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We use the weak-curvature, slow-time asymptotics of detonation shock dynamics
(DSD) to calculate an intrinsic relation between the normal acceleration, the normal
velocity and the curvature of a lead detonation shock for self-sustained detonation
waves in condensed phase explosives. The formulation uses the compressible Euler
equations for an explosive that is described by a general equation of state with
multiple reaction progress variables. The results extend an earlier asymptotic theory
for a polytropic equation of state and a single-step reaction rate model discussed by
Kasimov (Theory of instability and nonlinear evolution of self-sustained detonation
waves. PhD thesis, University of Illinois Urbana-Champaign, Urbana, Illinois) and by
Kasimov & Stewart (Phys. Fluids, vol. 16, 2004, pp. 3566–3578). The asymptotic
relation is used to study the dynamics of ignition events in solid explosive PBX-9501
and in porous PETN powders. In the case of porous or powdered explosives, two
composition variables are used to represent the extent of exothermic chemical reaction
and endothermic compaction. Predictions of the asymptotic formulation are compared
against those of alternative DSD calculations and against shock-fitted direct numerical
simulations of the reactive Euler equations.
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1. Introduction
The theory of detonation shock dynamics (DSD) considers the quasisteady

propagation of self-sustained detonations in explosives, where the detonation structure
is composed of a lead shock that initiates the reaction and ends at a point of sonic
flow within the reaction zone. DSD theory is based on two asymptotic approximations:
(i) the radius of curvature of the detonation shock is large compared with the thickness
of the supporting reaction zone; and (ii) the rate at which the shock velocity or
curvature changes is slow compared with the transit time of a material element
through the reaction zone. In these asymptotic limits, approximate relationships
between the curvature of the shock and its kinematics can be determined. A basic
result is that the normal detonation velocity D is a function of the total curvature
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Self-sustained detonations in condensed phase explosives 167

of the shock front κ , and this function depends only on the material properties of
the explosive. In most DSD formulations, transverse variations along the shock are
neglected.

An intrinsic relation between the normal shock velocity and curvature, the ‘D–κ
relation’, was first given in Stewart & Bdzil (1988) for a case where D was close to
the planar Chapman–Jouguet (CJ) detonation velocity. Since that time, D–κ relations
have been obtained by analytical, numerical and asymptotic methods using a variety of
equations of state and reaction rate models. It is an intrinsic material property used to
characterize explosives and has been measured experimentally (Lambert et al. 2006).
The D–κ relation is used in engineering applications to compute the time of arrival
and changes in shock strength as detonations propagate through devices with complex
geometries. When D is plotted as a function of κ , with κ > 0 representing a convex
shock shape, the D–κ relation may be Z-shaped, with an upper, middle and a lower
branch connected by turning points, or D may monotonically decrease with increasing
κ . Asymptotic analyses that relate D, κ , their first and second time derivatives and
their transverse spatial derivatives have been carried out for a model with an ideal
equation of state and a single-step reaction. A complete description of DSD theory and
applications can be found in Yao & Stewart (1996) and Stewart & Yao (1998), and in
the reviews by Bdzil & Stewart (2007, 2011).

The governing equations, boundary conditions and other basic definitions used in
this work are described in § 2. In § 3, asymptotics are used to derive an intrinsic
relation between the normal acceleration Ḋ, normal velocity D and total curvature κ
of a detonation shock for a general equation of state that includes multiple reaction
progress variables. These results complete calculations first proposed by Kasimov
(2004), who obtained a Ḋ–D–κ relation using an ideal equation of state with a single
progress variable and suggested that the methodology could be extended to condensed
phase explosives with more general equations of state. The analysis was not complete,
but provided invaluable guidance. Section 5 describes the numerical algorithm used to
solve the intrinsic Ḋ–D–κ relation, and in § 6 the formulation proposed in this work is
used to model condensed phase explosives with varied and simultaneous chemical and
physical processes present, such as exothermic reaction and endothermic compaction,
using the material models described in § 4.

2. Governing equations
This section introduces basic definitions, governing equations and boundary

conditions that will be used in the asymptotic formulation of an intrinsic Ḋ–D–κ
relation for condensed phase explosives.

2.1. Basic definitions
Several basic definitions and relations are used in the asymptotic DSD formulation
as well as in its numerical solution. They include concepts such as the properties of
a self-sustained detonation, shock-attached coordinates, and conversion between state
variables and flux variables.

2.1.1. Self-sustained detonations
Kasimov & Stewart (2004) showed that there is a characteristic surface, or

information separatrix, that defines the end of the domain that affects the dynamics
of an unsteady detonation front. The dynamics of self-sustained curved detonations
depend only on the flow within a finite subsonic region between the shock and the
trailing sonic locus. A planar, steady, self-sustained detonation wave travels at the
Chapman–Jouguet speed DCJ . In such a wave, the sonic locus is a characteristic
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168 J. A. Saenz, B. D. Taylor and D. S. Stewart

surface coincident with the end of the reaction zone. Overdriven detonations travel
faster than DCJ and are sustained by an external mechanism, such as a piston, so they
are not considered here. The flow behind the shock is subsonic relative to the shock,
meaning that acoustic disturbances can reach the shock. The reaction zone between
the shock and sonic locus can be divided into two regions which have differing
mathematical characteristics. The main reaction layer (MRL) is the region in the
reaction zone that is immediately behind the shock front. The region of the reaction
zone where the transition from subsonic flow to the sonic locus occurs is referred to as
the transonic layer (TSL).

2.1.2. Shock-attached coordinate frame
The shock location in the laboratory frame is expressed as r = R(t). The shock

speed normal to the front is D = Rt and the shock acceleration is Ḋ = Dt, where
subscript t indicates differentiation with respect to time. The normal distance from the
shock surface,

n= r − R(t), (2.1)

serves to define the fluid velocity relative to the shock as

U = u− D, (2.2)

where u is the particle velocity in the laboratory frame. The shock curvature κ is given
by

κ = j/R(t), (2.3)

where j = 0, 1 or 2 for planar, cylindrical or spherical coordinates, respectively.
Diverging (convex shape) and converging (concave shape) detonation waves have
κ > 0 and κ < 0, respectively.

2.1.3. State and flux variables
The state of a material at any given point n in the reaction zone will be represented

by pressure p, density ρ, specific volume v = 1/ρ, velocity in the shock-attached
frame U and specific internal energy e. The composition variables Zi represent
scalar quantities to account for a general range of phenomena, such as chemical
reactions, through mass fractions of chemical species or reaction progress variables,
and compaction, through volume fraction or porosity. We assume the existence of a
material model that consists of an incomplete equation of state for the specific internal
energy of the general form e(p, v,Zi), and an expression for the time rate of change of
composition variable Zi as a function of the state of the material, ωi(p, v,Zj). Specific
material models with this general form are given in § 4.

The mass flux M, momentum flux P and energy flux H for fixed Zi are defined in
terms of the state variables as

M = ρ U, (2.4a)
P= p+ ρ U2, (2.4b)

H = e+ p v + 1
2 U2. (2.4c)

For a given set of flux variables M, P and H for fixed Zi one can solve the defining
algebraic relation to find state variables p, v and U. Solving for v and p in terms of U
from definitions (2.4a,b) produces

v = U

M
, (2.5a)

p= P−MU. (2.5b)
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Using the above relations in the definition of the energy flux (2.4c) yields

e(p, v,Zi)+ (P−MU)U

M
+ 1

2
U2 = H. (2.6)

After solving (2.6) for U, v and p are found using (2.5a) and (2.5b), respectively.
Alternatively, one can rewrite (2.6) in terms of v, resulting in

e(p, v,Zi)+ (P−M2v)v + 1
2 M2v2 = H. (2.7)

The difficulty in solving (2.6) for U or (2.7) for v depends on the form of the
equation of state e(p, v,Zi). The ideal equation of state produces a quadratic equation
that can be solved analytically, but in general the equation must be solved numerically.
Section 4 presents specific examples of this solution for the applications to porous
pentaerythritol tetranitrate (PETN) and PBX-9501.

2.2. Reduced Euler equations
Writing the reactive Euler equations for radially symmetric flow in the shock-attached
frame using the definitions in (2.1)–(2.3) and expanding and truncating to leading-
order in curvature κ , one obtains

Mn =−ρt − κρ(U + D), (2.8a)
Pn =−Mt − ρDt − κρU(U + D), (2.8b)

Hn =− 1
U

Ht − Dt + 1
M

pt, (2.8c)

Zin =− 1
U

Zit + ωi

U
. (2.8d)

Equations (2.8a–d), referred to as the reduced Euler equations, constitute a system of
equations for the flux variables M, P, H and composition variables Zi as a function of
time t and distance from the shock n in terms of curvature κ and detonation speed D.

2.3. Boundary conditions at the shock
The Rankine–Hugoniot relations dictate that the fluxes M, P and H are constant
across the shock. The composition variables Zi are also constant across the shock
because the shock is treated as a discontinuity. We use subscripts s and 0 to denote
variables at the shock and in the ambient state, respectively. Fluxes from the ambient
material M0, P0 and H0 for a wave moving at speed D can be calculated using the
definitions in (2.4a–c) and the ambient state p0, v0, u0 = 0, U0 = −D, Zi0. The fluxes
and composition variables at the shock are given by

Ms =−ρ0D, (2.9a)
Ps = p0 + ρ0D2, (2.9b)

Hs = e0 + p0v0 + 1
2 D2, (2.9c)

Zis = Zi0. (2.9d)

After solving for the velocity at the shock Us in (2.6), vs and ps can be calculated
using (2.5a,b).

2.4. Boundary conditions at the sonic locus
At the sonic locus (n = n∗) the flow is characteristic, meaning that the region between
the sonic locus and the shock is acoustically isolated from the flow outside this region,
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as shown by Kasimov & Stewart (2004). Subscript ∗ is used to indicate evaluation at
the sonic locus. The state at the sonic locus obeys the C+ characteristic equation

dp∗
dt
+ ρ∗c∗ du∗

dt
+ κρ∗c2

∗u∗ = ρ∗c2
∗

N∑
i=1

σiωi (2.10)

on

dn∗
dt
= c∗ + U∗, (2.11)

where the thermicity coefficient σi for composition variable i is defined as

σi =− 1
ρc2

∂e/∂Zi

∂e/∂p
, (2.12)

and the sound speed is given by

c2 = p+ ∂e/∂v

ρ2∂e/∂p
. (2.13)

Equation (2.10) and (2.11) are also referred to as the compatibility condition and the
speed relation, respectively, and are used to define the state at the sonic locus. The
reduced Euler equations (2.8a–d), along with the boundary conditions at the shock
(2.9a–d) and the boundary conditions at the sonic locus (2.10)–(2.11), form a closed
system of equations that fully describe the state profile {p(n), v(n),U(n),Zi(n) : n∗ >
n > 0} of a self-sustained detonation wave with curvature κ , travelling at speed D, in
the limit of small shock curvature.

3. Calculation of an intrinsic Ḋ–D–κ relation
The asymptotic analysis can be summarized as follows. Matched asymptotic

expansions of the reduced Euler equations in the MRL and the TSL are used to
find expressions for mass, momentum and energy fluxes, and their corresponding state
variables. Transverse spatial variations along the shock are neglected. The expansion
in the shock-attached frame of the MRL uses the planar quasisteady solution at the
shock obtained from the Rankine–Hugoniot algebra as the leading-order solution. The
expansion in the sonic frame for the TSL uses the sonic state as the leading-order
solution. Similar to the approach used by Kasimov (2004) and Kasimov & Stewart
(2005), the planar quasisteady solution (Ḋ = 0 and κ = 0) of the reduced Euler
equations at an arbitrary value of D, not necessarily close to DCJ , is used as the
leading-order solution in the expansions. Away from the sonic locus, the solution from
the expansion in the TSL is matched to the expansion in the MRL away from the
shock. The matching of the MRL and TSL solutions provides expressions for the
state in the reaction zone, to leading order in Ḋ and κ , that are used to enforce the
boundary conditions at the sonic locus, leading to expressions that relate Ḋ, D and κ .
The boundary conditions at the sonic locus are then enforced to leading order in Ḋ and
κ , resulting in an intrinsic Ḋ–D–κ relation for the dynamics of a detonation wave.

3.1. Planar quasisteady solution
The starting point is the planar quasisteady solution, which serves as the leading-order
solution for the asymptotic expansions. The planar quasisteady solution is obtained by
setting the curvature and all time derivatives to zero in the reduced Euler equations
(2.8a–d). As a result, the fluxes are constant throughout the reaction zone, and are

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

35
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.358


Self-sustained detonations in condensed phase explosives 171

given by the boundary conditions at the shock (2.9a–c) as a function of D. At the
sonic locus the compatibility condition and the speed relation for a planar quasisteady
shock become

ρ∗c2
∗

N∑
i=1

σi∗ωi∗ = 0, (3.1a)

c∗ + U∗ = 0. (3.1b)

Quantities obtained from the planar quasisteady solution will be denoted by subscript
(0). Integrating (2.8d) in n from the shock (n = 0) to the far field until (3.1a,b) are
satisfied results in a spatial profile Zi(0)(n) and gives n(0)∗. Using Zi(0)(n) and the fluxes
at the shock (2.9a–c), (2.5a,b) and (2.6) are solved for p(n), v(n) and U(n), yielding
U(0)(n), p(0)(n) and v(0)(n). As a result, we obtain profiles p(0)(n), v(0)(n), U(0)(n) and
Zi(0)(n) between the shock and the sonic locus that only depend on the detonation
speed D.

3.2. Asymptotic expansions
The reduced Euler equations (2.8a–d) are integrated in the MRL from the shock
through the reaction zone to obtain the following set of integral equations in the flux
variables

M =M(0) +MI, (3.2a)
P= P(0) + PI, (3.2b)
H = H(0) + HI, (3.2c)
Zi = Zi0 + ZiI, (3.2d)

with

MI =−
∫ n

0

∂ρ

∂t
dn− κ

∫ n

0
ρ(U + D) dn, (3.3a)

PI =−
∫ n

0

(
∂M

∂t
+ ρḊ

)
dn− κ

∫ n

0
ρU(U + D) dn, (3.3b)

HI =
∫ n

0

(
−Ht

U
− Ḋ+ pt

M

)
dn, (3.3c)

ZiI =
∫ n

0

ωi − (Zi)t

U
dn, (3.3d)

where M(0), P(0), H(0) correspond to the quasisteady planar fluxes and Zi0 is the
composition at the shock. Note that M(0) =M0, P(0) = P0, H(0) = H0 and are constant
throughout the reaction zone. No approximations to the reduced Euler equations
(2.8a–d) were made in deriving the integral equations (3.3a–d). For slow time
variation and small curvature, MI , PI , HI and ZiI correspond to asymptotically small
corrections to the planar quasisteady fluxes and to the composition at the shock,
respectively.

In the TSL the reduced Euler equations (2.8a–d) are written in a coordinate frame
attached to the sonic locus. A spatial variable in this coordinate frame, N, is defined as
the distance from the sonic locus normal to the shock, N = n − n∗(t). Defining D as
the normal speed of the sonic locus with respect to the lab frame, the particle velocity
relative to the sonic locus is U = u−D . Integrating from the sonic locus towards the
far field in the reaction zone results in a set of equations similar to (3.2a–d), where
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the boundary conditions at the sonic locus are used to determine the leading-order
solution, denoted by the subscript *,

M [≡ ρU ] =M∗ +MI, (3.4a)
P
[≡ p+ ρU 2

]=P∗ +PI, (3.4b)

H
[≡ e+ pv + 1

2U
2
]=H∗ +HI, (3.4c)

Zi =Zi∗ +ZiI. (3.4d)

The flux variables M , P and H are defined in the same manner as (2.4a–c)
and Zi is used to denote the composition variables in the TSL. Corrections to the
leading-order solutions are defined as

MI =−
∫ N

0

∂ρ

∂t
dN − κ

∫ n

0
ρ(U +D) dN, (3.5a)

PI =−
∫ N

0

(
∂M

∂t
+ ρḊ

)
dN − κ

∫ N

0
ρU (U +D) dN, (3.5b)

HI =
∫ N

0

(
−Ht

U
− Ḋ + pt

M

)
dN, (3.5c)

ZiI =
∫ N

0

ωi − (Zi)t

U
dN. (3.5d)

Matching the expansions in the TSL and the MRL is done in exactly the same
manner as in Kasimov & Stewart (2005) and yields two important conclusions that
will be used in our calculations. First, to leading order, the expansions for the state
variables at the sonic locus in the shock-attached frame depend only on D. Owing
to the time derivatives in the compatibility condition (2.10), only the leading-order
solution is needed to enforce the compatibility condition to O(Ḋ, κ). Using the chain
rule to find the time derivatives in terms of derivatives with respect to D, we get

Ḋ

[
dp(0)∗
dD
+ ρ(0)∗c(0)∗ du(0)∗

dD

]
+ κρ(0)∗c2

(0)∗u(0)∗ = ρ(0)∗c2
(0)∗

N∑
i=1

σi(0)∗ωi(0)∗, (3.6)

which can be rewritten as

Ḋ=
ρ(0)∗c2

(0)∗

N∑
i=1

σi(0)∗ωi(0)∗ − κρ(0)∗c2
(0)∗u(0)∗

dp(0)∗
dD
+ ρ(0)∗c(0)∗ du(0)∗

dD

. (3.7)

Matching the MRL and the TSL expansions leads to a second conclusion, that the
magnitude of the relative velocity of the sonic locus with respect to the shock, ṅ∗,
is smaller than O(Ḋ, κ), and ṅ∗ can be neglected when the speed relation (2.11) is
evaluated to O(Ḋ, κ), leading to

c∗ + U∗ = 0. (3.8)

Approximations to MI , PI , HI and ZiI are found by expanding the integrands in
(3.2a–d) around the planar quasisteady solution, leading to correction terms M(1), P(1),
H(1) and Zi(1) to the planar quasisteady terms. Then the fluxes at the sonic locus are
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evaluated to O(Ḋ, κ) using a modified version of equations (3.2a–d), resulting in

M∗ =M(0)∗ +M(1)∗, (3.9a)
P∗ = P(0)∗ + P(1)∗, (3.9b)
H∗ = H(0)∗ + H(1)∗, (3.9c)
Zi∗ = Zi(0)∗ + Zi(1)∗, (3.9d)

where terms M(0)∗, P(0)∗, H(0)∗ and Zi(0)∗ are obtained as described in § 2.3. The
correction terms are given by

M(1)∗ =−ḊI1 − κM(0)∗n(0)∗ − κDI0, (3.10a)

P(1)∗ = ρ0Ḋn(0)∗ − ḊI0 − κM2
(0)∗J0 − κM(0)∗Dn(0)∗, (3.10b)

H(1)∗ = −DḊI0

M(0)∗
− Ḋn(0)∗ + ḊS1

M(0)∗
, (3.10c)

Zi(1)∗ =−ḊTi −
∂Zi(0)∗
∂D

U(0)∗
Ḋn(1)∗, (3.10d)

where

I0 =
∫ n(0)∗

0
ρ(0) dn, (3.11a)

J0 =
∫ n(0)∗

0
v(0) dn, (3.11b)

I1 =
∫ n(0)∗

0

∂ρ(0)

∂D
dn, (3.11c)

S1 =
∫ n(0)∗

0

∂p(0)
∂D

dn, (3.11d)

Ti =
∫ n(0)∗

0

1
U(0)

∂Zi(0)

∂D
dn, (3.11e)

where we have used the expansion n∗ = n(0)∗+ n(1)∗+ · · · to obtain the above equations.
The term n(1)∗ is a measure of the deviation of n∗ from n(0)∗, and is related to ṅ∗. We
will postpone finding an expression for n(1)∗ for the time being. Note that I0, J0, I1, S1

and Ti only depend on the planar quasisteady solution, which is a function of D. Here
M(1), P(1), H(1) and Zi(1) are functions of Ḋ, D, κ . In general, Zi(1) is also a function
of ṅ∗.

Fluxes at the sonic locus M∗, P∗, H∗ and Zi∗ are obtained by evaluating (3.9a–d)
at n(0)∗ and are linear in Ḋ and κ . The state at the sonic locus (U∗, v∗, p∗) is then
obtained by solving (2.6) and (2.5a,b), using M∗, P∗, H∗ and Zi∗. With the state at
the sonic locus defined, the compatibility condition (3.7) and the speed relation (3.8)
form a system of equations in Ḋ, D, κ and ṅ∗ that can be solved to obtain the Ḋ–D–κ
relation for a given material model.

For the special case of a material model that uses an ideal equation of state and
a single reaction progress variable with an Arrhenius reaction rate equation, (2.6) and
(2.5a,b) can be solved analytically to obtain truncated expressions for U∗, v∗, p∗ to
O(Ḋ, κ) (Kasimov & Stewart 2005). If instead these equations are solved numerically,
higher-order terms are not truncated and more accurate values for U∗, v∗, and p∗ are
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obtained. Using the state at the sonic locus calculated numerically one can obtain
a more accurate Ḋ–D–κ relation than using the state at the sonic locus obtained
analytically and truncated to O(Ḋ, κ). In general, however, substituting the equation of
state into (2.6) and (2.5a,b) will not produce a system of equations that can be solved
analytically, and the solution can only be obtained numerically.

3.3. Properties of the expansions
The nature of the expansions of the flux variables and the state variables for an ideal
equation of state is described in Kasimov (2004) and Stewart & Kasimov (2005).
Using an ideal equation of state e = pv/(γ − 1) − Z1Q, where γ is the polytropic
exponent and Q is the heat of reaction, and a single reaction progress variable Z1, the
energy equation (2.7) is a quadratic in v that can be solved to give

v = γ

γ + 1
P

M2
(1− δ), (3.12)

where the discriminant δ is given by

δ =
√

1− 2(γ 2 − 1)
γ 2

M2

P2
(H + Z1Q). (3.13)

The properties of the discriminant can be used to explain the nature of the expansions
in the MRL and in the TSL. The root of δ on the compression branch is a regular
function of the arguments in the square root on the right-hand side of (3.13). At
the sonic locus the discriminant has a single root which is a local minimum. The
expansion in the TSL is regular because the state at the sonic locus is used as the
leading-order solution. In the MRL on the other hand, expansion of the discriminant
produces terms that are inversely proportional to powers of the argument of the square
root in (3.13). The order of the expansion changes near the sonic locus, where the
discriminant is zero. Similarly, as one approaches the sonic locus, expansions for the
state variables in the MRL become irregular. This irregularity is resolved by matching
the expansion in the MRL with the expansion in the TSL.

Monotonicity of the isentropes in the p–v plane for any consistent equation of state
means that in general (2.7) will have a quadratic character. See Menikoff & Plohr
(1989) for a review of the thermodynamic properties of equations of state. In the
present work, the formulation by Kasimov (2004) and Stewart & Kasimov (2005) is
generalized to thermodynamically consistent equations of state. The properties of the
discriminant (3.13) at the sonic locus, namely that it has a single root and that this
root is a minimum, dictates the choice of the numerical algorithm used to solve for the
state at the sonic locus.

4. Material models
In this section we describe the material models that will be studied using our

asymptotic DSD formulation. Each model consists of an equation of state and a
rate equation for chemical reaction. Some models also include a rate equation for
compaction. The progress of an exothermic chemical reaction will be tracked with the
composition variable Z1. The volume fraction Z2 of solid reactants in a representative
volume element will represent the endothermic process of compaction in the material.
Constitutive forms for the equation of state e(p, v,Zi) are supplied to account for the
effects of reaction and compaction in the energy budgets in the material.
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4.1. Reaction models

A single-step exothermic chemical reaction with a reaction progress variable Z1 ≡ λ
will be used to track reaction progress, where λ = 0 in unreacted material and λ = 1
in fully reacted material. We consider two reaction rate models commonly used in
detonation theory: an Arrhenius rate and a pressure-dependent rate.

The Arrhenius rate equation is given by

ωλ = kλ (1− λ)ν exp
[−Ea

pv

]
, (4.1)

where kλ is the rate constant, ν is the depletion factor and Ea is the activation energy.
The pressure-dependent reaction rate equation is

ωλ = kλ (1− λ)ν
(

p

pCJ

)N

, (4.2)

where pCJ is the Chapman–Jouguet pressure and N is the pressure exponent.
For high activation energy Ea or high pressure exponent N, the reaction rate given

by the Arrhenius or pressure-dependent rate changes rapidly with changes in the
state (p, v, λ). In those cases the assumption that ωλ is O(Ḋ, κ) in the compatibility
condition (3.7) is satisfied since the reaction rate is small by virtue of the rate form.
Reaction rates calculated with the Arrhenius and the pressure-dependent rate equations
are continuous in the interval 0 6 λ6 1.

4.2. Compaction models

The compaction progress in solid–void explosives is represented by variable Z2 ≡ φ,
defined as the ratio of the volume of solids to the total volume in a representative
volume element. For a fully compacted explosive φ = 1 and for explosive beds
that are not fully compacted φ0 6 φ 6 1, where φ0 > 0 is the initial compaction of
the bed. Compaction is the net endothermic increase in density of a representative
volume element associated with pore volume reduction by processes such as grain
rearrangement, grain deformation and fracture of solids.

Stewart, Asay & Prasad (1994) described a simple model in which the compaction
rate is represented by a linear quasistatic process. Based on this model, we will use a
rate of compaction given by

ωφ = kφ tanh[100(1− φ)](Ap− φ) with A= φ0/p0, (4.3)

where the term tanh[100(1 − φ)] is included to ensure that the compaction rate
continuously and smoothly goes to zero as φ goes to one.

Xu & Stewart (1997) modelled dynamic compaction of a bed of porous material
under pressure loading by using a P–α model (Herrmann 1969). The rate of
compaction is due to a deviation of the bed pressure from the pressure realized by
an isothermal quasistatic response of the porous reactant solid of the form

peqb = p0 +P(φ), (4.4)

where peqb is the volume average pressure in the porous solid, p0 is the initial
pressure at φ = φ0 and P(φ) is called the ‘configurational stress’. The configurational
stress dependence usually is determined from quasistatic compaction experiments. The
experimentally determined quasistatic bed pressure to porosity (α ≡ 1/φ) response can
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be fit with a quadratic P–α relation,

α − 1
α0 − 1

=
(

1− P(φ)

Ph

)2

, (4.5)

where the parameter Ph is called the hardening pressure, or consolidation pressure,
for bed pressures above which the porous material will crush to solid density. The
compaction rate is assumed to be proportional to the difference between the average
pressure in the bed p and the equilibrium pressure peqb, i.e. p − peqb. This assumption,
along with (4.5), gives

ωφ = kφ tanh[100(1− φ)]
[

p− p0 − Ph

(
1−

√
φ0(1− φ)
φ(1− φ0)

)]
. (4.6)

The parameter kφ derives from consideration of dynamic relaxation processes in the
bed, and its value reflects the rise time to achieve a given state of compaction when
the porous material is impacted by a constant velocity piston.

4.3. Equations of state
4.3.1. Ideal equation of state

The simplest approach to model the effects of reaction and compaction on the
constitutive behaviour of an energetic material is to use the ideal equation of state
for a polytropic gas, with terms to account for the energy released by the exothermic
reaction process and the energy absorbed by the endothermic compaction process,
resulting in

e= e(p, v, λ, φ)= pv

γ − 1
− QT, (4.7)

where

QT = Qλλ+ Qφ(1− φ), (4.8)

γ is the polytropic exponent, Qλ is the heat of reaction and Qφ is the energy absorbed
by compaction. The sound speed is given by c=√γ pv.

4.3.2. Wide-ranging equation of state
The wide-ranging equation of state (WR-EOS) was developed by Davis and

coworkers in a series of papers (Davis 1985, 1993, 1998a,b, 2000; Stewart, Davis
& Yoo 2002) to cover the wide range of states encountered in detonation problems.
It is an empirically formulated equation of state, although developed with significant
physical considerations. Recently, Wescott, Stewart & Davis (2005), Lambert et al.
(2006), Stewart, Yoo & Wescott (2007) and Saenz & Stewart (2008) used the
WR-EOS to develop models of condensed explosives that are capable of accurately
predicting detonation dynamics for states outside the range of the calibration of the
model. In what follows, the WR-EOS and the mixture closure conditions used in
Saenz & Stewart (2008) are briefly described.

The WR-EOS uses the Mie–Grüneisen form for isolated phases, namely

e(p, v)= es(v)+ v

Γ (v)
(p− ps(v)) or p(e, v)= ps(v)+ Γ (v)

v
(e− es(v)). (4.9)

We will use r and p subscripts to denote reactants and products, respectively. The
superscript s represents the reference states, which are the isentrope that passes
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through the CJ state for products and shock Hugoniot states for reactants. The forms
of the equations for the reference values ps

p(v), es
p(v) and Γp(v) for the products and

ps
r(v), es

r(v) and Γr(v) for the reactants may be found in Wescott et al. (2005) and are
summarized in appendix A.

The energy equation of state for the mixture of porous solid (the mixture of
condensed reactant and void, indicated by subscript ps) and products is a mass-
weighted average of the energies in each phase. This leads to a mixture energy
equation of state for the mixture of porous solid and products,

e(v, p, λ, φ)= (1− λ)er(p/φ, vr)+ λep(p, vp). (4.10)

The closure relations relate the pressure and specific volume in the different phases.
Pressure equilibrium is enforced between the porous solid and the reaction products,
such that

pps = pp = p. (4.11)

The pressure in the condensed reactant phase is higher and depends on the reactant
volume fraction with pr = p/φ. The second closure condition specifies the ratio of
specific volumes of reactants and products so that the mixture-specific volume is given
by

v = (1− λ)vps + λvp, (4.12)

with

Φ = vps/vp and vr = φvps. (4.13)

Stewart et al. (2002) showed that the values of Φ vary between approximately 0.8 and
1.0 and that the sensitivity of the WR-EOS to Φ is low. They suggested that a good
approximation is to set Φ = 0.95 when λ > 0, and Φ = 1 when λ= 0. Alternatively, at
a high computational cost, one can enforce temperature equilibrium between phases, a
condition used in Wescott et al. (2005). Equations (4.12) and (4.13) can be recast as

vp = v

[λ+ (1− λ)Φ] , vps = Φv

[λ+ (1− λ)Φ] and vr = φ Φ v

[λ+ (1− λ)Φ] . (4.14)

When φ = 1, the WR-EOS for powders described by Saenz & Stewart (2008) is
consistent with the WR-EOS for fully solid condensed phase explosives used by
Wescott et al. (2005).

The pressure equilibrium condition displayed in (4.11) can cause difficulties in some
models, such as leading to ill-posed sets of equations. However, this does not happen
here because (4.11) is only used to write a physically sensible equation of state for
the bulk material e(v, p, λ, φ), and therefore the system of equations (2.8a–d) has a
strictly hyperbolic character and it evolves on particle velocity characteristics.

5. Numerical solution of the asymptotically formulated Ḋ–D–κ relation
This section describes a numerical procedure F (D, κ) to calculate Ḋ as a function

of D and κ , Ḋ=F (D, κ), from the asymptotically formulated compatibility condition
(3.7) and speed relation (3.8). To implement F (D, κ) for a material model with
a reaction progress variable Z1 ≡ λ and a compaction progress variable Z2 ≡ φ,
(3.9)–(3.11) are transformed to λ coordinates, as shown in appendix B.

We start by defining the residual functions that are used to enforce (3.7) and (3.8)
for use with a root solving scheme. The residual functions need to be calculated
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reliably over a wide range of values for Ḋ and λ∗ so that the root solve will succeed.
To enforce the compatibility condition we rewrite (3.7) as

R1 =
(

dp(0)∗
dD
+ ρ(0)∗c(0)∗ du(0)∗

dD

)
Ḋ− ρ(0)∗c2

(0)∗

N∑
i=1

σi(0)∗ωi(0)∗ + κρ(0)∗c2
(0)∗u(0)∗. (5.1)

Here R1 depends only on the leading-order solution, D, κ and an estimate for Ḋ.
A robust and reliable residual function R2 to enforce the speed relation (3.8) requires

careful consideration of the character of the solution at the sonic locus. Define
(Ḋ, λ∗)A as a point that satisfies (3.8). Recalling the discussion in § 3.3, (2.6) has
a single root when evaluated at the state corresponding to point (Ḋ, λ∗)A and that root
represents a minimum. Guesses in the neighbourhood of (Ḋ, λ∗)A can be such that
(2.6) has two real roots or no real roots. The solution point (Ḋ, λ∗)A therefore lies on
the edge of the region for which (3.8) is real valued, and a numerical scheme that
uses a residual function based on (3.8) will be, at best, very slow to converge. For this
reason, we define the following root function based on (2.6),

R2 =min(H ) (5.2)

where

H = H∗ − e(p∗, v∗, λ∗, φ∗)− (P∗ −M∗U∗)U∗
M∗

− 1
2

U2
∗. (5.3)

The speed relation (3.8) is satisfied when R2 = 0 as defined above. To find R2, we use
the Brent minimization algorithm implemented by Galassi et al. (2009).

The procedure to compute the asymptotic relation Ḋ=F (D, κ) is:

(i) read D and κ;
(ii) calculate the leading-order state at the sonic locus, p(0)∗, v(0)∗, U(0)∗ and Zi(0)∗,

using the method described in § 3.1;
(iii) using (2.9), calculate the leading-order solution to flux variables at the sonic

locus M(0)∗, P(0)∗, H(0)∗;
(iv) using (B 3), calculate I0, J0, I1, S1 and T at the sonic locus;
(v) calculate c(0)∗, ωλ(0)∗, ωφ(0)∗, σλ(0)∗ and σφ(0)∗;
(vi) estimate Ḋ and λ∗;
(vii) using (B 1) and (B 2), calculate M∗, P∗, H∗ and φ∗ ;
(viii) calculate R1 using (5.1) and R2 using (5.2);
(ix) if R1 and R2 are larger than the desired tolerance, go to (vi).

6. Results and examples
In this section we present results of the asymptotic theory applied to the explosive

materials models discussed in § 4. The numerical procedure F (D, κ) developed in
§ 5 is used to construct asymptotic D–κ relations and ignition curves. These results
are compared against D–κ relations obtained by numerical solution of the quasisteady
reduced Euler equations, referred to as ‘numerical’ D–κ relations. The algorithm
used to calculate numerical D–κ relations is given in appendix C. Lastly, spherically
symmetric expanding ignition events in a solid explosive are computed by solving
Ḋ =F (D, κ) as an initial value problem and compared with ignition transients from
shock-fitted direct numerical simulations (DNSs) computed using the scheme of Taylor
(2010).
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6.1. Ḋ–D–κ relation for a porous explosive modelled with an ideal equation of state
Kasimov & Stewart (2005) formulated a Ḋ–D–κ relation analytically to O(Ḋ, κ) for
a material modelled by an ideal equation of state and a single-step reaction. In this
section, their results are extended to a detonation model that includes a compaction
process.

Using the ideal equation of state (4.7) in (2.7) we obtain

v2 − 2γ
γ + 1

P

M2
v + 2(H + QT)

M2

γ − 1
γ + 1

= 0. (6.1)

Solving the above quadratic equation in v and using the physically relevant root,

v = γ

γ + 1
P

M2
(1− δ) , (6.2)

where the discriminant δ is given by

δ2 = 1− 2(γ 2 − 1)
γ 2

M2

P2
(H + QT) . (6.3)

Using the Mach number in the shock-attached frame

M2 = U2

c2
, (6.4)

we can rewrite the discriminant δ in (6.3) as

δ2 =
(

1− M2

1+ γM2

)2

. (6.5)

Note that at the sonic locus where M = 1, the speed relation in (3.8) holds and the
discriminant δ = 0.

Matching the MRL and TSL expansions produces expressions for the leading-order
sonic state that can be substituted into the compatibility condition and the speed
relation. The resulting equation for the compatibility condition is

Ḋ= a1(Qλω
∗
λ − Qφω

∗
φ)− a2κ, (6.6)

where

a1 = (γ 2 − 1)(γ + 1)D3

(3D2 + c2
0)(c

2
0 + γD2)

(6.7a)

and

a2 = (c
2
0 + γD2)(D2 − c2

0)

(γ + 1)(3D2 + c2
0)
. (6.7b)

The resulting equation for the speed relation, to O(Ḋ, κ), is given by

G− λ∗Qλ − (1− φ∗)Qφ + QT0 + κx+ Ḋy= 0, (6.8)

where

G= (c2
0 − D2)

2

2(γ 2 − 1)D2
, (6.9a)

x= v0
(c2

0 + γD2)γ

(γ 2 − 1)D

∫ n(0)∗

0

p(0)
U(0)

(
1− v(0)

v0

)
dn(0) (6.9b)
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FIGURE 1. Comparison of non-dimensional D–κ relations for a hydrogen–oxygen mixture
with Q= 40, γ = 1.25, ν = 1.0 and E = 40. The dashed line is the solution to the asymptotic
D–κ relation F (D, κ) = 0. The solid line is the numerical D–κ relation and the dash-dot line
is the relation obtained by solving the Ḋ–D–κ relation for Ḋ= 0 found in Kasimov & Stewart
(2005).

and

y= D (γ + 1)2

(γ 2 − 1)

∫ n(0)∗

0

(1− vr)

U(0)

×
[

v(0)

v(0)∗ − v(0) (vr − β)
(
v2
(0)∗
v2
(0)

− β
)
+ γ c2

0 + D2

(γ + 1)2 D2
+ 2β (1− vr)

]
dn(0), (6.10)

with

β = γ − 1
γ + 1

and vr = v(0)
v0
. (6.11)

The compatibility condition (6.6) and speed relation (6.8) are an asymptotic Ḋ–D–κ
relation for a porous explosive modelled with an ideal equation of state. Equation
(6.6) shows that, to leading order, the dynamics of detonation waves are governed
by competing mechanisms of acceleration caused by energy release from reaction and
deceleration due to energy absorption from compaction and flow divergence. Equations
(6.6) and (6.8) can also be obtained, after some tedious algebra, by substituting the
ideal equation of state (4.7) into the compatibility condition (3.7) and the speed
relation (3.8), and keeping only leading-order terms in Ḋ and κ . We use (6.6) and (6.8)
to obtain D–κ relations that are compared with relations obtained using F (D, κ)= 0.

6.2. D–κ relations for a hydrogen–oxygen mixture
We calculate the D–κ relation for a hydrogen–oxygen mixture using an ideal equation
of state and an Arrhenius reaction rate, setting Z2 = φ = 1 (no compaction). Consider
a mixture with Qλ = 40, γ = 1.25, ν = 1.0, E = 40 and DCJ = 6.8896, which
corresponds to the case shown in figure 5 of Kasimov & Stewart (2005), where the
ambient state and the half-reaction length of a plane CJ detonation are used to scale
parameters and variables. The resulting relation is shown in figure 1. We also show
the D–κ relation calculated using the formulation by Kasimov & Stewart (2005), i.e.
solving (6.6) and (6.8), and the numerical D–κ relation. The three curves display very
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5.0
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0 0.2 0.4 0.6 0.8 1.0

FIGURE 2. Comparison of D–κ relations for PBX-9501. The dashed line is the solution to
the asymptotic D–κ relation F (D, κ)= 0. The solid line is the numerical D–κ relation.

ρ0 (g cm−3) c0 (mm µs−1) q (kJ g−1) Cp (J kg−1 K−1) pCJ (GPa)

1.844 2.339 5.85 1130 36.3
a k vc (cm3 g−1) pc (GPa) n b

0.7965 1.30 0.8314 3.738 1.758 0.7
A (mm µs−1) B C Z Γ 0

r

2.339 2.737 1.45 −0.03076 0.7989

kλ (1 µs−1) µ ν

110 3.5 0.93

TABLE 1. Parameters for the WR-EOS calibrated to PBX-9501.

good agreement at small κ , where the asymptotic expansions are strictly valid. There
is also very good agreement close to DCJ . The differences increase as κ increases.
The turning point in the numerical D–κ relation is at κc = 6.03 × 10−3,Dc = 6.07.
The present formulation yields a turning point at κc = 6.30 × 10−3,Dc = 6.11 and the
turning point calculated in Kasimov & Stewart (2005) is at κc = 7.19×10−3,Dc = 6.04.
The asymptotic D–κ relation presented here is in better agreement with the numerical
D–κ relation than the asymptotic result obtained in Kasimov & Stewart (2005), since
we do not truncate (3.8) to leading order in Ḋ and κ .

6.3. Detonation dynamics of PBX-9501
The WR-EOS and a pressure-dependent rate equation are used to represent PBX-9501
with Z2 = φ = 1 (no compaction). Table 1 shows the calibrated parameters obtained by
Lambert et al. (2006). Initial conditions are atmospheric pressure p0 = 1 × 10−4 GPa,
ρ0 = 1.844 g cm−3, u0 = 0 and λ0 = 0.

We start by calculating the D–κ relation using F (D, κ) = 0 and plot it in figure 2
along with the numerical D–κ relation. As in the case for a hydrogen–oxygen mixture
shown in figure 1, the two curves display good agreement close to κ = 0 and D= DCJ ,
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FIGURE 3. Spherical detonation ignition and failure in PBX-9501. Solid lines are the ignition
curve solutions to the asymptotic relation Ḋ = F (D, κ), with initial conditions given by
κ0 = 1 and D0 ranging from 8.75 to 6.0 mm µs−1 every 0.5 mm µs−1. The dashed line is
the asymptotic D–κ relation Ḋ = F (D, κ) = 0. Color contours show values of constant
Ḋ (mm µs−2).

and as κ increases away from κ = 0 the differences become larger. The upper branch
of the D–κ relation obtained with our formulation lies above that of the numerical
D–κ relation.

The hydrogen–oxygen model with the set of parameters used in § 6.2 is one-
dimensionally unstable and comparisons with DNSs are difficult to carry out. A
condensed phase explosive such as PBX-9501 is hydrodynamically stable, allowing
comparison against numerical solutions of the reactive Euler equations. The dynamics
of ignition events of spherically expanding detonation waves are calculated by
solving the initial value problem Ḋ =F (D, κ) with initial conditions D(t = 0) = D0

and R(t = 0) = R0 using the scheme described in § 5. An embedded Runge–Kutta
Prince–Dormand method, as implemented in the GNU Scientific Library (Galassi
et al. 2009), is used to solve this initial value problem. The ignition transients
calculated from the asymptotic formulation are compared with shock-fitted DNSs
of the reactive Euler equations computed with the method described by Taylor (2010).
These simulations use numerical D–κ solutions as initial conditions. A unique feature
of the shock-fitted DNS method is that both Ḋ, D and the shock radius R, which can
be related to κ in radially symmetric coordinates, are directly calculated as part of
the solution algorithm. In contrast, DNS with shock-capturing numerical methods in
the laboratory frame requires an algorithm to locate the lead shock in time. Here D
and Ḋ must be computed numerically from the reconstructed shock trajectory. This
produces considerable noise in the results due to the discretization of the grid. For this
reason, shock-fitted DNS generates much more accurate values for the measured shock
dynamic quantities.

A contour plot of Ḋ =F (D, κ) is shown in figure 3. The dashed line shows the
D–κ relation on which Ḋ =F (D, κ) = 0. The solid lines are ignition curves showing
detonation trajectories in the κ–D plane, calculated for κ0 = 1.0 and values of D0

ranging from 8.75 to 6.0 mm µs−1 every 0.25 mm µs−1. Here Ḋ is positive to the left
of the D–κ relation and negative to the right. This is reflected in the ignition curves,
which have positive slope to the left of the D–κ relation, negative slope to the right of
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FIGURE 4. Spherical detonation ignition and failure in PBX-9501. Solid grey ignition curves
were calculated from DNSs using the shock-attached formulation of the reactive Euler
equations with initial conditions obtained from the numerical D–κ relation (dashed grey line).
Solid black ignition curves were calculated by solving the asymptotic relation Ḋ =F (D, κ).
Initial conditions for the asymptotic ignition curves are κ0 = 1 mm−1 and D0 ranging from
6.25 to 8.75 mm µs−1 in increments of 0.25 mm µs−1. Dashed black line is the asymptotic
D–κ relation Ḋ=F (D, κ)= 0.

it and zero slope where they cross the D–κ relation. The curves calculated with D0 =
6.0 and 6.25 mm µs−1 fail to ignite, indicating that there is a critical initial velocity
DI (6.25 mm µs−1 < DI < 6.5 mm µs−1 for this initial radius that separates successful
ignitions from failed ignitions. A successful ignition event can be characterized as
follows. A shock with an initial velocity D0 expands outwards as κ decreases and R
increases. During this initial expansion, the energy lost due to divergence, represented
by the last term on the right-hand side of the compatibility condition (3.7), is larger
than the energy released by reaction, represented by the first term on the right-hand
side of (3.7). As the wave continues to expand, the energy contributed by the reaction
increases and the energy lost due to flow divergence decreases as κ becomes smaller,
causing the magnitude of deceleration to decrease. This continues until the reaction
and divergence terms balance out, at which point the wave crosses the D–κ relation
with Ḋ = 0. After this point, the wave starts accelerating. The acceleration magnitude
increases until the wave approaches the upper branch of the D–κ relation as κ

becomes small and R becomes large. The detonation velocity continues to increase,
but the rate at which it does so is progressively smaller as D asymptotes to the D–κ
relation and approaches DCJ .

Ignition transient curves computed with shock-fitted DNS are shown as solid grey
lines in figure 4. The numerical D–κ relation is shown as a grey dashed line. Ignition
transient curves calculated using Ḋ =F (D, κ) are shown in figure 4 as solid black
lines, along with the asymptotic D–κ relation calculated by Ḋ =F (D, κ) = 0 shown
as a black dashed line. Calculations with DNSs and asymptotics both show that Ḋ> 0
to the left of the corresponding D–κ relation, although the shock acceleration is found
to be higher in DNSs.

In the DNSs of ignition events, time derivatives and powers of κ are retained
to all orders. A direct comparison of ignition events obtained from DNSs and
Ḋ =F (D, κ) would require initial conditions to be comparable. In the context of this

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

35
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.358


184 J. A. Saenz, B. D. Taylor and D. S. Stewart

6.5

7.0

7.5

8.0

8.5

9.0

6.5

7.0

7.5

8.0

8.5

9.0

0 0.5 1.0 0 5 10 15 20 25

0

0.5

1.0

1.5

2.0

2.5

5 10 15 20 25
0

0.5

1.0

1.5

2.0

2.5

6.5 7.0 7.5 8.0 8.5 9.0

(c)

(a) (b)

(d)

FIGURE 5. Ignition events starting at D0 = 6.954 mm µs−1, κ0 = 0.7163 mm−1 and R0 =
2.7921 mm. Solid grey and black lines represent results obtained from DNSs and from
the asymptotic Ḋ = F (D, κ) relations, respectively. Dashed lines represent D–κ relations
obtained numerically (grey) and from F (D, κ) = 0 (black). Detonation speed D is plotted as
a function of (a) κ and (b) R. Position R and detonation speed D are plotted as functions of
time in (c) and (d), respectively. The dash-dot line in (c) represents the trajectory of a wave
travelling at constant speed D0.

work, comparable initial conditions should be such that time derivatives D̈ and higher,
and higher-order terms than κ , are zero. The closest we can come to these conditions
are initial conditions from the intersection of the numerical and F (D, κ) = 0 D–κ
relations, where D = 6.954 mm µs−1, κ = 0.7163 mm−1 and R = 2.7921 mm. We use
this point to set initial conditions to compare the dynamics and evolution of an
ignition event obtained with DNS and Ḋ =F (D, κ). Figure 5 shows these ignition
curves, calculated by DNSs (solid grey line) and by Ḋ =F (D, κ) (solid black line).
In figure 5(a,b), the velocity of the shock front D is plotted as a function of κ and R,
respectively. Both ignition curves start with no acceleration. After acceleration begins,
the acceleration of the detonation wave is higher when calculated using DNSs than
by Ḋ =F (D, κ). Both curves exhibit acceleration buildup, first with positive jerk (D̈)
followed by negative jerk as they approach the respective D–κ relations.

The position R and detonation speed D of the wave are plotted as functions of
time in figure 5(c,d), respectively. Figure 5(c) also shows the trajectory of a wave
travelling at constant speed D = 6.954 mm µs−1 as a dash-dot line. Trajectories in the
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FIGURE 6. Ignition events starting at D0 = 6.954 mm µs−1, κ0 = 0.7163 mm−1 and R0 =
2.7921 mm. Gray and black lines represent results obtained from DNS and from the
asymptotic Ḋ = F (D, κ) relation, respectively. (a) Location of the sonic locus n∗ obtained
from DNS and n(0)∗ from the solution to Ḋ =F (D, κ). (b) Pressure at the shock. Pressure
field in the region between the shock and (c) the sonic locus n∗ obtained from DNS and (d)
the sonic locus n(0)∗ from the solution to Ḋ =F (D, κ). The colour scale shows pressure in
GPa for (c) and (d).

R–t plane calculated with DNS and with Ḋ=F (D, κ) are almost indistinguishable for
t 6 0.4 µs, and slightly differ for t > 0.4 µs. The detonation wave travels at velocities
in the range 6.954 mm µs−1 < D < 8.8624 mm µs−1 or 0.785 < D/DCJ < 1.0. The
biggest differences in the detonation velocities calculated by the two methods occur
during a short transition time, between t = 0.05 µs and t = 0.7 µs, for 26 % of the total
time shown. For t < 0.05 µs and t > 0.7 µs, the differences in the detonation velocities
are small. By the time the wave calculated with Ḋ =F (D, κ) gets close to the D–κ
relation, D = 8.68 mm µs−1 (98 % of DCJ), t = 0.98 µs (39.2 % of the time simulated)
and R= 10.56 mm (44.3 % of the total trajectory, namely 23.85 mm).

The structure of the detonation wave as it evolves in time is presented in figure 6.
Again, the grey lines represent calculations using DNSs and the black lines represent
calculations using the asymptotic Ḋ =F (D, κ) relation. The evolution of the position
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FIGURE 7. The D–κ relations for HMX with φ0 = 1.0, 0.9, 0.8, 0.7 and 0.6, from right to
left. Black lines represent the solution to F (D, κ) = 0 and grey lines represent D–κ relations
calculated numerically.

of the sonic locus n∗ obtained by DNSs and n(0)∗ obtained from solving Ḋ =F (D, κ)
is shown in figure 6(a). The large difference in n∗ indicates that this quantity is
sensitive to the higher-order terms neglected in the asymptotic formulation. Figure 6(b)
shows the pressure at the shock, which is calculated using the Rankine–Hugoniot
relations and depends on the ambient state and on the detonation velocity D. When
the detonation speed calculated with Ḋ = F (D, κ) is D = 8.68, 98 % of DCJ , the
difference between the pressure at the shock calculated between the two methods is
small. Also shown are plots of the pressure between the shock and n∗ calculated by
DNSs in figure 6(c), and between the shock and n(0)∗ calculated with Ḋ =F (D, κ) in
figure 6(d).

6.4. Effects of compaction on detonation dynamics in condensed phase explosives
We perform calculations to show results of our formulation when the two composition
variables represent exothermic reaction and endothermic compaction in HMX and
PETN.

6.4.1. HMX granular explosive
The effect of endothermic compaction is first evaluated for the case of an ideal

equation of state (4.7), an Arrhenius reaction rate equation (4.1) and a compaction
rate based on a linear quasistatic response (4.3), with parameters that are chosen
to be representative of an HMX granular explosive (Stewart et al. 1994). Results
are shown for spherical geometry (j = 2) and parameters γ = 2.0, Qλ = 6.4 kJ g−1,
kλ = 3.35 µs−1, ν = 1.0, Ea = 7.296 kJ g−1, Qφ = 0.6 kJ g−1 and kφ = 1.53 µs−1, with
initial conditions p0 = 1×10−4 GPa, theoretical maximum density ρTMD = 1.71 g cm−3,
u0 = 0 and λ0 = 0.

Figure 7 shows the asymptotically obtained D–κ relations calculated using
F (D, κ) = 0 (shown as black lines) and the numerical D–κ relation (shown with
grey lines). The values of φ0 are varied from 0.6 on the leftmost curves to 1.0
on the rightmost curves in increments of 0.1. For small curvature near DCJ , the
curves calculated with the asymptotic formulation converge to the curves calculated
numerically. Differences between the two methods become apparent for larger values
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FIGURE 8. Ignition curves obtained by solving the initial value problem Ḋ =F (D, κ) with
initial conditions R0 = 20 mm and D0 = 5.0, 4.5 and 4.0 mm µs−1 in HMX with φ0 = 1.0
(black lines) and φ0 = 0.6 (grey lines). Also shown are Ḋ = F (D, κ) = 0 curves with
κ = 2/R, represented by dashed lines.
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FIGURE 9. D–κ relations obtained by solving F (D, κ)= 0 for HMX with φ = 0.7 and Qφ

varying from 0 to 1.0 kJ g−1 in increments of 0.2 kJ g−1. Qφ increases from right to left.

of κ . However, the qualitative trends for the D–κ relations are the same for both
methods as the D–κ relations shift to the left with decreasing values of φ0.

The effects of varying φ0 can also be seen in figure 8, which shows ignition curves
for spherically expanding detonations starting at R0 = 20 mm, with D0 = 5.0, 4.5
and 4.0 mm µs−1, and φ0 = 1.0 (black lines) and φ0 = 0.6 (grey lines). Also shown
are Ḋ = F (D, κ) = 0 curves with κ = 2/R, displayed as dashed lines. In the D–R
plane, lowering φ0 shifts the Ḋ =F (D, κ) = 0 curve to the right in the R axis. As a
result, a detonation in HMX with φ0 = 0.6 decelerates for longer distances and starts
accelerating at higher values of R and lower values of D than it does with φ0 = 1.0
with the same initial conditions R0 and D0.

Figure 9 shows the effect of varying compaction energy on the asymptotic D–κ
relations for φ0 = 0.7. As Qφ is increased from 0 to 1.0 kJ g−1, the entire D–κ curve
shifts to the left, with the largest change occurring at the upper turning point.
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ρTMD (g cm−3) c0 (mm µs−1) q (kJ g−1) Cv (J (kg K)−1) pCJ (GPa)

1.76 2.3 5.71 992 31.5

a k vc (cm3 g−1) pc (GPa) n b
0.7579 1.30 1.2171 1.5899 0.9570 0.80

A (mm µs−1) B C Z Γ 0
r

2.30 2.50 0.70 −0.8066 1.22

kλ (µs−1) µ ν Ph (GPa) kφ (GPa−1 µs−1)

1200 3.8 0.4 0.07 31.5

TABLE 2. Parameters for the WR-EOS calibrated to PETN at the theoretical maximum
density (TMD).

The CJ detonation velocity DCJ for the ideal equation of state (4.7) is given by

DCJ =
√

c2
0 + q+√q (6.12)

with

q= (γ
2 − 1)
2

[
Qλλ∗ − Qφ(φ∗ − φ0)

]
. (6.13)

Typically, the energy of compaction Qφ is an order of magnitude smaller than the
energy of reaction Qλ, and q is positive. Increasing the energy of compaction Qφ

causes q and DCJ to decrease, as occurs in figure 9.

6.4.2. PETN powders
In this section, the proposed asymptotic formulation is implemented to calculate

the dynamic properties of PETN powders using a non-ideal EOS and reaction and
compaction variables with complex rate equations. The model for PETN that will be
used here was developed and calibrated by Saenz & Stewart (2008) and is composed
of the WR-EOS presented in § 4.3.2, a pressure-dependent reaction rate equation (4.2)
and a compaction rate based on the P–α model (4.6). Calibrated parameters for the
PETN model are shown in table 2.

Figure 10 shows D–κ relations for PETN calculated using the parameters in table 2
and using the asymptotically formulated Ḋ–D–κ relation F (D, κ) = 0 for φ0 = 1.0
(bold curve), 0.95, 0.9, 0.85, 0.8 and 0.75. Here DCJ decreases with decreasing φ0.
The intersection of the D–κ relation with D = 4 mm µs−1 occurs at increasing values
of κ as φ0 decreases. Values of Dc on the turning point (κc, Dc) that separates the
upper branch and the middle branch decrease with decreasing φ0. The curvature κc

on the turning point decreases for φ0 = 1.0, 0.95 and 0.9, and then increases for
φ0 = 0.85, 0.8 and 0.75.

7. Discussion and conclusions
The formulation and calculations presented in this work shed some light onto

the nature and character of the dynamics of detonation waves and on the theory
of detonation shock dynamics, evolving our understanding of this phenomena.
We developed a formulation to calculate asymptotic Ḋ–D–κ relations in materials
modelled with general equations of state of the form e(p, v,Zi) where composition
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FIGURE 10. The D–κ relations obtained by solving F (D, κ) = 0 for PETN with φ0 = 1.0
(bold curve), 0.95, 0.9, 0.85, 0.8 and 0.75. Here DCJ decreases with decreasing φ0. The
intersection of the D–κ relation with D = 4 mm µs−1 occurs at increasing values of κ as φ0
decreases.

variables Zi can be used to represent non-equilibrium rate processes such as
chemical reactions and compaction processes. The results presented here are the first
calculations that develop asymptotic Ḋ–D–κ relations for general material models.
This work is partly based on the asymptotic framework used first by Kasimov &
Stewart (2005) to calculate an asymptotic Ḋ–D–κ relation for an explosive modelled
with an ideal equation of state and an Arrhenius reaction rate. It was demonstrated that
retaining additional terms in the sonic boundary condition, thereby avoiding truncation
of that condition to O(Ḋ, κ), improved the accuracy of the asymptotic solution.

The present asymptotic formulation was used to model and make comparisons with
DNSs of spherical ignition events in condensed phase explosives. Our results indicate
that, in general, ignition transients are short lived and rapid. Typically, the time it takes
a for a detonation wave to ignite and accelerate to a speed near the upper branch
of the D–κ relation is small compared with the time the wave spends close to or
on the upper branch. This has important implications for engineering calculations and
modelling of detonation dynamics, as it indicates that using a Ḋ–D–κ , or even a D–κ
relation, to model the dynamics of a detonation wave is a good approximation and
that errors produced by neglecting fast transients are in general small. The calculations
presented in this work also illustrate that the location of the sonic locus is very
sensitive to higher-order terms in the asymptotic expansions.

The asymptotic results applied to explosive models incorporating compaction,
reaction and realistic, non-ideal forms of the equation of state demonstrate that
an intrinsic Ḋ–D–κ relation can be determined for most condensed explosives of
technological importance. Such a relation can be used to predict detonation front
trajectories for engineering applications. The asymptotic analysis is carried out under
the assumption that curvature is positive.

Previous work (Stewart 1998; Lambert et al. 2006) indicates that it is reasonable to
expect that the results presented in this paper (e.g. (6.6)) can be extended to describe
the dynamics of overdriven detonations (D > DCJ) with negative curvature (κ < 0)
for materials where both exothermic reactions and endothermic compaction occur. To
determine the relevant branch of the D–κ relation for negative curvature, the thermicity
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condition should be replaced by the condition that λ∗ = 1, while retaining the sonic
condition (Stewart 1998). Using the condition λ∗ = 1 is physically sensible because of
the dramatic rise of pressure states at the shock that occur in overdriven detonations.
This extension has been verified in other contexts using a reactive flow model to both:
(a) generate an extended D–κ relation that admits negative curvature for D > DCJ ,
and using this D–κ relation to compute the dynamic evolution of a detonation event;
and (b) comparing this evolution with the shock evolution computed directly from the
reactive flow model. These two calculations compare favourably with experiments for
the HMX-based explosive PBX-9501 (Lambert et al. 2006). In these experiments, only
a small section of the detonation front surface has negative curvature, so the overall
evolution of the shock is not affected by the section with negative curvature. The
extension is thought to be well understood, but the rigorous asymptotic justification of
this extension is still under-investigated and ad hoc. The extension is beyond the scope
of this paper.
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Appendix A. Wide-ranging equation of state
The equations used to represent detonation products and reactants in the WR-EOS

are included in this appendix. The reader is referred to Wescott et al. (2005) for
further details.

A.1. Detonation products
The energy ep and pressure pp for products are expressed as

ep(p, v)= es
p(v)+

v

Γp(v)
(p− ps

p(v)) (A 1)

and

pp(e, v)= ps
p(v)+

Γp(v)

v
(e− es

p(v)), (A 2)

where v is the specific volume, the subscript p indicates detonation products and the
superscript s indicates that a function is defined on the isentrope passing through the
CJ state. The remaining functions are defined as follows

ps
p(v)= pc

[
1
2
(v/vc)

n+1
2
(v/vc)

−n

]a/n

(v/vc)
k+a

k − 1+ F(v)

k − 1+ a
, (A 3)

F(v)= 2a (v/vc)
−n

(v/vc)
n+ (v/vc)

−n , (A 4)
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Γp(v)= k − 1+ (1− b)F(v), (A 5)

es
p(v)= ec

[
1
2
(v/vc)

n+1
2
(v/vc)

−n

]a/n

(v/vc)
k−1+a , (A 6)

ec = pcvc

k − 1+ a
, (A 7)

where pc, vc, a, k, n and b are parameters that are calibrated against experimental data.

A.2. Detonation reactants
The equations for energy er and pressure pp of the reactants are

er(p, v)= es
r(v)+

v

Γr(v)
(p− ps

r(v)) (A 8)

and

pr(e, v)= ps
r(v)+

Γr(v)

v
(e− es

r(v)), (A 9)

where the pressure on the principle isentrope is calculated via

ps
r(v)= p̂

[
3∑

j=1

(4By)j

j! + C
(4By)4

4! +
y2

(1− y)4

]
, (A 10)

where A and B are determined from shock Hugoniot data from experiments, the
subscript r denotes reactants EOS, y = 1 − v/v0 and p̂ = rho0A2/4B. The remaining
functions are defined as follows

es
r(v)= v0

∫ y

0
ps

r(ȳ) dȳ+ e0, (A 11)

Γr(y)= Γ 0
r + Zy, (A 12)

Γ 0
r = βc2

0/Cp, (A 13)

Z = (Γsc − Γ 0
r )/ymax, (A 14)

ymax = 2
Γp(ymax + 2)

, (A 15)

where β is the thermal expansion coefficient, Cp is the specific heat at constant
pressure and c0 is the bulk sound speed.

Appendix B. Equations in λ coordinates
To implement our formulation for material models with a reaction progress variable

Z1 ≡ λ and a compaction progress variable Z2 ≡ φ, equations (3.9)–(3.11) are rewritten
in λ coordinates using the transformation dn = U(0) dλ/ωλ(0). With this transformation,
the fluxes at the sonic locus (3.9) become

M∗ =M(0)∗ +M(1)∗, (B 1a)
P∗ = P(0)∗ + P(1)∗, (B 1b)
H∗ = H(0)∗ + H(1)∗, (B 1c)
φ∗ = φ(0)∗ + φ(1)∗, (B 1d)
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where terms M(0)∗, P(0)∗, H(0)∗ and Zi(0)∗ are obtained as described in § 2.3. The
correction terms are given by

M(1)∗ =−ḊI1 − κM(0)∗n(0)∗ − κDI0, (B 2a)

P(1)∗ = ρ0Ḋn(0)∗ − ḊI0 − κM2
(0)∗J0 − κM(0)∗Dn(0)∗, (B 2b)

H(1)∗ = −DḊI0

M(0)∗
− Ḋn(0)∗ + ḊS1

M(0)∗
, (B 2c)

φ(1)∗ =−ḊT −
∂φ(0)∗
∂D

U(0)∗
Ḋn(1)∗, (B 2d)

with

I0 =
∫ λ(0)∗

0

ρ(0)U(0)

ωλ(0)
dλ, (B 3a)

J0 =
∫ λ(0)∗

0

U(0)v(0)

ωλ(0)
dλ, (B 3b)

I1 =
∫ λ(0)∗

0

U(0)

ωλ(0)

∂ρ(0)

∂D
dλ, (B 3c)

S1 =
∫ λ(0)∗

0

U(0)

ωλ(0)

∂p(0)
∂D

dλ, (B 3d)

T =
∫ λ(0)∗

0

1
ωλ(0)

∂Zi(0)

∂D
dλ, (B 3e)

n(0)∗ =−D
∫ λ(0)∗

0

dλ
ρ(0)ωλ(0)

, (B 3f )

In (B 2d) the contributions from the term containing n(1)∗ is neglected in order to
evaluate φ(1)∗ to O(Ḋ, κ). With the relations given in (B 1)–(B 3), the compatibility
condition (3.7) and the speed relation (3.8) now constitute a relation between Ḋ, D, κ
and λ∗.

Appendix C. Numerical solution of the quasisteady DSD equations
The procedure used to obtain D–κ relations numerically is described in this

appendix. It is assumed that the material model includes two composition variables,
Z1 and Z2, to represent reaction and compaction progress, respectively. However, the
same general methodology can be applied to models with more or fewer composition
variables.

The quasisteady mass, momentum and composition equations obtained from the
reduced Euler equations (2.8a), (2.8b) and (2.8d), respectively, are

dM

dn
=−κρ (U + D) , (C 1)

dP

dn
=−κρU (U + D) , (C 2)

dZ1

dn
= ω1

U
, (C 3)
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dZ2

dn
= ω2

U
. (C 4)

The mass and momentum equations are combined with the quasisteady energy
equation (2.8c), dH/dn= 0, to form the master equation,

dU

dn
= Φ
η
. (C 5)

The numerical solution algorithm integrates the master equation together with the
mass, momentum and composition equations in order to compute the state variables
from the fluxes without having to use a nonlinear root solver.

The thermicity condition Φ is given by

Φ = c2
2∑

i=1

ωi σi − κc2(U + D) (C 6)

where σi is the thermicity coefficient of composition variable i defined in (2.12), and
ωi is the rate at which composition variable i changes. The speed relation η is defined
as

η = c2 − U2. (C 7)

The flux variables at the shock in (2.9a–d) are used as boundary conditions at
the shock. The boundary conditions in the far field are defined by the values of the
thermicity condition and the speed relation at the sonic locus, namely

Φ∗ = η∗ = 0, (C 8)

where subscript ∗ indicates terms evaluated at the sonic locus.
The system of equations (C 4)–(C 5) along with boundary conditions (2.9a–d), (C 6)

and (C 7) constitute a nonlinear eigenvalue problem for κ given D and the ambient
state. Given an equation of state e(p, v,Zi), expressions for the rate of change of
the composition variables ωi(p, v,Zj) and the ambient state, the eigenvalue problem is
fully specified. The solution algorithm proceeds as follows:

(i) read D;
(ii) set κmin and κmax , such that κmin < κ < κmax ;
(iii) set κtmp = (κmin + κmax) /2;
(iv) integrate (C 5)–(C 4) from the shock to the far field, until one of these conditions

is met:
(a) η∗ = 0,
(b) Φ goes from positive to negative or
(c) counter reaches maximum number of integration steps allowed;

(v) if η∗ = 0, set κmin to κtmp;
(vi) if Φ went from positive to negative, set κmax to κtmp;
(vii) if reached maximum number of integration steps, return an error message and

stop;
(viii) if (κmax − κmin) < εabs + εrel max (κmin, 0), stop;
(ix) go to step (iii).

The algorithm described above will either return an interval κmin 6 κ 6 κmax
guaranteed to contain the solution κ within the specified tolerances εabs and εrel or
an error message indicating that too many steps were taking during the integration.
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