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The dynamics of inertial particles in turbulence is modelled and investigated by
means of direct numerical simulation of an axisymmetrically expanding homogeneous
turbulent strained flow. This flow can mimic the dynamics of particles close to
stagnation points. The influence of mean straining flow is explored by varying the
dimensionless strain rate parameter Sk0/ε0 from 0.2 to 20, where S is the mean
strain rate, k0 and ε0 are the turbulent kinetic energy and energy dissipation rate at
the onset of straining. We report results relative to the acceleration variances and
probability density functions for both passive and inertial particles. A high mean
strain is found to have a significant effect on the acceleration variance both directly
by an increase in the frequency of the turbulence and indirectly through the coupling
of the fluctuating velocity and the mean flow field. The influence of the strain on the
normalized particle acceleration probability distribution functions is more subtle. For
the case of a passive particle we can approximate the acceleration variance with the
aid of rapid-distortion theory and obtain good agreement with simulation data. For
the case of inertial particles we can write a formal expression for the accelerations.
The magnitude changes in the inertial particle acceleration variance and the effect on
the probability density function are then discussed in a wider context for comparable
flows, where the effects of the mean flow geometry and of the anisotropy at small
scales are present.

Key words: particle/fluid flow, turbulence simulation, turbulence theory

1. Introduction
The motion of small passive and inertial particles in turbulence has been extensively

studied in recent years, from both the experimental and the theoretical viewpoints.

† Email address for correspondence: armann@ru.is
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This has been motivated by a broad range of applications such as the spread of
pollutants in the atmosphere and oceans, the process of rain and ice formation in
cloud, and the transport of sediments in rivers and estuaries, see e.g. the reviews
of Shaw (2003) and Toschi & Bodenschatz (2009). Progress in the understanding
has on the one hand been made possible by recent improvements in Lagrangian
measurements through particle tracking methodologies, resulting in part from rapid
advances in high-speed imaging (Virant & Dracos 1997; Ott & Mann 2000; Voth
et al. 2002; Xu, Ouelette & Bodenschatz 2008), and on the other hand by increased
computational capabilities of numerical simulations (Yeung & Pope 1998; Celani
2007).

The objective of this work is to investigate the effects of flow straining on the
Lagrangian dynamics of small, sub-Kolmogorov scale, passive and inertial particles.
Our motivation stems from the fact that many practical turbulent flows are subject
to straining motions, such as the external flows over bluff or streamlined bodies and
internal flows in variable cross-sections (Batchelor 1953; Hunt 1973; Warhaft 1980;
Hunt & Carruthers 1990; Ayyalasomayajula & Warhaft 2006; Chen, Meneveau &
Katz 2006; Gualtieri & Meneveau 2010). A mean straining flow naturally appears
in the proximity of stagnation points. Flow straining is furthermore of fundamental
interest since it induces a scale-dependent anisotropy; the smallest scales of the flow
may be nearly isotropic, whereas the largest scales are highly anisotropic (Biferale &
Procaccia 2005).

Furthermore, many flows naturally combine straining geometries and inertial
particles. The flow geometry presented here, namely particle-laden turbulent flow
undergoing an axisymmetric expansion, has similarities with combustor diffusers in
jet engines (Klein 1995), where liquid fuel is injected in an expanding flow, and
with the flow in the combustion chamber in an internal combustion engine during the
compression stroke of the fuel–air mixture (Han & Reitz 1995).

While significant attention has been given to the study of Lagrangian acceleration
statistics in isotropic turbulence, less attention has been paid to the implications
of anisotropic large-scale flow geometry on the Lagrangian dynamics. Recent
experimental and numerical work on the Lagrangian behaviour of inertial particles
in shear flows and turbulent boundary layers has shown pronounced effects on
the inertial particle statistics (Shotorban & Balachandar 2006; Gerashchenco et al.
2008; Gualtieri, Picano & Casciola 2009; Lavezzo et al. 2010; Gualtieri et al. 2012;
Alipchenkov & Beketov 2013). The persistent small-scale anisotropy has been found
to influence the geometry and alignment of particle clusters and relative particle
pair velocities. In addition, the combined effects of gravity and shear on particle
acceleration variance result in an increase in magnitude with the Stokes number.
As a consequence, the acceleration probability distribution functions (p.d.f.s) became
increasingly narrow and skewed with inertia. Here, we address a related topic, namely
the complexity introduced in the Lagrangian dynamics of tracer and inertial particles
due to flow straining.

In an effort to realize the effects of anisotropy in the particle dynamics, we
numerically simulate axisymmetric expansion of initially isotropic turbulence. The
flow is seeded with infinitesimal tracer and inertial particles of varied Stokes numbers.
We measure the particle velocity and acceleration statistics, including variances and
p.d.f.s for different strain rates and Stokes numbers. Comparisons are made with
predictions of rapid-distortion theory on tracer accelerations, and the solutions of
Newton’s equations for the motion of inertial particles in the straining flow.

The paper is organized as follows. In § 2 we briefly introduce the numerical methods
for simulating an axisymmetric turbulence and particle movements. The parameters of
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FIGURE 1. (Colour online) A sketch of the deformation of the simulation domain under
straining. The mean flow U= (−2Sx, Sy, Sz) corresponds to an ideal flow onto a flat plate.
The deforming domain is initially elongated in the x direction but becomes wider in the y
and z directions with time. Arrows indicate the directions of the streamlines of the induced
mean flow.

the simulations are listed. Section 3 presents the underlying flow field. We discuss our
main findings on particle acceleration variances and p.d.f.s in simulation data with the
support of theoretical estimations in § 4. We also discuss our results in the context of
previous work in shear flows. In § 5 we present our conclusions.

2. Methodology
2.1. Flow equations and flow simulation

The equations describing the motion of an incompressible Newtonian fluid are the
continuity equation and the Navier–Stokes equations respectively:

∇ · ũ= 0, (2.1)
∂ũ
∂t
+ ũ · ∇ũ+∇p̃= ν∇2ũ. (2.2)

Here, ũ is the instantaneous flow velocity, p̃ = p/ρ is the pressure field rescaled by
the density of the fluid, and ν is the kinematic viscosity of the fluid.

In this paper we are concerned with a turbulent fluid undergoing an axisymmetric
expansion, where the mean flow field is described by

U= (−2Sx, Sy, Sz). (2.3)

Here, S is the constant mean strain rate S = (S̄ijS̄ij)
1/2/
√

6, and S̄ij = (∂Ui/∂xj +
∂Uj/∂xi)/2 is the mean rate of strain tensor. The mean flow corresponds to an ideal
flow onto a flat plate, and is realized in the flow between contracting pistons or in
the expanding flow through a diffuser. Figure 1(a) shows a sketch of the mean flow
field, namely streamlines of the mean field, and the coordinate system employed.

By applying the Reynolds decomposition and expressing (2.2) in terms of the vector
potential b, with u=∇× b, one obtains

−∂t∇2b−∇× (u×ω)+ 2Sx∂x∇2b− Sy∂y∇2b− Sz∂z∇2b+ S∇2b− 3S∇2b1ê1=−ν∇4b,
(2.4)
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where u= ũ−U is the velocity fluctuation, ω is the vorticity, defined as ω≡∇× u=
−∇2b, b1 is the first component of b and ê1 is the unit vector in the x direction. In
the following we briefly outline the numerical algorithm.

As in Gylfason et al. (2011), in order to solve (2.4) we apply a pseudo-spectral
method with Rogallo’s algorithm (Rogallo 1981), where the following variable
transformations are performed:

x′ = e2Stx, y′ = e−Sty, z′ = e−Stz, t′ = t, (2.5a−d)

and hence the vector potential of the velocity fluctuation satisfies

∂t′∇ ′2b−∇′ × (u×ω)+ S∇ ′2b− 3S∇ ′2b1ê1 =−ν∇ ′4b, (2.6)

where ∇′ = (e2St∂x′, e−St∂y′, e−St∂z′). By adopting this new coordinate system, the
physical domain deforms with time while the computational lattice grid is time-
independent, and the flow equations become periodic. Figure 1 depicts the deformation
of the physical domain. We then apply the pseudo-spectral method to the equations
in (2.6). More details about the numerical method can be found in Gylfason et al.
(2011).

Numerical simulations of this axisymmetric expansion flow were carried out on
a Cartesian grid with 1024 × 256 × 256 and 2048 × 512 × 512 grid points
in the x, y and z directions respectively. The initial configurations were derived
from statistically independent homogeneous and isotropic flow simulations which
had reached a stationary state after more than five large-eddy turnover times. The
Reynolds numbers, based on the Taylor microscale λ0, were Reλ0=117 and Reλ0=193
before the straining was applied and the integral scales `0 were 2.68 and 2.66 for
the lower and higher grid resolutions respectively. Relevant flow parameters at the
beginning of the straining are listed in table 1. Initially, the physical domain size was
[0, 8π] × [0, 2π] × [0, 2π] in the x, y and z directions respectively, and the simulation
was terminated when the domain had reached [0, 1.1π] × [0, 5.4π] × [0, 5.4π] to
prevent the physical domain from becoming too flattened.

Figure 2(a–c) shows snapshots of the fluctuating velocity magnitude at three
time instants during the straining. From (a) to (c), the non-dimensional times are
S× t = 0.08 (shortly after the mean strain is applied), S× t = 0.64 and S× t = 0.96
(just before the strain simulation is terminated due the large deformation of the
physical domain). Additionally, the figure shows the coordinate system adopted in
the text, and the geometry of the simulation domain selected and its deformation.
Production of turbulence overwhelms dissipation during the straining, reflected in an
increase in the turbulent kinetic energy, most notably in the compressed component (x).
This can be seen in the warmer colours in figure 2(c). Figure 2(d–f ) shows isosurfaces
of non-dimensional vorticity, ω/(ε0/ν)

1/2= 3.17, with ε0= (ν/2)〈(∂ui0/∂xj)(∂ui0/∂xj)〉
being the initial energy dissipation rate, at the same time instants as above, which
is respectively 4.36, 2.86 and 2.43 standard deviations above the mean vorticity
magnitude at the three time instants. From the increased number and size of the
filaments, we observe that the vorticity is intensified during straining, and the
filaments are found to gradually align with the y, z-plane due to the mean flow
extension in the plane.
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FIGURE 2. (Colour online) Snapshots of the magnitude of the fluctuating flow velocity
(a–c) and isosurface of the magnitude of vorticity ω = ‖∇ × u‖ (d–f ) in the deforming
domain in a realization of the axisymmetrically expanding flow, from the onset of the
straining simulation to the end of the straining simulation at time instants S × t = 0.08,
(a,d), 0.64 (b,e) and 0.96 (c,f ). The size of the simulation domain is denoted in the
figure, and its deformation is displayed. The coordinate system adopted in the text is
also shown. We simulated the axisymmetric turbulence with two resolutions using 2048×
512× 512 and 1024× 256× 256 computational nodes. The illustration shows one of the
realizations of the 1024× 256× 256, simulations with S∗ = 21 (S= 10). The isosurfaces
plotted have non-dimensional vorticity ω/(ε0/ν)

1/2 = 3.17, which is respectively 4.36,
2.86 and 2.43 standard deviations above the mean vorticity magnitude at the three time
instants and is chosen to illustrate the flow structure. It should be noted that ε0 ≡
(ν/2)〈(∂ui0/∂xj)(∂ui0/∂xj)〉 is the initial energy dissipation rate.

2.2. Equations for particle movements
To study Lagrangian aspects of this flow we seed the flow with tracers and inertial
particles. Here, we are concerned with particles that are small compared with the
smallest length scales present in the flow, and their densities are considerably higher
than the fluid density. The particle number densities are furthermore assumed to be
sufficiently low so that particle–particle interactions can be ignored. Under the above
approximations, the coupling of the particles with the carrier fluid can be ignored.

The Lagrangian equation of inertial particle motion is derived from Newton’s second
law, and represents the balance between the forces acting on the particles (inertia and
Stokes drag). The equations describing the motion of a particle of diameter dp and
density ρp, located at xp and with instantaneous velocity ṽp are (Maxey & Riley 1983;
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Simulation domain 1024× 256× 256 2048× 512× 512

Reλ0 ≡ urms
0 λ0/ν 117 193

k0 ≡ (〈u2
10〉 + 〈u2

20〉 + 〈u2
30〉)/2 4.6 4.9

λ0/η0 ≡ urms
0 (15ν/ε0)

1/2/η0 20.9 27.4

S 0.1, 0.5, 1, 4, 10 1, 4, 10

τη0 ≡ (ν/ε0)
1/2 0.051 0.031

urms
0 = (2k0/3)1/2 1.75 1.81

`0/η0 ≡ (urms
0 )3/ε0/η0 164.4 332.6

η0 ≡ (ν3/ε0)
1/4 0.0163± 0.0006 0.008± 0.0004

ε0 ≡ ν2
〈
∂ui0

∂xj

∂ui0

∂xj

〉
2.18± 0.15 2.12± 0.4

ν 0.0052 0.00205

St0 = τp/τη0 0, 0.2, 0.3, 0.5, 1, 2 0, 0.23, 0.34, 0.56, 1.12, 2.25

Sτη0 0.0051, 0.0255, 0.051, 0.204, 0.51 0.031, 0.124, 0.31

S∗ = Sk0/ε0 0.21, 1.06, 2.11, 8.44, 21.1 2.31, 9.25, 23.1

TABLE 1. Flow parameters in the direct numerical simulations, based on the homogeneous
isotropic simulation prior to the application of the straining. Here, k0 ≡ (〈u2

10〉 + 〈u2
20〉 +〈u2

30〉)/2 is the turbulent kinetic energy, ε0 ≡ (ν/2)〈(∂ui0/∂xj)(∂ui0/∂xj)〉 is the energy
dissipation rate, `0 ≡ (urms

0 )3/ε0 is the integral length scale, and the Kolmogorov length
scale η0 ≡ (ν3/ε0)

1/4. The subscript 0 indicates that the parameter values are taken prior
to the straining. (Units are arbitrary.)

Bec et al. 2006)
dxp

dt
= ṽp, (2.7)

dṽp

dt
= 1
τp
(ũ(xp)− ṽp), (2.8)

where τp=βd2
p/18ν is the Stokes relaxation time for the particle and β= (ρp−ρf )/ρf

is the relative density ratio between the particle and the fluid. The Stokes number St=
τp/τη characterizes the inertia of a particle in the flow, where τη is the Kolmogorov
time scale of the flow.

For the tracer particles (zero inertia), the particle velocity is the same as the fluid
velocity at the particle location, which yields the kinematic relation

dxp

dt
= ũ(xp). (2.9)

The ordinary differential equations (2.7)–(2.9) are solved numerically by the second-
order Adams–Bashforth method. In (2.8) and (2.9), the instantaneous flow velocity at
the particle location xp is evaluated as

ũ(xp)=U(xp)+ u(xp); (2.10)

that is, the mean flow velocity is evaluated at the location of the particle through the
formula U(xp)= (−2Sxp, Syp, Szp), and the flow velocity fluctuation is interpolated to
the particle position.
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We initialize the particles and the fluid velocity with steady-state homogeneous
isotropic simulations. The particles are uniformly distributed over the domain prior to
the forced homogeneous isotropic simulation being carried out. At the beginning of
the straining, at t= 0, we add the mean flow velocity and the acceleration component
due to the strain geometry to the existing particle velocity. We conduct simulations
with 1024 × 2562 and 2048 × 5122 collocation points. For the lower-resolution
simulation we use 16 independent flow realizations with 5 × 105 particles of each
type (six different Stokes numbers) and for the higher-resolution simulations we
perform 10 independent flow realizations with 4 × 105 particles of each type. On
average, there are 20 particles in a box in Taylor scale and 0.002 in a box in
Kolmogorov scale in each realization in the lower-Reynolds-number simulations. In
the higher-Reynolds-number simulations, the averages are 4.3 and 0.0002 for a box
in the Taylor scale and the Kolmogorov scale respectively. Therefore, for each time
instant we have at least 4× 106 measurements for each type of particle. The numbers
of particles were chosen according to previous simulation works in homogeneous
isotropic turbulence (Bec et al. 2006). The error bars in our figures are an estimate
of the stability of the measurements by subdividing the full statistics into several
smaller subsets.

Table 1 shows the various flow parameters for the simulations performed. The
range of strain rates selected is such that its effect on the smallest scales of the flow
ranges from being negligible to substantial. The higher strain rates are felt intensely
by the large-scale flow, whereas the lower strain rates have mild effects on the large
scales. The values of the strain parameters, Sτη0 and Sk0/ε0, which compare the strain
time with the local and global time scales of the flow, indicate the importance of the
various terms in the evolution equation of the velocity field.

3. Underlying flow field
We first report the evolution of the turbulent kinetic energy k=〈uiui〉/2 and vorticity

ω=‖∇× u‖ of the flow in figure 3. The kinetic energy increases exponentially with
time for all of the strain rates, although the lower rates display an initial drop in
energy and then a subsequent long-term increase. The vorticity grows monotonically
with the strain time, but the growth rate displays more sensitivity to the rate of strain
applied than in the case of the kinetic energy, as expected.

The short-term rapid-distortion theory (RDT) prediction plotted in figure 3 is derived
from the Reynolds stress equation (Pope 2000),

d
dt
〈uiuj〉 = P ij + R(r)

ij , (3.1)

where P ij ≡ −〈uiuk〉(∂Uj/∂xk) − 〈ujuk〉(∂Ui/∂xk) is the production rate of Reynolds
stress, R(r)

ij ≡ 〈(p(r)/ρ)(∂ui/∂xj + ∂uj/∂xi)〉 is the rapid pressure rate of strain tensor
and p(r) is the rapid pressure which satisfies (1/ρ)∇2p(r)=−2(∂Ui/∂xj)(∂uj/∂xi). Right
before the straining starts, the initial configuration of the flow is isotropic, and R(r)

ij =−(3/5)P ij (Pope 2000). In an axisymmetric expansion flow, the production rates are
P11= 4S〈(u1)

2〉,P22=−2S〈(u2)
2〉 and P33=−2S〈(u3)

2〉. Therefore, at early times RDT
predicts

〈(u1)
2〉 = 〈(u10)

2〉e(8/5)St, 〈(u2)
2〉 = 〈(u20)

2〉e−(4/5)St, 〈(u3)
2〉 = 〈(u30)

2〉e−(4/5)St,
(3.2a−c)

where 〈(ui0)
2〉 represents the initial value of the Reynolds stress (〈(ui)

2〉, i = 1, 2, 3).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

57
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.579


38 C.-M. Lee, Á. Gylfason, P. Perlekar and F. Toschi

5.0
6.0
7.0

0.5

1.0

2.0

3.0

4.0

0.9

1.0

1.1

1.5

1.6

1.2

1.3

1.4

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

(a) (b)

FIGURE 3. (Colour online) (a) Normalized turbulent kinetic energy k/k0 =
(〈uiui〉/2)/(〈ui0ui0〉/2) versus strain time S× t. (b) Normalized vorticity ω/ω0 versus strain
time. Lines with circle (E), square (@) and triangle (A) symbols represent data from
S∗ = 2.1, 8.4, 21 in the Reλ0 = 117 flow respectively. Lines with crosses (×), asterisks (∗)
and pluses (+) indicate the data from S∗ = 2.3, 9.3, 23 in the Reλ0 = 193 flow. The solid
line with no symbols represents short-term RDT predictions (3.3). Estimates of statistical
error bars are shown and are computed according to (3.4), with Xj being k/k0 and ω/ω0
in the jth realization.

The turbulent kinetic energy would then have the approximation

k
k0
= 1

3
(e(8/5)st + 2e−(4/5)st), (3.3)

if we assume 〈(u10)
2〉 = 〈(u20)

2〉 = 〈(u30)
2〉 in the homogeneous isotropic turbulence

right before the application of straining. However, in order for RDT to apply, the
parameters must satisfy Sτη� 1 and Sk/ε� 1 (Batchelor 1953). Only at the highest
rate of strain is the latter constraint weakly satisfied, and therefore one does not
observe close matches between the predictions of RDT and the turbulent kinetic
energy in simulation data.

Figure 4(a) shows the evolution of the Reynolds stresses (〈u2
i 〉) normalized by the

initial turbulent kinetic energy (k0). The component along the compressed direction
(x1) grows rapidly in most cases, whereas the components along the expanding
directions are suppressed or remain roughly constant. At the lowest strain rate all
component are suppressed during the simulation time. For large times, RDT predicts
an exponential growth of the Reynolds stresses, in the proportions 〈u2

1〉= 2〈u2
2〉= 2〈u2

3〉.
Figure 4(b) shows the evolution of the anisotropy tensor bij=〈uiuj〉/〈uiui〉− δij/3 with
time. The curves corresponding to the lowest strain rates markedly deviate from the
others as the turbulent kinetic energy decreases during the straining, and the straining
motions are fairly mild, even for the largest scales of motions.

Again, only at the highest rate of strain does the situation weakly satisfy the Sk/ε � 1
constraint for RDT. Therefore, the predictions from RDT in (3.2) and the Reynolds
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FIGURE 4. (Colour online) (a) The normalized Reynolds stress 〈u2
i 〉/k0 versus the strain

time S × t. (b) The flow anisotropy tensor bij = 〈uiuj〉/〈uiui〉 − δij/3 versus the strain
time. Solid symbols represent the i= 1 component and open symbols represent the i= 2
component; k0 is the initial kinetic energy of the fluid prior to the straining. The diamond
(♦), pentagram (I), circle (E), square (@) and triangle (A) symbols represent data from
S∗ = 0.21, 1.05, 2.1, 8.4, 21 in the Reλ0 = 117 flow respectively. The blue, green and red
lines indicate the data from S∗ = 2.3, 9.3, 23 in the Reλ0 = 193 flow; solid and dashed
lines represent the i= 1 and i= 2 components. The black solid and dashed lines represent
the short-term RDT predictions (3.2). Estimates of statistical error bars on data from
S∗ = 0.21, 2.1, 21 in the Reλ0 = 117 set are shown and are computed according to (3.4),
with Xj being 〈u2

i 〉/k0 and bii in the jth realization.

stresses in the simulation data are not matched. The global anisotropy is much less
sensitive, and short-term RDT predicts the anisotropy well.

The error bars in figures 3 and 4 indicate the statistical error of the quantities
estimated from the finite number of realizations of the flow. That is, in N realizations
of the turbulent flow with a particular strain rate S, one obtains samples {X1,X2, . . . ,
XN} of a quantity X. The estimated standard error is the sample standard deviation of
{X1, X2, . . . , XN} divided by

√
N. That is,

√√√√
N∑

j=1

(Xj − X)2

√
N − 1

√
N

(3.4)

for data from N realizations; here, X is the mean of {Xj}Nj=1. In this work, the length
of the symmetric error bars in figures 4–9 is twice the estimated statistical error.

Since tracer and inertial particle accelerations occur primarily at the smallest
scales of motion, it is useful to look at the effects of the straining on small scales.
Figure 5 shows a measure of the small-scale anisotropy, the ratio of the variances
of the longitudinal derivatives of the transverse and longitudinal velocity components
〈(∂xu2)

2〉/〈(∂xu1)
2〉 with respect to time. At the highest strain rates, the anisotropy
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FIGURE 5. (Colour online) Ratios of the variances of velocity derivatives
〈(∂xu2)

2〉/〈(∂xu1)
2〉 versus the strain time S× t. The circle (E), square (@) and triangle (A)

symbols represent strain rates S∗ = Sk0/ε0 = 2.1, 8.4, 21 from the Reλ0 = 117 set, and the
crosses (×), asterisks (∗) and pluses (+) represent strain rates S∗ = Sk0/ε0 = 2.3, 9.3, 23
from the Reλ0 = 193 set. An estimate of the statistical error bar is shown (within the
symbols) and is computed according to (3.4), with Xj being 〈(∂xu2)

2〉/〈(∂xu1)
2〉 in the jth

realization. The solid line shows the theoretical prediction for this ratio in the isotropic
turbulence.

due to the straining is present at the smallest scales of motion, whereas for the lower
strain rates, the flow appears to be nearly isotropic at small scales. It should be noted
that the isotropic prediction for the ratio is 〈(∂xu2)

2〉/〈(∂xu1)
2〉 = 2. The small-scale

anisotropy appears to become close to a constant after an initial transition period for
the lower strain rates, but a stationary state is not reached at the highest rate of strain
for this quantity.

Figure 6(a) shows the time evolution of the longitudinal derivative skewness, along
the directions of compression and expansion in the flow. Before the straining is
applied, the skewness has a value between −0.5 and −0.4, as expected, but the
straining causes a marked change in its value and becomes positive in the expanding
direction. The effect in the compressed direction is more subtle, but an increase in
magnitude (larger negative values) appears to occur for all strain rates given that the
simulation is run for a sufficiently long time. The sign change indicates a change
in the small-scale structure of turbulence, namely that vortex structures dominate
sheet-like structures, resulting in an inhibition of the energy cascade (Townsend 1951;
Betchov 1956; Davidson 2004; Ayyalasomayajula & Warhaft 2006). In figure 2(d–f )
the isosurfaces of fixed value of non-dimensional vorticity increase in quantity during
the straining, and this increase of vortex structures qualitatively agrees with what we
expect from the trend of the skewness.

Figure 6(b) shows the longitudinal kurtosis, a measure of the flow intermittency.
Here, the effects are milder in both directions, although a small increase in
the kurtosis is noted in the expanding directions (from the expected value of
approximately 5–6, Gylfason, Ayyalasomayajula & Warhaft (2004)).
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FIGURE 6. (Colour online) (a) The skewness in the compression and expansion directions.
Solid lines (——): 〈(∂xu1)

3〉/〈(∂xu1)
2〉3/2. Dashed lines (– – –): 〈(∂yu2)

3〉/〈(∂yu2)
2〉3/2.

(b) The kurtosis in the compression and expansion directions. Solid lines (——):
〈(∂xu1)

4〉/〈(∂xu1)
2〉2. Dashed lines (– – –): 〈(∂yu2)

4〉/〈(∂yu2)
2〉2. In both plots the circles (E),

squares (@) and triangles (A) represent strain rates S∗ = Sk0/ε0 = 2.1, 8.4, 21 from the
Reλ0 = 117 set, and the crosses (×), asterisks (∗) and pluses (+) represent strain rates
S∗ = Sk0/ε0 = 2.3, 9.3, 23 from the Reλ0 = 193 set. An estimate of the statistical error bar
is shown and is computed according to (3.4), with Xj being the skewness and kurtosis in
the jth realization.

4. Particle acceleration statistics and discussion
The non-uniform mean velocity field has a significant effect on the dynamics of

tracers and inertial particles, both directly via the mean flow velocity and indirectly
through the strained turbulent field.

4.1. Tracer accelerations in straining flow
The full acceleration of tracer particles in our flow is given by the equation

ãpi =
Dũpi

Dt
= Dupi

Dt
+ upj

∂Upi

∂xj
+Upj

∂Upi

∂xj
, i= 1, 2, 3, (4.1)

where the material derivative D/Dt= ∂/∂t+ ũpi · ∇. The subscript p indicates that the
full instantaneous flow velocity ũpi , the fluctuating flow velocity upj and the mean flow
velocity Upi are taken at the location of the tracer. Here, we have assumed that the
mean flow is time-independent. The mean of the tracer acceleration is Upj(∂Upi/∂xj),
equal to the acceleration in a laminar flow of the same strain geometry. We are
interested in the statistics of the tracer acceleration fluctuation, that is, when the pure
mean flow contribution to the acceleration has been subtracted:

api =
Dupi

Dt
+ upj

∂Upi

∂xj
, i= 1, 2, 3. (4.2)

The first term on the right-hand side refers to the material derivative of the fluctuating
velocity field and represents the acceleration experienced by the fluid particle advected
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by the fluctuating flow field, and the second term refers to the tracer acceleration
induced by turbulent transport in the mean velocity field.

In the variance of acceleration, the cross-terms give rise to 〈(Dupi/Dt)upi〉 (no sum
over i), representing the time derivative of the kinetic energy in the ith component
of velocity. In addition, the latter term describes contributions of velocity variances,
notably (2S)2〈(up1)

2〉 and S2〈(up2)
2〉 for the first and second component respectively.

These terms are easily evaluated if the statistics of flow velocity fluctuations are
available.

4.1.1. Approximate tracer acceleration variances using RDT
When the straining is sufficiently rapid, the nonlinear and viscous forces can be

neglected in the Navier–Stokes equations, for (adequately) short times (e.g. see Pope
2000), and therefore their solution is particularly convenient in comparison to solving
the full Navier–Stokes equations. Below, we rederive the RDT predictions for the
evolution of the fluctuating velocity variances, as well as deriving the prediction of
RDT on the evolution of the tracer acceleration variance.

In RDT, each Fourier mode evolves independently. Let us consider a single mode
of the fluctuating velocity,

u(x, t)= ûκ(t)eiκ(t)·x. (4.3)

The wavenumber and the Fourier coefficients evolve according to the following set of
equations (Pope 2000):

dκ`
dt
=−κj

∂Uj

∂x`
, (4.4)

dûj

dt
=−ûk

∂U`

∂xk

(
δj` − 2

κjκ`

|κ |2
)
. (4.5)

When the mean flow geometry, U = (−2Sx, Sy, Sz), has been applied, equation (4.4)
results in

κ`(t)= κ0
` e−S`t, `= 1, 2, 3, (4.6)

where S1 =−2S, S2 = S3 = S and |κ |2 = (κ0
1 )

2e4St + (κ0
2 )

2e−2St + (κ0
3 )

2e−2St. Similarly,
for ûj, equation (4.5) gives

dûj

dt
= 2Sû1

(
δ1j − 2

κjκ1

|κ |2
)
− Sû2

(
δ2j − 2

κjκ2

|κ |2
)
− Sû3

(
δ3j − 2

κjκ3

|κ |2
)
. (4.7)

In particular, when S is large and t is small, we have

dû1

dt
≈−2S,

dû2

dt
≈−S,

dû3

dt
≈−S. (4.8a−c)

Taking the material derivative of the single-mode-flow fluctuating velocity, we have

Du1

Dt
≈−2Su1,

Du2

Dt
≈−Su2,

Du3

Dt
≈−Su3. (4.9)

Therefore, the anisotropic contribution to 〈(Dui/Dt)2〉 can be estimated as S2
(i)〈(ui)

2〉,
where S1 = −2S, S2 = S3 = S represent the strain rates in different directions.
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FIGURE 7. (Colour online) Normalized acceleration variances of passive tracers in the
compressed and expanding directions versus the strain time at various strain rates. The
solid and empty symbols represent the compressed and expanding directions respectively.
The solid (——) and dashed (– – –) lines indicate RDT long-term predictions of the
tracer acceleration variances from the straining together with normalized flow acceleration
variances in homogeneous isotropic turbulence (HIT) shown in (4.10). The dash-dot line
(– · – · –) indicates the term a0/(〈ε〉3/ν)1/2 for the S∗ = Sk0/ε0 = 0.21 case. The diamonds
(♦), circles (E), squares (@) and triangles (A) mark the normalized tracer acceleration
variances in dimensionless strain rates S∗ = Sk0/ε0 = 0.21, 2.1, 8.4 and 21. (a) Tracer
acceleration variances in different strain rates in Reλ0 = 117. (b) Tracer acceleration
variances in S∗= 8.4 in Reλ0= 117 (squares (p,@), compressed and expanding directions
respectively) and S∗ = 9.3 in Reλ0 = 193 (asterisks (∗) and pluses (+), compressed and
expanding directions respectively). An estimate of the statistical error bar is shown and is
computed according to (3.4), with Xj being 〈a2

pi
〉/√ε3

0/ν in the jth realization.

Together with the normalized acceleration variances a0 ≡ (1/3)〈aiai〉/(〈ε0〉3/ν)1/2 at
the beginning of the straining (Voth et al. 2002), the magnitude of tracer fluctuating
acceleration variance can be approximated as

〈(api)
2〉 ≈ a0

( 〈ε〉3
ν

)1/2

+ 2S2
(i)〈(ui)

2〉 + S(i)
d〈(ui)

2〉
dt

, i= 1, 2, 3, (4.10)

where the first term represents the isotropic contribution to acceleration variances
with dependence on the turbulence intensity, and all of the terms on the right-hand
side are Eulerian quantities of the straining flow. Here, 〈ε0〉 is the mean energy
dissipation rate in homogeneous isotropic turbulence across all realizations, and 〈ε〉
is the time-dependent mean energy dissipation rate in the straining turbulence across
all realizations.

Figure 7 shows the acceleration variances of passive tracers in the straining flow.
The variance is higher in the compression direction than in the expanding directions
due to the mean straining geometry, and the effects are seen immediately after the
strain has been imposed. The approximations derived above, applying RDT, fit nicely
to the simulation data, as shown. The change in the isotropic dissipation rate due to
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straining is accounted for in the first term of (4.10), and the rest of the terms involve
the mean strain and the velocity fluctuations. The mean strain causes a rapid increase
in the acceleration variance as the strain is applied, particularly at the higher rate of
strain. The subsequent increase and the differences between the individual components
are partially due to the evolution of the velocity variances for each component; namely
that the compressed velocity components are emphasized (increasing energy content)
whereas the expanding velocity components are either suppressed or maintained.

4.2. Inertial particle accelerations in straining flow
The differential equations for the particle position as a function of time, obtained by
combining the mean flow components in (2.3) with (2.7) and (2.8), are second-order
linear ordinary differential equations with constant coefficients:

d2xpi

dt2
+ 1
τp

dxpi

dt
− Si

τp
xpi =

1
τp

ui, i= 1, 2, 3. (4.11)

The roots λ1,2 = (−1±√1+ 4Siτp)/(2τp) of the characteristic equations of these
equations prescribe the behaviour of particle movements in the absence of turbulence.
In the compression direction, the combination of strain rates S and the Stokes
relaxation time τp in our simulations gives rise to the discriminant D1 = 1 − 8Sτp,
which separates two possible movements: an overdamped decay motion towards the
stagnation plane x = 0 or an underdamped oscillation about the stagnation plane.
In the expanding direction the discriminant D2,3 = 1 + 4Sτp is always positive, and
particles move away from the axis y= z= 0 exponentially in time when only mean
flow is considered. The accelerations of particles follow a similar patten.

When turbulent fluctuations are present in the strained flow, the statistical
description of the dynamics of the inertial particles becomes much more complicated.
Treating the fluctuating flow velocity as a source term, one can solve the equations
formally using the Laplace transform. Specifically, the formal expressions of the
particle accelerations are as follows.

In the compression direction,

D1 > 0,

ãp1(t) =
1

λ1 − λ2

[
(λ2

2(λ1 + 2S)eλ2t − λ2
1(λ2 + 2S)eλ1t)xp0 + (λ2

1eλ1t − λ2
2eλ2t)vp10

+ 1
τp

∫ t

0
u1(xp(τ ), τ )(λ

2
1eλ1(t−τ) − λ2

2eλ2(t−τ)) dτ
]
+ 1
τp

u1(xp(t), t); (4.12)

D1 < 0,

ãp1(t) = e−t/(2τp)

[
− 1
τp
vp10 cos(ωt)+ 1

2τ 2
pω
((1− 4Sτp)vp10 + 8S2τpxp0) sin(ωt)

− 1
τ 2

p

∫ t

0
u1(xp(τ ), τ )eτ/(2τp)

(
cos(ω(t− τ))+ 4Sτp − 1

2τpω
sin(ω(t− τ))

)]

+ 1
τp

u1(xp(t), t). (4.13)
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In these expressions,

λ1,2 =− 1
2τp

(1±√1− 8Sτp), ω= 1
2τp

√
8Sτp − 1 (4.14a,b)

as well as the Stokes relaxation time τp determine the time scales for various
contributions to inertial particle accelerations. xp0 and vp10 are the position and
velocity of the particle right before the straining starts (at t = 0−). In the expanding
direction y (the expression in the z direction is similar),

ãp2(t) =
1

λ1 − λ2

[
(λ2

2(λ1 − S)eλ2t − λ2
1(λ2 − S)eλ1t)yp0 + (λ2

1eλ1t − λ2
2eλ2t)vp20

+ 1
τp

∫ t

0
u2(xp(τ ), τ )(λ

2
1eλ1(t−τ) − λ2

2eλ2(t−τ)) dτ
]
+ 1
τp

u2(xp(t), t). (4.15)

Similarly, yp0 and vp20 are the position and velocity of the particle at t= 0−, and

λ1,2 =− 1
2τp

(1±√1+ 4Sτp). (4.16)

The mean flow influences the variances when the full acceleration is considered,
and this is also the case for other statistics involving the full particle velocity or
acceleration. Since the magnitude of the mean flow velocity depends on the location
in the domain, the magnitudes of the variances of acceleration components are
characterized by the domain size in the respective directions (through the initial
positions xp0, yp0 in the acceleration expressions (4.12), (4.13) and (4.15)) in addition
to the rate of strain.

In an attempt to minimize the influence of the mean flow, in addition to ensuring
that our statistics are deduced from sufficiently many independent samples, we
condition our inertial particle analysis on particles that started in a thin layer parallel
to and next to the x= 0 plane for the x component statistics and a thin layer parallel
to and next to the y= 0 plane for the y component statistics. For the dimensionless
strain rates S∗ = 2.1 and S∗ = 21 we use layers with thicknesses of eight lattice units
in the Reλ0 = 117 simulations. For S∗ = 8.4 and S∗ = 21 flows, we use layers with
thicknesses of four and two lattice units. With the selected thicknesses, we ensure
that the difference of the mean flow velocities within the layers does not exceed
55 % of urms

1 in the compression direction and does not exceed 77 % of urms
2 in the

expanding direction. The numbers of particles available in the layers decreases with
the thickness of the layers from approximately 61 500 in S∗ = 2.1 flows to 15 500 in
S = 21 flows in the compression direction. In the expanding direction, the number
of particles used for the analysis decreases from 240 000 in S∗ = 2.1 to 60 700 in
S∗ = 21. We also apply the symmetry with respect to the planes x= 0 and y= 0.

Figure 8 shows the acceleration variance of inertial particles in the straining flow for
two particle types, τp = 0.015 and τp = 0.05, which correspond to St0 = τp/τη0 = 0.3
and 1 at the beginning of the straining. These two types of particles have positive
discriminants in S∗ = 2.1, correspond to D1 > 0 and D1 < 0 in S∗ = 8.4, and have
negative discriminants in S∗ = 21.
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FIGURE 8. (Colour online) Acceleration variances of inertial particles in the compressed
(solid symbols) and expanding (empty symbols) directions versus the strain time for two
types of particles, (a) St0= 0.3 and (b) St0= 1. The symbols refer to different strain rates:
diamond (♦), S∗ = 0.21; circle (E), S∗ = 2.1; square (@), S∗ = 8.4; triangle (A), S∗ = 21.
The data are from the data set Reλ0= 117. An estimate of the statistical error bar is shown
and is computed according to (3.4), with Xj being particle acceleration variances in the
jth realization.

4.2.1. Initial transition period of acceleration variances
The acceleration variances of the inertial particles show a transition period at the

beginning of the straining that is not seen in the tracer accelerations. Equations (4.12)
and (4.13) indicate that the initial position xp0 and velocity vp10 of an inertial particle
affect its acceleration. The time scale of this influence depends on the exponents of
the exponential terms in the acceleration expressions. In the compression direction,
if D1 < 0 the decaying rate is 2τp. If D1 > 0, both λ1 and λ2 are negative, so the
decaying rate is min(1/|λ1|, 1/|λ2|) = 1/|λ2|. This explains the different lengths of
the initial transition period for particles with different Stokes numbers in flows with
a fixed strain rate. In figure 9(a) we show acceleration variances of particles with
τp = 0.01 and 0.1, which correspond to St0 = 0.2 and 2, in S∗ = 8.4 to elucidate the
time scale for initial transition. The ratio between the decaying rates of these two
types of particles is approximately 1.75.

Although 〈(u2)
2〉 decreases with straining, 〈ã2

p2〉 increases at the beginning and a
maximum occurs. This is because λ2 is positive in the expanding direction. Similarly
to the case discussed in the x direction, the exponents determine the time scale of the
behaviour of acceleration variances. From (4.15) one can estimate the time when the
maximum takes place by ignoring the flow fluctuation, and obtain the ratio between
the times of maximum acceleration variances of the two particles presented in the
figure to be 1.52. It appears that our simulation data confirm such an estimation. For
S∗ = 21, our simulations were too short to display the post-transition period.

4.2.2. Magnitude of the acceleration variance
Figure 8 shows that the acceleration variance of inertial particles increases with the

strain rate. This is mainly due to the mean flow contributing to the acceleration in
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FIGURE 9. (Colour online) Acceleration variances for tracers and inertial particles with
St0 = 0.2, 2. Lines with circles (E), St0 = 2; lines with triangles (A), St0 = 0.2; solid lines
with solid symbols, 〈(ãp1)

2〉; dashed lines with empty symbols, 〈(ãp2)
2〉; solid lines (——),

tracers 〈(ap1)
2〉; dashed lines (– – –), tracers 〈(ap2)

2〉; (a) S∗ = 8.4, (b) S∗ = 21. The data
are from the data set Reλ0 = 117. An estimate of the statistical error bar is shown and
is computed according to (3.4), with Xj being particle acceleration variances in the jth
realization.

terms of the factors 2S and S in the expressions (4.12), (4.13) and (4.15), and, in a
smaller part, through the exponents that regulate the influence of the initial conditions.

At the onset of straining, the acceleration variance in the expanding direction is
higher than that in the compression direction. This could be explained through the
exponents of the kernels. In the compression direction, the coefficients λ1, λ2 and
−1/(2τp) in the exponents of the kernels in (4.12) and (4.13) are all negative and
indicate decay with time. However, for the expanding direction, λ2= (−1+√1+ 4Sτp)/
(2τp) is positive, which leads to the increase of magnitude. For sufficiently long time,
the influence of the initial condition is diminished. The magnitude of the flow velocity
fluctuation (in the last two terms of the acceleration expressions) in the expanding
direction remains roughly constant, while in the compression direction the flow
velocity fluctuation grows exponentially. As a result, the acceleration variance in the
compression direction overtakes that in the expanding direction.

In contrast to isotropic homogeneous turbulence (Ayyalasomayajula et al. 2006;
Bec et al. 2006), the acceleration variances of inertial particles do not necessary have
lower magnitudes compared with those of tracers in strained flow. The inertial particle
with τp = 0.01 in figure 9(b) depicts such a situation. We recall that (4.10) provides
an approximation of tracer acceleration variances, and in higher strain rates the terms
2S2

i 〈(ui)
2〉+Sid〈(ui)

2〉/dt are the main contributors to the variances. From figure 4 we
know that the variance of the flow fluctuating velocity grows exponentially in time,
so its time derivative can be estimated as a constant multiple c1S (c1 is a constant) of
the variance itself. Hence, the main terms in the tracer acceleration variance increase
in the order of S2

i 〈(ui)
2〉 with the strain rate. For the inertial particles, however, their

long-term variance depends on the term 〈(ui)
2〉/τ 2

p . When τp is small enough, the
factor 1/τ 2

p is larger than the magnitude of S2
i , and the inertial particle acceleration

variances surpass the tracer acceleration variances.

4.3. Probability density functions of particle accelerations
Figures 10–12 show the particle acceleration p.d.f.s at various rates of strain and at
two Reynolds numbers (S∗= 2.1, 8.4, 21 in Reλ0= 117 and S∗= 2.3, 9.3, 23 in Reλ0=
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FIGURE 10. (Colour online) Normalized p.d.f.s of tracer acceleration and tracer
acceleration flatness. (a) The p.d.f. (ap1 ) in HIT (circle, u), straining flow S∗ = 8.4
(square,p), and S∗ = 21 (triangle,q). (b) The p.d.f. (ap1 ) in HIT (circle,u, Reλ0 = 117;
E: Reλ0= 193) and in straining flow S∗= 21 (q, Reλ0= 117); S∗= 23 (A, Reλ0= 193). (c)
The p.d.f. (ap1 ) and the p.d.f. (ap2 ) in Reλ0 = 117 flow. Circles (u, E), HIT; squares (p,
@), S∗ = 8.4; triangles (q,A), S∗ = 21. Solid symbols, i= 1 component; empty symbols,
i= 2 component. (d) Tracer acceleration flatness, 〈(api − api)

4〉/〈(api − api)
2〉2, at Reλ0= 117.

Solid line (——), HIT; squares (p,@), S∗= 8.4; triangles (q,A), S∗= 21. Solid symbols,
i= 1 component; empty symbols, i= 2 component. The p.d.f.s in the straining flow are
plotted at a strain time of S× t= 0.5.

193) for tracers and inertial particles (St0 = 0.3 and St0 = 1) respectively. The effect
of increasing the rate of strain is most notably seen by the narrowed p.d.f. tails for
the tracer and inertial particle accelerations.

Figure 10(a) demonstrates the narrowing of the tracer acceleration p.d.f.s in
straining flow. Figure 10(b) shows that the narrowing effect is milder at the higher
Reynolds number due to the faster time response of smaller scales at the higher
Reynolds number. The increase in the magnitude of acceleration variances due to the
mean straining appears to be the primary reason for the tail narrowing. Figure 10(c)
indicates the response of acceleration in the compressed and expanding directions.
Although the flow field is very different component-wise, the acceleration p.d.f.s,
resulting from tracers following trajectories of small-scale structures in the fluid,
are more or less identical. Additionally, the evolution of the acceleration flatness
〈(api − api)

4〉/〈(api − api)
2〉2 (a measure of the intermittency of the acceleration) is
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FIGURE 11. (Colour online) Normalized p.d.f.s of particle acceleration components ãpi

for different strain rates, for particles originating in thin slices parallel to the x= 0 plane
for the i= 1 component and to the y= 0 plane for the i= 2 component. (a,c) Particles
with St0 = 0.3 in Reλ0 = 117. (b,d) particles with St0 = 1 in Reλ0 = 117. (a,b) The i = 1
component. (c,d) The i= 2 component. Circles (u), HIT; squares (p), S∗ = 8.4; triangles
(q), S∗ = 21. The p.d.f.s in the straining flow are plotted at a strain time of S× t= 0.5.

shown in figure 10(d) for the lower Reynolds number Reλ0 = 117, emphasizing the
narrowing effect of straining and the difference between components.

In terms of inertial particles, as for isotropic homogeneous turbulence, narrowing
of the p.d.f. tails follows an increase in the Stokes number. Figure 11 illustrates the
narrowing effects. Such behaviour has been demonstrated in a number of previous
studies (Ayyalasomayajula et al. 2006; Bec et al. 2006), due to the heavier particles
passing through, or selectively filtering, the most rapid motions in the flow field.
However, here the situation is more complex, since the acceleration variance is not
necessarily smaller for inertial particles, due to the strong effect of the mean flow, as
discussed above. Figure 12 shows that the higher Reynolds number has an expanding
effect on lighter inertial particle acceleration p.d.f. tails. However, for the heavier
particles (St0 = 1) in higher strain, S∗ = 21 in Reλ0 = 117 and S∗ = 23 in Reλ0 = 193,
the effect is not as evident in the expanding direction. We note that the Stokes number
of a particle increases during the straining due to a decrease in the Kolmogorov time
scale. In the lower-Reynolds-number simulations, particle Stokes numbers increase
by 24 %, 38 % and 53 % during the straining when the dimensionless strain rate is
S∗ = 2.1, 8.4, 21. In the higher-Reynolds-number simulations, particle Stokes numbers
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FIGURE 12. (Colour online) Normalized p.d.f.s of particle acceleration components ãpi

for two Reynolds numbers, for particles originating in thin slices parallel to the x = 0
plane for the i = 1 component and to the y = 0 plane for the i = 2 component. (a,c)
Particles with St0 = 0.3 in Reλ0 = 117 and St0 = 0.34 in Reλ0 = 193. (b,d) Particles with
St0 = 1 in Reλ0 = 117 and St0 = 1.12 in Reλ0 = 193. (a,b) The i= 1 component. (c,d) The
i = 2 component. Circles (u, E), HIT; triangles (q, A), S = 10. Solid symbols, S∗ = 21,
Reλ0 = 117; empty symbols, S∗ = 23, Reλ0 = 193. The p.d.f.s in the straining flow are
plotted at a strain time of S× t= 0.5.

increase by 6 %, 14 % and 21 % during the straining when the dimensionless strain
rates are S∗ = 2.3, 9.3, 23. For example, the Stokes numbers of particles with
St0 = 0.3, 1 in the Reλ0 = 117 flow become St = 0.36, 1.19 when S∗ = 8.4 and
St= 0.39, 1.26 when S∗ = 21 at the time instant S× t= 0.5. The Stokes numbers of
particles with St0 = 0.34, 1.12 in the Reλ0 = 193 flow become St = 0.41, 1.37 when
S∗= 23 at the time instant S× t= 0.5. The increase of Stokes numbers contributes to
the narrowing of the acceleration p.d.f. tails, but to a lesser effect than the increased
variances.

It is interesting to consider our results in a wider context of flows with non-zero
mean components, for example by comparing with the dynamics in shear flow.
Gerashchenco et al. (2008) and Lavezzo et al. (2010) considered tracers and inertial
particles in a non-uniform shear, namely a turbulent boundary layer. An increased
rate of shear, closer to the wall, resulted in an increased acceleration variance in the
lateral component but a milder effect in the transverse component, which appears
to be consistent with the predictions of (4.2) for their geometry. As a result of the
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increased acceleration variances, attenuation was found in the tails of the inertial
particle acceleration p.d.f.s, as observed in this work.

5. Conclusions
Our results show a strong effect of the mean flow straining on the Lagrangian

acceleration statistics, for both passive tracers and inertial particles. The effect of
straining is primarily felt in the acceleration variances and p.d.f.s when the rate
of strain is sufficiently high such that the strain time scale is of a comparable
magnitude to the Kolmogorov time scale. For high rates of strain the magnitude of
the acceleration variances is increased significantly and the tails of the normalized
acceleration p.d.f.s for tracers and inertial particles narrow. The former effect is well
explained by observing the predicted behaviour of the acceleration variance by RDT.
Rapid-distortion theory provides us with a relation between the flow velocity variance
and the acceleration variance, and illustrates the dependence of the acceleration
variance on the rate of strain.

However, the effect is complex, partly due to the connection, or lack thereof,
between the particle acceleration component in one direction and the fluid flow in
the same direction; a particle trajectory around a strong vortex will result in large
acceleration values in the directions normal to the axis of the vortex. However, there
is also a direct contribution from the mean straining and fluctuating velocity in the
acceleration, resulting, for example, in an increased variance value of the acceleration
in both the compressing and expanding directions.

For tracers, the narrowing of the normalized acceleration p.d.f.s stems, therefore,
in a complex manner from both of these effects. The same effect is also felt by the
lighter inertial particles, given that their inertia is sufficiently small to sample the
small-scale motions. Because of their small inertia, the interplay with the mean flow
enables their acceleration variance to rise beyond that of the tracers.

When the inertia is further increased, the ballistic particle motion in the rapidly
accelerating mean flow becomes increasingly important, leading to Gaussian p.d.f.
tails. Here, the particles are swept through the fluid, and the slower large scales
of motions are more likely to influence the particles. This could also be seen by
the lower magnitude of acceleration variances of the heavier particles compared
with the lighter inertial particles. We derived the formal expressions for inertial
particle acceleration, and these expressions reveal the complex interplay between flow
straining and particle inertia.

Our findings emphasize the importance of the presence of strong mean motions
and imposed small-scale anisotropy in particle-laden flows. It is our opinion that the
results have relevance to the understanding and modelling of a range of practical
deforming or straining flows where inertial particles are important aspects of the
process. In particular, we believe that our findings may help in the development of
subgrid Lagrangian models for particles in the proximity of straining regimes near
stagnation points.
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