+ = h2

M+ − h2
M−

2MhM+
. (4.8)

In deriving these conditions, we assume that Γ is continuous across the region and
kM− ≈ 0 as x→ xM− . Integrating (2.2b) (neglecting capillary effects and the vertical
component of gravity) and applying the boundary conditions h= hM− , Γ = ΓM, Γx =
kM− = 0 at x= xM− , gives the surfactant flux,

1
2

h2Γ −MhΓ Γx =−
∫ x

xM

Γt dx+ 1
2

h2
M−ΓM. (4.9)

Substitution in (2.2a) gives

ht + 1
12
(h3)x +

−1
2

∫ x

xM

Γt dx

Γ
h+ 1

4
h2

M−ΓM

Γ
h


x

= 0. (4.10)
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We are unable to solve (4.9) and (4.10) analytically. However, (4.9) can be considered
as a quadratic equation for h, solving which we obtain

h(x, t)=MΓx +

√√√√√√√(MΓx)2 −

2

∫ x

xM

Γt dx

Γ
− h2

M−ΓM

Γ

. (4.11)

To make some analytical progress, we assume that, near x = xM, Γt ≈ Γ̇M. The
surfactant flux (4.9) can be approximated by

1
2 h2Γ −MhΓ Γx =−Γ̇M(x− xM)+ 1

2 h2
M−ΓM. (4.12)

Figure 8(a) compares the surfactant flux obtained from the numerical solution (solid
lines) with the approximation in (4.12) (dashed lines) versus x − xM at t = 105, 5 ×
105, 106. We observe that this linear approximation is accurate around x= xM. Further
away from x = xM, this approximation breaks down, suggesting that Γt 6≈ Γ̇M. This
is considered in region II. Substituting Γt ≈ Γ̇M in (4.11) and using the compatibility
condition (4.5b), we can rewrite (4.11) as

h(x, t)=MΓx +
√
(MΓx)2 + h2

M−

(
x− xM

xM
+ 1
)
ΓM

Γ
. (4.13)

Figure 8(b) compares the numerical solution for h (solid lines) with its approximation
in (4.13) (dashed lines) versus x− xM at t= 105, 5× 105, 106. We use the numerical
solution for Γ and Γx while computing the approximation for h. We observe that
(4.13) is a very good approximation for h around x = xM. Further away from
x = xM, the approximation, although overestimating h, captures the gross behaviour,
particularly the jump in h, even though (4.12) breaks down here. This suggests
that, although the flow and surfactant transport in this region are unsteady, it is the
positive jump in Γx that causes the positive jump in h as shown in (4.13). It is worth
noting that this region (and region II described below) has close analogies with the
travelling wave structure described by Levy and co-workers (Levy & Shearer 2006;
Levy et al. 2007) in which the fluid layer height and surfactant concentration gradient
are constant on either side of x= xM when the surfactant concentration has compact
support. Assuming that (4.11) admits a travelling wave solution and (ΓM, kM−) ≈ 0,
we have h(x, t) = hM− for x < xM and h(x, t) = hM+ = kM+ +

√
k2

M+ + 2s for x > xM,
where s denotes the travelling wave speed. Solving the latter equation for kM+ , we
obtain kM+ = (h2

M+ − 2s)/(2hM+). Writing (4.10) in travelling wave coordinates and
integrating, we obtain −6sh+ h3 = 12C, where C is an arbitrary constant. Assuming
C ≈ 0 and s ≈ h2

M+/3 (which is the case when the precursor thickness δ � 1), we
obtain the non-zero solution hM+ =

√
2hM− . These relationships have been identified by

Levy et al. (2007). The influence of the unsteady fluid flow and surfactant transport
in (4.9) and (4.10) precludes any similar analytical relationships being derived for
our problem.

4.3. Region II
This region is part of the bulk drop in xM+(t) 6 x 6 xL(t) where the fluid upwells
due to competing reverse Marangoni and horizontal gravity fluxes resulting in fluid
accumulation and a hump-like region being formed. There is a large variation in
Γ from ΓM to ΓL (see figure 2b,d), h varies between hM+ and hL− , and Γx varies
between kM+ and kL− . Using the continuity of surfactant flux at x= xM given by (4.8),
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FIGURE 8. Evolution of (a) surfactant flux (h2Γ )/2 − MhΓ Γx and (b) h in region C
using data shown in figure 2(a,b) at the times shown. Dashed lines show the approximate
solution (4.12) and (4.13) (we use the numerical solution for Γ and Γx at the
corresponding times while computing the approximation for h in (4.13)).

the evolution equations in this region are given by (4.9)–(4.11). We use a linear
approximation for

Γt ≈
[
Γ̇L − Γ̇M

xL − xM

]
(x− xM)+ Γ̇M. (4.14)

Substituting (4.14) in (4.9) and (4.11) gives

1
2

h2Γ −MhΓ Γx =−1
2

[
Γ̇L − Γ̇M

xL − xM

]
(x− xM)

2 − Γ̇M(x− xM)+ 1
2

h2
M−ΓM, (4.15a)

h(x, t)=MΓx +
√
(MΓx)2 − 1

Γ

[(
Γ̇L − Γ̇M

xL − xM

)
(x− xM)2 − h2

M−ΓM
x

xM

]
. (4.15b)

Figure 9(a) compares the surfactant flux obtained from the numerical solution (solid
lines) with the approximation in (4.15a) (dashed lines) versus x − xM at t = 105,
5× 105, 106. We observe that (4.15a) is a much better approximation of the surfactant
flux compared to the linear approximation in (4.12). Figure 9(b) compares the
numerical solution for h (solid lines) with its approximation in (4.15b) (dashed lines)
versus x − xM at t = 105, 5 × 105, 106. We use the numerical solution for Γ and Γx

while computing the approximation for h. Although this approximation underestimates
the numerical solution, it captures the gross behaviour of the evolution of h in this
region. We again note the analogy with the work by Levy and co-workers (Levy
& Shearer 2006; Levy et al. 2007) in which the fluid layer height and surfactant
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FIGURE 9. Evolution of (a) surfactant flux (h2Γ )/2 − MhΓ Γx and (b) h in region II
using data shown in figure 2(a,b) at the times shown. Dashed lines show the approximate
solution (4.15a,b) (we use the numerical solution for Γ and Γx at the corresponding times
while computing the approximation for h in (4.15b)).

concentration gradient are constant in this region. We observe from figure 9(b) that
the fluid height is not constant even at very late time, suggesting the long-lived
unsteady influence of the fluid flow and surfactant transport in (4.14) and (4.15).
Evaluating (4.15b) at x= xL gives

hL− =MkL− +
√
(MkL−)2 − 1

ΓL

[
(Γ̇L − Γ̇M)(xL − xM)− h2

M−xLΓM

xM

]
. (4.16)

4.4. Region A
A thin transition region at x= xL(t) of height O(hL−) connects the fluid hump (region
II) to the fluid front (region III). This effective contact-line region is controlled
by competing surface tension, horizontal gravity and Marangoni forces. Balancing
surface tension and horizontal gravity fluxes gives the width of the region to be
O((Ca hL−)

1/3). Balancing convective and horizontal gravity fluxes, ẋLhx ∼ (h3)x,
implies ẋL ∼ h2

L− . Balancing horizontal gravity and Marangoni fluxes implies that
changes in Γ across this region are of size (Ca h4

L−)
1/3/M and are assumed small

compared to ΓL. We then set

x= xL + (Ca hL−)
1/3ξ, h(x, t)= hL−H(ξ), Γ (x, t)= ΓL + (Ca h4

L−)
1/3

M
G(ξ), (4.17a)

V̂ = ẋL

h2
L−
, ĥL+ = hL+

hL−
, k̂L− = MkL−

hL−
, k̂L+ = MkL+

hL−
. (4.17b)
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FIGURE 10. Evolution of (a) h and (b) Γ in region A using data shown in figure 2(a,b).
Dashed lines show the solution of (4.20) for V̂ = 0.18485, ĥL+ = 0.1, k̂L+ =−1.797 and
k̂L− = 0.3153 (this corresponds to a particular solution curve in the family of solutions).

Figure 10(a,b) shows a family of quasi-steady solutions when the PDE data are scaled
using these variables. These solutions are parametrised by V̂ (the effective contact-line
speed, representing the ratio of the advective to horizontal gravity fluxes), ĥL+ (the
ratio of the downstream film thickness to that upstream), and k̂L+ and k̂L− (representing
the ratio of the Marangoni to horizontal gravity fluxes downstream and upstream of
the contact line, respectively). Assuming ξ , H, G, V̂ , ĥL+ , k̂L+ and k̂L− are all O(1),
(2.2) reduces at leading order to

−V̂Hξ =
[
−H3

3
Hξξξ + H2

2
Gξ − H3

3
+ D̂

H3

3
Hξ

]
ξ

, (4.18a)

0=
[
−H2

2
Hξξξ +HGξ − H2

2
+ D̂

H2

2
Hξ

]
ξ

, (4.18b)

subject to the boundary (or matching) conditions

H→ 1, Gξ→ k̂L− as ξ→−∞, (4.19a)

H→ ĥL+, Gξ→ k̂L+ as ξ→∞, (4.19b)

where D̂= (Dh2/3
L− )/Ca1/3. Equation (4.19) assumes that h is constant far upstream and

downstream, where it matches onto regions II and III, respectively. This is reasonable
considering that h in both these regions is only very weakly linear (see figure 10a).
The assumption of constant h matching onto region III is valid only for sufficiently
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small values of precursor film thickness δ (see description of region III below). Also
Γ is assumed linear, matching onto regions II and III with slope kL− (> 0) and
kL+ (< 0), respectively. While this matching condition is approximate for the fluid
hump region, it is exact when matching onto the fluid front ahead, since Γ is linear
there (see region III description below). Integrating (4.18) and applying the boundary
conditions (4.19), we obtain

Hξξξ =−
[

ĥ2
L+ + ĥL+

H3

]
+
[

1+ ĥL+ + ĥ2
L+

H2

]
+ D̂Hξ − 1, (4.20a)

Gξ = 1
H

(
k̂L− − 1

2

)
− 1

2H2
(ĥL+ + ĥ2

L+)+
1

2H
(1+ ĥL+ + ĥ2

L+). (4.20b)

In addition, continuity of fluid and surfactant flux are ensured across this region by
the following conditions (in original variables):

ẋL = 1
3

[
h3

L+ − h3
L−

hL+ − hL−

]
− M

2

[
h2

L+kL+ − h2
L−kL−

hL+ − hL−

]
, (4.21a)

1
2 h2

L− −MkL−hL− = 1
2 h2

L+ −MkL+hL+ . (4.21b)

Equation (4.20a) is the same as the evolution of h in the case of only gravity-driven
spreading (Troian et al. 1989; Hocking 1990; Bertozzi & Brenner 1997). The
effective contact-line speed ẋL in (4.21a) shows the competition between gravity
and the Marangoni effect, with Marangoni slowing down the contact-line speed.
The numerical solution of (4.20) subject to the boundary conditions in (4.19) is
shown in figure 10(a,b) (dashed lines) for V̂ = 0.18485, ĥL+ = 0.1, k̂L+ = −1.797
and k̂L− = 0.3153 (the constant arising from integrating (4.20b) is chosen such that
G(0) = 0, since by definition ξ = 0 is where G has a maximum). It matches the
numerical solution closely and corresponds to a particular solution curve in the
family of solutions. Equation (4.20) is similar to the differential equations derived by
Levy et al. (2007) for the fluid layer height and surfactant concentration assuming a
travelling wave solution structure in this region. Moreover, their equations are also
coupled, unlike (4.20). We assume Γt to be small in this region compared to ΓL,
which allows the equations to be decoupled. Retaining this unnecessarily complicates
the equations without significantly influencing the solution structure.

4.5. Region III
This region contains the spreading fluid front in xL < x < xSL of height O(δ). The
flow in this region is predominantly driven by Marangoni forces and exhibits the
self-similar structure similar to that identified in Jensen & Grotberg (1992). Balancing
convective and Marangoni fluxes, ẋSLhx ∼ (Mh2Γx)x, implies Γx ∼ ẋSL/(Mδ). Hence,
Γ ∼ ẋSL(xSL − xL)/(Mδ) (xSL > xL for all t). We set

x= xL + (xSL − xL)ξ , h(x, t)= δH(ξ), Γ (x, t)= ẋSL(xSL − xL)

Mδ
G(ξ), (4.22a)

γ = ẋL

ẋSL
, α = xSLẍSL

ẋ2
SL

, α1 = 1− xL

xSL
. (4.22b)
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FIGURE 11. Evolution of (a) h and (b) Γ in region III using data shown in figure 2(a,b).
Dashed lines show the solution in (4.24a,b).

Figure 11(a,b) shows the numerical solution in this region to collapse when the PDE
data are scaled using these variables. With error O(1/(xSL − xL)), (2.2) becomes

Hξ [−ξ(1− γ )− γ ] +
(
−H2

2
Gξ

)
ξ

= 0, (4.23a)

G(1+ αα1 − γ )+Gξ [−ξ(1− γ )− γ ] + (−HGGξ )ξ = 0, (4.23b)

subject to H= 2 and G= 0 at ξ = 1 (see Jensen & Grotberg 1992). Assuming γ = 1+
(αα1)/2 (figure 12a confirms this; noise in the data is due to numerical approximation
in computing the derivatives involved in the relevant variables) and integrating (4.23),
we obtain

H(ξ)= 2
[
ξ − A
1− A

]
, G(ξ)=−1

2
(ξ − 1), (4.24a,b)

where A = 1 + 2/(αα1). The time evolution of A seen in figure 12(b) shows it
to be large and negative, with A ≈ −50 (the noise in the data is attributed to the
numerical approximation in computing the derivatives involved). The dashed lines in
figure 11(a,b) show H and G given by (4.24), which match the rescaled numerical
solution very well. We note that, since A is large and negative, so the slope of h is
small and positive, hence, h≈ 2δ in this region, which makes it appear to look like
a ‘step’. This is true for sufficiently small values of the precursor film thickness δ.
However, for larger values of δ, A decreases in magnitude and hence the slope of
this region increases and it no longer looks like a step. Hence, for sufficiently small
δ and x→ x+L , we obtain

hL+ = 2δ, ΓL = ẋSL(xSL − xL)/(2δM), kL+ =−ẋSL/(2δM). (4.25a−c)
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FIGURE 12. (a) Numerical validation of γ = 1+ (αα1)/2 and (b) the time evolution of
A= 1+ 2/(αα1), showing it to be large and negative and A≈−50. The noisy data are due
to numerical approximation in computing the derivatives involved in the relevant variables.

It is worthwhile comparing (4.24) with the travelling wave solution derived by Levy
& Shearer (2006), where the fluid layer height and surfactant concentration gradient in
this region are constant. In the travelling wave frame of reference, a balance between
the convective, Marangoni and horizontal gravity fluxes admits constant solutions in
fluid layer height and surfactant concentration gradient if and only if the travelling
wave speed s = −hL+kL+ + h2

L+/2 (the surfactant transport speed). However, in our
problem the dynamics of this region is controlled by convective and Marangoni fluxes,
which dominate that due to horizontal gravity. This balance admits a linear solution in
the fluid height (and surfactant concentration), which distinguishes it from that derived
by Levy & Shearer (2006).

4.6. Region B
The structure of the kinematic shock near x = xSL has been described in detail
previously (Jensen & Grotberg 1992; Jensen 1994; Jensen & Halpern 1998) and is
not discussed here. In the parameter regime relevant here, the discontinuity in the film
thickness (equal to 2δ) is smoothed by surface tension effects and the jump in the
surfactant gradient (equal to kL+) is smoothed by surface diffusion (see figure 12a,b
near ξ = 1), but the region remains dynamically passive. Ahead of region C, the film
in region IV is undisturbed and equals the precursor thickness.

4.7. DAE model
Equations (4.5b,c), (4.7), (4.8), (4.16), (4.21a,b) and (4.25a−c) provide a system of
differential–algebraic equations for the characteristic variables ΓM, hT , xM, kM+ , hL− ,
xL, kL− , hL+ , ΓL and kL+ , respectively. The total fluid volume and surfactant mass in
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the region xT 6 x<∞ are conserved and can be approximated as

V =
∫ ∞

xT

(h− δ) dx≈ 2
3

hM−√
xM
(xM − xT)

3/2 + 1
2
(xL − xM)(hM+ + hL−)+ δ(xSL + xT − 2xL),

(4.26a)

M =
∫ ∞

xT

Γ dx≈ ΓM(xM − xT)+ 1
2
(ΓL + ΓM)(xL − xM)+ ẋSL

4δM
(xSL − xL)

2, (4.26b)

where V and M are the total fluid volume and surfactant mass, respectively. Since
we do not have analytical expressions for h and Γ in region II, we approximate this
region as a trapezium when evaluating the fluid volume and surfactant mass. Equation
(4.26) provide equations for the characteristic variables hM+ and xSL, respectively. The
equation for the remaining characteristic variable hM− is derived as follows. Since h in
region I is similar to that due to spreading under gravity alone with no surfactant, we
can use the solution for h in (4.4) (with hT , xT ≈ 0) and similarity to write hM−/ĥL=√

xM/x̂L, where x̂L and ĥL are the location and height of the leading edge of the drop
spreading under gravity alone. Equation (4.26a) for gravity-driven spreading with no
surfactant reduces to V = 2ĥLx̂L/3. The effective contact-line speed (4.21a) for this
case reduces to ˙̂xL = ĥ2

L/3 (setting M= 0 and hL+ = δ� ĥL). Solving these, we obtain
x̂L = [(9/4)V 2(t− t0)+ x̂03

L ]1/3 and ĥL = 3V /{2[(9/4)V 2(t− t0)+ x̂03

L ]1/3}, where x̂0
L is

the value of x̂L at t= t0. Hence,

hM− =
3V

2

√
xM

[ 94V 2(t− t0)+ x̂03

L ]1/2
. (4.27)

The system of DAEs are parametrised by V , M , M and δ. The PDE simulations
used M = 4/3 and V = 2. Initial values for the differential equations, Γ 0

M, h0
T , x0

M,
x0

L, x0
SL and x̂0

L, are fitted from the numerical solution at t0 = 105. These are used
to determine consistent initial conditions for the algebraic equations. The DAEs
are solved numerically, and their solution provides a good approximation for the
behaviour in t > 105 (dashed lines in figure 5a–d). The unsteady nature of the
flow and surfactant transport in regions C and II prohibits a uniformly asymptotic
approximation and limits the accuracy of the predictions of hM+ , hL− , kM+ and kL− , but
nevertheless illustrates an important feature of the spreading dynamics. Once xM� xT ,
further simplification is possible: hM− and xM are similar to gravity-driven spreading,
so hM− ∝ ĥL ∝ t−1/3 and xM ∝ x̂L ∝ t1/3 (Hocking 1990). The majority of the surfactant
is contained in regions II and III and ΓM � ΓL, so (4.26b) can be approximated
as M ≈ ΓL(xL − xM)/2 + ẋSL(xSL − xL)

2/(4δM). This implies ẋSL(xSL − xL)
2 ∼ 1 and

ΓL(xL− xM)∼ 1, which suggests xSL∝ xL∝ t1/3 and ΓL∝ t−1/3 (consistent with (4.25b)).
Equation (4.25c) gives kL+ ∝ ẋSL ∝ t−2/3. A balance of terms in (4.21b) then implies
that hL− ∝ k1/2

L+ ∝ t−1/3 and kL−hL− ∝ kL+ , hence kL− ∝ t−1/3. A balance of terms in
(4.8) gives hM+ ∝ hM− ∝ t−1/3 and kM+hM+ ∝ h2

M− , hence kM+ ∝ t−1/3. Finally, (4.5c)
gives hT ∝ t−1/2. These scalings are all borne out by the numerical solutions in
figure 5(a–d).

5. Stability to transverse perturbations
Having captured to a reasonable level of accuracy the structure and dynamics of

the spatially one-dimensional flow, we now investigate its stability to small-amplitude
disturbances. Edmonstone et al. (2004, 2005a,b), using transient growth analysis
of the entire time-dependent flow, showed that growing disturbances are initially
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confined to the neighbourhood of the drop’s leading-edge contact line. We therefore
focus on region A, perturbing the quasi-steady solution satisfying (4.20), looking for
disturbances with transverse wavenumber q?. By treating the base state as quasi-steady
during the evolution of disturbances, its weak algebraic time dependence is captured
parametrically through V̂ , ĥL+ , k̂L+ and k̂L− . We reduce this dependence to two
parameters ĥL+ and k̂L+ using the relations in (4.21).

The scaling (4.17a) with y = (Ca hL−)
1/3η and t = (Ca h−5

L− )
1/3τ reduces (2.1) in

region A (neglecting surfactant diffusion) to

Hτ − V̂Hξ = ∇̂ ·
(
−H3

3
∇̂∇̂2H + H2

2
∇̂G+ D̂(θ)

H3

3
∇̂H
)
−
(

H3

3

)
ξ

, (5.1a)

0= ∇̂ ·
(
−H2

2
∇̂∇̂2H +H∇̂G+ D̂(θ)

H2

2
∇̂H
)
−
(

H2

2

)
ξ

, (5.1b)

where ∇̂ = (∂/∂ξ, ∂/∂η). We set [H(ξ , η, τ ), G(ξ , η, τ )] = [Hs(ξ), Gs(ξ)] +
ε[Ĥ(ξ), Ĝ(ξ)]eiqη, where [Hs(ξ), Gs(ξ)] denote the quasi-steady base state for h
and Γ , respectively, and q = (Ca hL−)

1/3q? is the scaled wavenumber. We recover at
leading order in ε� 1 the quasi-steady solution (4.18) (now denoted with a subscript
s). The linearised unsteady disturbances satisfy

Ĥτ − V̂Ĥξ =
[

H2
s

2
Ĝξ +HsĤGsξ − H3

s

3

(
∂2

∂ξ 2
− q2

)
Ĥξ −H2

s ĤHsξξξ + D̂(θ)
H3

s

3
Ĥξ

]
ξ

+ [D̂(θ)H2
s Ĥ1Hsξ ]ξ − q2 H2

s

2
Ĝ+ q2 H3

s

3

(
∂2

∂ξ 2
− q2

)
Ĥ − (H2

s Ĥ)ξ

− q2D̂(θ)
H3

s

3
Ĥ, (5.2a)

0 =
[

HsĜξ + ĤGsξ − H2
s

2

(
∂2

∂ξ 2
− q2

)
Ĥξ −HsĤHsξξξ + D̂(θ)

H2
s

2
Ĥξ

]
ξ

+ [D̂(θ)HsĤHsξ ]ξ − q2HsĜ+ q2 H2
s

2

(
∂2

∂ξ 2
− q2

)
Ĥ − (HsĤ)ξ

− q2D̂(θ)
Hs

2
Ĥ, (5.2b)

subject to (Ĥ, Ĝ)→ 0 as ξ →±∞. We solved (5.2) numerically by time stepping,
using a uniform finite difference grid on a domain −20 6 ξ 6 20, tracking the
evolution of localised disturbances (initially Ĥ= Ĝ= 10−3 exp(−10ξ 2)). The evolution
depends on the wavenumber q, D̂ (related to the inclination angle) and parameters
ĥL+ and k̂L+ (characterising the quasi-steady base state Hs and Gs). Figure 13(a,b)
shows the evolution of Ĥ and Ĝ (solid lines), respectively, for q = 0.3 and D̂ = 0
(corresponding to θ = 90◦) emanating from a base state (dashed lines) evaluated at
t= 2× 105 (corresponding to ĥL+ = 0.0884 and k̂L+ =−2). It is observed that, under
suitable conditions, disturbances can grow rapidly: perturbations to Ĥ and Ĝ are
larger near the effective contact line, features identified previously by Edmonstone
et al. (2005b). It is also noted for future reference that Ĝ is minimum where Ĥ is
maximum and vice versa. At late times (for τ > 50), the growth of disturbances is
approximately exponential, with Ĥ, Ĝ ∝ exp(βτ), where β is the growth rate. The
computed growth rate β is shown in figure 14(a) as a function of the wavenumber q
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FIGURE 13. Solutions of (5.2) for q= 0.3, θ = 90◦ (solid lines) using a base state (dashed
lines) evaluated at t= 2× 105 (ĥL+ = 0.0884 and k̂L+ =−2). Arrows show time increasing
between t= 10 and 100.

for θ = 90◦ and base states evaluated at times ranging between t= 104 and 106. The
shape of the dispersion relation resembles that obtained by Edmonstone et al. (2005b)
using their transient growth analysis. For small values of q, growing disturbances
ultimately reached the boundaries of the domain; growth rates were then sensitive to
the size of the domain chosen. This prevented us from computing reliable solutions
for q< 0.1. However, the simulations demonstrate convincingly that the most linearly
unstable mode has wavenumber comparable to the width of region A, that, as time
increases, the base state becomes less linearly unstable (as seen in figure 14(a), where
the maximum growth rate and band of unstable wavenumbers decrease as t increases),
and that sufficiently short-wavelength disturbances are linearly stable. Figure 14(b)
shows the dispersion relation for varying inclination angles θ = 3◦, 60◦, 90◦ for base
state corresponding to ĥL+ = 0.0884 and k̂L+ =−2. It is observed that decreasing the
inclination angle has a stabilising effect, with both the maximum growth rate and
the bandwidth of unstable wavenumbers decreasing, in agreement with the transient
growth analysis by Edmonstone et al. (2005b). Finally, we compare the dispersion
relation between surfactant and gravity-driven spreading and gravity-driven spreading
alone by showing in figure 14(c) the dispersion relation computed for the latter
case (by setting Gs = Ĝ = 0 in (5.2a) and using the same procedure as described
above for extracting the growth rate). The inclination angle θ = 90◦ and the base
states for Hs and Gs correspond to ĥL+ = 0.0884 and k̂L+ =−2. We observe that the
growth rate and band of unstable wavenumbers are smaller for the gravity-driven
case, indicating the additional destabilising contribution due to surfactant. Moreover,
at small wavenumbers, the dispersion relation is markedly different, with quadratic
behaviour for gravity-driven spreading (Troian et al. 1989; Bertozzi & Brenner 1997)
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FIGURE 14. Late-time growth rate β versus wavenumber q: (a) for θ =90◦ and base states
evaluated at times t= 104, 105, 2× 105, 5× 105 and 106; (b) for inclination angles θ = 90◦,
60◦ and 3◦ for base state corresponding to ĥL+ = 0.0884 and k̂L+ = −2 (corresponding
to time t = 2 × 105); and (c) comparison of gravity-driven (dashed line) and surfactant
and gravity-driven (solid line) spreading for θ = 90◦ (corresponding to a base state with
ĥL+ = 0.0884 and k̂L+ =−2).

and linear for surfactant and gravity-driven spreading. Furthermore, it can be shown
that for gravity-driven spreading there is a critical inclination angle θ below which
the base state is linearly stable for all wavenumbers, in contrast to surfactant and
gravity-driven spreading, where it was speculated to be linearly unstable for all angles
by Edmonstone et al. (2005b). These are analysed in more detail in the next section
by performing a small-wavenumber (or long-wavelength) analysis about the base state,
which forms part of the discrete spectrum of the linear operator in (5.2).

5.1. Small-wavenumber analysis
In this section we examine instabilities with wavelength intermediate between
the width of region A and regions II and III, and assume exponential time
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dependence so that Ĥτ in (5.2a) becomes βĤ. Numerical dispersion relations (see
figure 14) suggest that the growth rate is linear at small wavenumbers, so we write
[Ĥ, Ĝ, β] = [H, G, β]0 + q[H, G, β]1 + q2[H, G, β]2 + · · · . Substituting in (5.2), at
leading order in q, we obtain (H0, G0)= (−Hsξ ,−Gsξ ) and β0 = 0, which represents
a translation of the base state (Hs,Gs). At O(q), we obtain

−β1Hsξ − V̂H1ξ =
[

H2
s

2
G1ξ +HsGsξH1 − H3

s

3
H1ξξξ −H2

s HsξξξH1 + D̂(θ)
H3

s

3
H1ξ

+ D̂(θ)H2
s HsξH1 −H2

s H1

]
ξ

, (5.3a)

0=
[

HsG1ξ +H1Gsξ − H2
s

2
H1ξξξH1 + D̂(θ)

H2
s

2
H1ξ + D̂(θ)HsHsξH1 −HsH1

]
ξ

. (5.3b)

We assume that H1 and all its derivatives decay to zero as ξ →±∞ and G1ξ tends
to a constant A as ξ→∞ and G1ξ tends to a constant B as ξ→−∞. The last two
conditions are required to balance the unsteady and the Marangoni terms (first and
third terms) in (5.3a) and are also motivated in part by the fact that the leading-order
solution G0 tends to a constant value −k̂L− and −k̂L+ as ξ →−∞, ∞, respectively.
Using Hs → ĥL+ , Gsξ → k̂L+ , Hsξ , Hsξξξ → 0 as ξ → ∞ and Hs → 1, Gsξ → k̂L− ,
Hsξ ,Hsξξξ→ 0 as ξ→−∞, we obtain the following conditions after integrating (5.3)
between −∞ and ∞:

β1 =
[

1
2 Aĥ2

L+ − 1
2 B

1− ĥL+

]
, B= AĥL+ H⇒ β1 =−B/2=−AĥL+/2. (5.4a,b)

To determine the growth rate β1, we need to determine either A or B, which is done
as follows. When q� 1, we assume that Ĥ and Ĝ have a three-region structure: an
inner region near the drop’s contact line in which ξ =O(1) and Ĥ=−Hsξ , Ĝ=−Gsξ

to leading order, and two outer regions of length scales O(1/q). We suppose that the
drop’s contact line (when viewed from the outer regions) lies along ξ = ε exp(iqη +
βτ), so that to leading order, at the outer limits of the inner region, we have

G∼ k̂L−[ξ − ε exp(iqη+βτ)] (ξ→−∞), G∼ k̂L+[ξ − ε exp(iqη+βτ)] (ξ→∞).
(5.5a,b)

We now show how perturbations to G affect the surfactant gradient Ĝξ ahead of and
behind the contact line.

To describe the outer regions, we rescale with ξ = z/q, Ĝ = G̃/q, β = qβ̃
(anticipating β̃ =O(1)), so that (5.2) becomes (after dividing by q)

β̃Ĥ − V̂Ĥz =
[

H2
s

2
G̃z +HsGsξ Ĥ − q3 H3

s

3

(
∂2

∂z2
− 1
)

Ĥz −H2
s Hsξξξ Ĥ + qD̂(θ)

H3
s

3
Ĥz

+ D̂(θ)H2
s Hsξ Ĥ

]
z

− H2
s

2
G̃+ q3 H3

s

3

(
∂2

∂z2
− 1
)

Ĥ − (H2
s Ĥ)z

− qD̂(θ)
H3

s

3
Ĥ, (5.6a)
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0 =
[

HsG̃z + ĤGsξ − q3 H2
s

2

(
∂2

∂z2
− 1
)

Ĥz −HsHsξξξ Ĥ + qD̂(θ)
H2

s

2
Ĥz

+ D̂(θ)HsHsξ Ĥ
]

z

−HsG̃+ q3 H2
s

2

(
∂2

∂z2
− 1
)

Ĥ − (HsĤ)z

− qD̂(θ)
H2

s

2
Ĥ. (5.6b)

At leading order in q as z→∞, we can write (5.6) as

β̃Ĥ − V̂Ĥz =
[

ĥ2
L+

2
G̃z + ĥL+ k̂L+Ĥ

]
z

− ĥ2
L+

2
G̃− ĥ2

L+Ĥz, (5.7a)

0= [ĥL+G̃z + k̂L+Ĥ]z − ĥL+G̃− ĥL+Ĥz, (5.7b)

which reduces to

Ĥz − β̃
α

Ĥ = 0, G̃zz − G̃=
(

1− k̂L+

ĥL+

)
Ĥz, (5.8a,b)

where α=[(ĥ2
L+/2)+ (ĥL+ k̂L+/2)− ĥ2

L+ + V̂]. Thus Ĥ= Ĥ0 exp(β̃z/α) for some Ĥ0. For
β̃ > 0 and α> 0 (observed numerically), we require H̃0= 0 for perturbations to remain
bounded as z→∞ (the contact line moves faster than any growing disturbances to
the fluid front ahead). Thus G̃= G̃0 exp(−z) as z→∞ for some G̃0. To match with
(5.5b) we take G̃0 =−qk̂L+ . Thus towards the contact line as z→ 0+, Ĥ = 0 and

Ĝ∼ k̂L+(−1+ qξ − 1
2 q2ξ 2 + · · · ). (5.9)

Hence, as ξ→∞, G1ξ→ A= k̂L+ . Similarly, (5.6) at leading order in q as z→−∞
can be written as

β̃Ĥ − V̂Ĥz = [ 12 G̃z + k̂L−Ĥ]z − 1
2 G̃− Ĥz, (5.10a)

0= [G̃z + k̂L−Ĥ]z − G̃− Ĥz, (5.10b)

which reduces to

Ĥz − β̃

α1
Ĥ = 0, G̃zz − G̃= (1− k̂L−)Ĥz, (5.11a,b)

where α1 = [(1/2) + (k̂L−/2) − 1 + V̂]. Thus Ĥ = Ĥ0 exp(β̃z/α1) for some Ĥ0. For
β̃ >0 and α1<0 (observed numerically), we require H̃0=0 for perturbations to remain
bounded as z→−∞. Thus G̃= G̃0 exp(z) as z→−∞ for some G̃0. To match with
(5.5a) we take G̃0 =−qk̂L− . Thus towards the contact line as z→ 0−, Ĥ = 0 and

Ĝ∼ k̂L−(−1− qξ − 1
2 q2ξ 2 + · · · ). (5.12)

Hence, as ξ→−∞, G1ξ → B=−k̂L− . Using (5.4a) we obtain the O(q) growth rate,

β1 =
[

1
2 k̂L+ ĥ2

L+ + 1
2 k̂L−

1− ĥL+

]
. (5.13)
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FIGURE 15. Numerical validation of the relationships (a) k̂L− =−k̂L+ ĥL+ ,
(b) k̂L− = (1− ĥ2

L+)/4 and (c) k̂L+ =−(1− ĥ2
L+)/(4ĥL+).

Noting that k̂L− > 0, k̂L+ < 0 and ĥL+ < 1, the growth rate β1> 0 if k̂L−/2>−k̂L+ ĥ2
L+/2,

i.e. the O(q) Marangoni flux behind the contact line dominates that ahead of the
contact line. If this condition is satisfied, a mechanism for the flow to become
linearly unstable at O(q) is due to the forward Marangoni flux behind the contact
line pulling more fluid into the contact-line region than the forward Marangoni flux
ahead of the contact line dragging fluid out. This results in growth of perturbations in
h, consequently destabilising the flow and the contact line (consistent with figure 13,
where Ĥ is positive and growing immediately behind the contact line, coinciding
with Ĝξ , which is negative there). We now verify whether the above condition is
satisfied. Using (5.4b) implies k̂L− =−k̂L+ ĥL+ (figure 15a shows that this relationship
is approximately satisfied; the slight difference is due to the ambiguity in determining
kL− from the numerical solution), using which the above condition can be rewritten
as k̂L−(1 − ĥ2

L+) > 0, which is always satisfied. We also know using (4.21b) that
k̂L− = (1 − ĥ2

L+)/2 + ĥL+ k̂L+ , which, when combined with the above relationship,
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gives k̂L− = (1 − ĥ2
L+)/4 and k̂L+ = −(1 − ĥ2

L+)/(4ĥL+) (figure 15b,c shows that these
relationships are approximately satisfied; the slight difference in figure 15b is due to
the ambiguity in determining kL− from the numerical solution). Equation (5.13) can
now be rewritten as

β1 = 1− ĥ2
L+

8
≈ 1

8
(since ĥL+� 1). (5.14)

Equation (5.14) shows that the O(q) growth rate is always positive and independent
of the angle of inclination. This suggests that the flow is linearly unstable for all
angles of inclination, at least those within the validity of our model. This supports
the speculation by Edmonstone et al. (2005b). We also note from numerics that
ĥL+ increases gradually with time, so β1 decreases, confirming the observation in
figure 14(a) that, as time increases, the base state becomes less linearly unstable.
The analysis also shows the Marangoni effect to be dominant at this order, with
gravity having no influence. Figure 16(a,b) shows the O(q) approximation β ≈ q/8
(dashed lines) along with the numerical dispersion relation (solid lines) for inclination
angles θ = 90◦ and 3◦, respectively. We observe that this approximation slightly
underestimates the numerical dispersion relation for θ = 90◦ and overestimates it for
θ = 3◦.

We now determine the O(q2) growth rate β2. At O(q2) we obtain

β0H2 + β1H1 + β2H0 − V̂H2ξ

=
[

H2
s

2
G2ξ +HsGsξH2 + H3

s

3
H0ξ − H3

s

3
H2ξξξ −H2

s HsξξξH2

]
ξ

+
[

D̂(θ)
H3

s

3
H2ξ + D̂(θ)H2

s HsξH2

]
ξ

− H2
s

2
G0 + H3

s

3
H0ξξ

− (H2
s H2)ξ − D̂(θ)

H3
s

3
H0, (5.15a)

0 =
[

HsG2ξ +GsξH2 − H2
s

2
H2ξξξ + H2

s

2
H0ξ −HsHsξξξH2

]
ξ

+
[

D̂(θ)
H2

s

2
H2ξ + D̂(θ)HsHsξH2

]
ξ

−HsG0 + H2
s

2
H0ξξ

− (HsH2)ξ − D̂(θ)
H2

s

2
H0. (5.15b)

We assume that H1, H2 and their derivatives decay to zero as ξ →±∞. Equations
(5.9) and (5.12) suggest that G2ξ→−k̂L+ξ as ξ→∞ and G2ξ→−k̂L−ξ as ξ→−∞,
respectively. Using Hs→ ĥL+ , Gsξ → k̂L+ , Hsξ , Hsξξξ → 0 as ξ →∞, Hs→ 1, Gsξ →
k̂L− , Hsξ , Hsξξξ → 0 as ξ →−∞, H0 =−Hs,ξ , G0 =−Gsξ and β0 = 0, we obtain the
following condition after integrating (5.15a) between −∞ and ∞:

(1− ĥL+)β2 = −1
2

ĥ2
L+ k̂L+ξ

∣∣∣∣
ξ→∞
+ 1

2
k̂L−ξ

∣∣∣∣
ξ→−∞

+
∫ ∞
−∞

1
2

H2
s Gsξ dξ

−
∫ ∞
−∞

H3
s

3
Hsξξξ dξ +

∫ ∞
−∞

D̂(θ)
H3

s

3
Hsξ dξ . (5.16)
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FIGURE 16. Comparison of late-time numerical dispersion relation (solid lines) with the
small-wavenumber approximation, β = β1q (dashed lines) and β = β1q+ β2q2 (dot-dashed
lines) for inclination angles (a) θ = 90◦ and (b) θ = 3◦. Values β1 = 1/8 and β2 = 0.0207
are used for θ = 90◦, and β2 =−0.0847 for θ = 3◦.

Equation (5.16) shows that the O(q2) growth rate β2 is controlled by competing
Marangoni, capillary and vertical gravity fluxes. The first two terms on the right-hand
side of (5.16) cancel out the divergent contribution to the Marangoni flux integral
(third term on the right) far ahead of and behind the contact line, respectively. The
capillary and vertical gravity flux integrals (fourth and fifth terms on the right,
respectively) are convergent. For spreading without surfactant, (5.16) reduces to that
determined by Bertozzi & Brenner (1997). We can rewrite (5.16) using (4.20) as

β2 = 1

1− ĥL+

[
−1

2
ĥ2

L+ k̂L+ξ

∣∣∣∣
ξ→∞
+ 1

2
k̂L−ξ

∣∣∣∣
ξ→−∞

+
∫ ∞
−∞

1
2

H2
s Gsξ dξ

]

+ 1

1− ĥL+

[
1
3

∫ ∞
−∞
(Hs − 1)(Hs − ĥL+)(Hs + ĥL+ + 1) dξ

]
. (5.17)

The integrand in the second term in brackets in (5.17) is positive if Hs > 1 for a
considerable part of the domain. Hence, a large capillary ridge is necessary for this to
happen, as identified by Bertozzi & Brenner (1997) for gravity-driven spreading. We
numerically approximate the integrals involved to compute the growth rate β2. For
large inclination angles, the second integral in (5.17) is positive and dominates the
first, which is negative, resulting in a positive growth rate. The negative contribution
from the first integral is due to the steep drop in surfactant concentration observed
immediately ahead of where the base state surfactant concentration has a maximum
(see inset in figures 2d and 10b). This results in a net downward flow out of the
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contact-line region, which has a stabilising influence on the growth of perturbations at
this order. As the inclination angle decreases, the positive contribution from the second
integral gradually decreases, becoming negative below some threshold value of θ , and
the contribution from the second integral decreases in magnitude while still being
negative. Hence, below this threshold value, β2 is always negative. Figure 16(a,b)
shows the O(q2) approximation β ≈ q/8 + β2q2 (dot-dashed lines) along with the
numerical dispersion relation (solid lines) for inclination angles θ = 90◦ and 3◦,
respectively, with β2 = 0.0207 for θ = 90◦ and β2 =−0.0847 for θ = 3◦. We observe
that the O(q2) correction provides a much better approximation of the dispersion
relation at small wavenumbers.

6. Discussion

We have used numerical simulation and asymptotic analysis to describe the late-time
locally self-similar spreading dynamics of a two-dimensional surfactant-laden drop
over an inclined and prewetted plane. Our results, although restricted to small
precursor film thicknesses and not too shallow inclination angles, provide insights
into some important physical mechanisms that were not accessible from previous
computational studies. In particular, we have shown that the structure of the spreading
bulk drop recovers several features of gravity-driven spreading. These include the main
part of the bulk drop (region I in figure 4; see also figure 7), which is shown to
follow Huppert’s similarity solution given by (4.4), and a capillary ridge at its leading
edge (region A in figure 4; see also figure 10), which is characterised by a family
of quasi-steady solutions (4.20a) for sufficiently small values of the precursor film
thickness δ, similar to that derived by Troian et al. (1989) and Hocking (1990). The
influence of surfactant is evident in a hump-like region (region II in figure 4) formed
ahead of the main part of the bulk drop. Competing reverse Marangoni and horizontal
gravity fluxes slow down the downward flow, resulting in fluid accumulating in this
region and forming a hump. This upwelling of fluid is more pronounced at the
upstream end of this region (region C in figure 4) across which the film thickness
jumps dramatically, reminiscent of a shock-like structure. The unsteadiness of the flow
and surfactant transport makes it difficult to describe this region analytically, although
an approximate solution captures the essential dynamics and illustrates an important
feature of the spreading dynamics not described in previous studies. In constructing
our simplified DAE model of spreading down an inclined plane, this required us to
approximate the solution structure in regions C and II to obtain estimates for hM+ and
hL− , and for kM+ and kL− , characterising the film thicknesses and surfactant gradients,
respectively, and also to use starting values of other parameters from numerical
simulations. Thereafter, however, our DAE model provided a good approximation
of the late-time spreading dynamics (see figure 5a–d). The structures ahead of the
trailing edge of the drop (which are the focus of the study here) are robust for a range
of parameter values and initial conditions, and persist even at late-late times. This
is in contrast to a surfactant-laden drop spreading over a horizontal prewetted plane,
where the long-lived influence of the initial conditions and changing parameters are
shown to have striking effects on the flow structures and late-time spreading dynamics
(Warner et al. 2004; Jensen & Naire 2006). Our non-dimensionalisation in deriving
(2.2) is not valid for inclination angles close to the horizontal, so one would need
to analyse the model of Edmonstone et al. (2004, 2005a,b) to make analogies with
spreading on a horizontal plane as the inclination angle tends to zero. This will be
investigated in the future.
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A fundamental result highlighting the influence of surfactant on the bulk drop’s
spreading rate is given by the effective contact-line speed, (4.21a), which in
dimensional terms is

x?Lt?
= 1

3
ρ?g? sin(θ)

µ?

[
h? 3

L+ − h? 3
L−

h?L+ − h?L−

]
− S?

µ?Γ ?

[
1
2 h? 2

L+Γ
?

x?L+
− 1

2 h? 2
L−Γ

?
x?L−

h?L+ − h?L−

]
. (6.1)

For the spreading coefficient S?> 0, the Marangoni effect opposes the downward flow,
owing to horizontal gravity slowing down the drop’s spreading rate. The complex
dependence of h?L− , h?L+ , Γ ?

x?L−
and Γ ?

x?L+
on other variables and governing parameters

makes direct comparison of (6.1) with experiment difficult. However, our model
(4.26) illustrates the connection between the bulk drop and the fluid front ahead,
and identification of relationships such as (6.1) should facilitate further extensions of
the present model to account for surfactant solubility (Edmonstone et al. 2006), for
example.

Edmonstone et al. (2004, 2005a,b, 2006), who examined the stability of the
entire flow numerically, showed how growing disturbances of the spreading drop
are confined to the neighbourhood of the advancing contact line. Here, we have
identified a substantially simpler problem that captures much of the dominant
dynamics by restricting attention to perturbations confined to region A in figure 4.
By perturbing a solution of (4.20), we showed (figure 14) that the most rapidly
growing linearised disturbances have a wavelength (in dimensional terms) comparable
to [σ ?h?L−/(ρ?g? sin(θ))]1/3, the width of region A, and that the growth rate decreases
both in time (figure 14a; here time parametrises a particular base state solution in
the family of solutions describing region A) and with decreasing inclination angle
(figure 14b). The influence of surfactant on the stability of the linearised disturbances
is to increase the band of unstable wavenumbers as well as the growth rate in
comparison to gravity-driven spreading (figure 14c). This is illustrated by analysing
the singular structure in the long-wavelength limit of the discrete mode associated
with the translational invariance of the base state. Perturbations generate long-range
disturbances in the surfactant concentration ahead of and behind the effective contact
line, which lead to the growth of disturbances at a rate given approximately by (5.14),
which in dimensional terms becomes β? ≈ [ρ?g? sin(θ)h? 2

L−/(8µ
?)]q?, where q? is the

transverse wavenumber. This is in contrast to gravity-driven spreading, where the
leading-order growth rate is O(q2), confirming the destabilising influence of surfactant
via the Marangoni effect. This also suggests similarities with surfactant-laden drop
spreading on a horizontal plane, which is also shown to have an O(q) leading-order
growth rate (Jensen & Naire 2006). However, a direct analogy cannot be drawn
because our model is not valid at inclination angles close to the horizontal. Our
simulations also showed that growing long-wavelength disturbances can extend
into the bulk drop, indicating that the bounded eigenmodes associated with the
discrete spectrum of (5.2) fail to capture the full dynamics. A more detailed analysis
examining transient growth and the nature of the continuous spectrum is required.

Finally, the influence of surfactant in slowing the rate of spreading and, more
importantly, enhancing the instability poses limitations in its effective use in
applications such as SRT and coating processes. The rapidly growing wavelengths are
much shorter compared to gravity-driven spreading, hence more finger-like, reducing
surface coverage with either fluid or surfactant. Surface coverage can be increased by
lowering the inclination angle, which would lessen the severity of the instability by
reducing its growth rate and increasing its wavelength.
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