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We study the dynamic macroeconomic effects of fiscal shocks under lump-sum tax
financing. To this end, we develop an intertemporal macroeconomic model for a small
open economy, featuring monopolistic competition in the intermediate goods market,
endogenous (intertemporal) labor supply, and finitely lived households. Fiscal shocks are
shown to yield endogenously determined (dampened) cycles for a realistic calibration of
the model. Impulse response functions of fiscal policy shocks in the finite-horizon model
differ substantially from those resulting from an infinitely lived representative agent
model. This can be explained by the presence of Ethier-productivity effects, which
increase the size of long-run output multipliers to a greater extent in the infinite-horizon
model.
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1. INTRODUCTION

In the wake of the Stability and Growth Pact of the European Union,1 there
has been a revival of interest in analyzing the macroeconomic effects of fiscal
policy in open economies. This paper contributes to this line of work by analyzing
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a typical small open economy. More specifically, we investigate the dynamic
effects of fiscal policy while assuming monopolistic competition in the produc-
tion of intermediate goods and finitely lived households. We investigate whether
the assumption of finitely lived households—which we employ to generate an en-
dogenously determined steady state—substantially affects the impulse responses
of fiscal policy as found in the standard case of an infinitely lived representative
agent (to which we refer as “infinite horizons”). In particular, we would like to
know how imperfect competition and the degree of input variety across firms affect
our results.

The analysis of fiscal policy in open economy models has received little
attention compared with monetary policy. Furthermore, the vast majority of
microfounded literature on fiscal policy assumes perfect competition in the goods
market. Early contributions are those by Turnovsky and Sen (1991), Chang (1999),
and Karayalçin (1999).2 More recently, attention has focused on relaxing the
assumption of perfectly competitive goods markets, thereby giving rise to a sub-
optimal level of output in the decentralized market outcome. Besides providing a
rationale for activist government intervention, imperfect competition allows the
explicit modeling of price setting behavior of firms. Dynamic macroeconomic
models that introduce some form of imperfect competition in goods or labor
markets (without imposing explicit price stickiness) are small in number and
are primarily focused on closed economies.3 A notable exception is the small
open economy model of Coto-Martinez and Dixon (2003), to which our work is
somewhat related. Coto-Martinez and Dixon (2003) analyze the case of infinite
horizons and distinguish between tradables and nontradables.

We develop an intertemporal optimization model, which features two production
sectors (final and intermediate goods) and finitely lived households. The small open
economy is embedded in a world of a homogeneous final good, which is supplied
under perfect competition. Differentiated intermediate goods are produced by
firms under internal economies of scale, yielding imperfect competition on the in-
termediate input market. We assume free entry and exit of firms in the intermediate
goods sector, giving rise to endogenous Ethier (1982)-productivity effects. Intu-
itively, increased input diversity allows firms in the final goods sector to use a more
roundabout production technology. The household sector builds on an extended
version of the Blanchard–Yaari model [cf. Yaari (1965) and Blanchard (1985)], in
which agents face a constant probability of death. In keeping with the literature,
there is an internationally traded bond, ensuring that households can use the cur-
rent account of the balance of payments to smooth private consumption. To avoid
trivial capital dynamics and to limit the international mobility of physical capital,
we postulate adjustment costs of investment at the level of the portfolio investor.

We employ overlapping generations in the Blanchard–Yaari tradition not only to
get a realistic description of the household sector but also to yield an endogenously
determined (nonhysteretic) steady state. It is well known that in infinite-horizon
models of a small open economy the steady state is hysteretic. The dynamic system
contains a zero characteristic root in private consumption if the exogenously given
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world rate of interest equals the constant rate of time preference. This “knife-edge”
condition must hold for a steady state to exist.4 By log-linearizing such a system,
one is approximating its dynamics around a hysteretic steady state, (potentially)
reducing the reliability of the approximation.5 To address the hysteresis problem,
various authors have employed overlapping generations of households.6 None
of these authors have analyzed the sensitivity of their results to the household’s
planning horizon, however.

Schmitt-Grohe and Uribe (2003) conclude from a comparison of various
stationarity-inducing devices that the comparative dynamic properties of their
small open economy RBC model are hardly affected by the type of device.7 More
relevant to our study is their finding that the stationary and nonstationary model
feature very similar impulse response functions originating from a technology
shock. Schmitt-Grohe and Uribe (2003) neither study domestic demand shocks
nor employ overlapping generations as a stationarity-inducing device, however.
This paper fills that gap for a deterministic model setting. We characterize analyti-
cally the transition paths induced by a fiscal impulse in the benchmark overlapping
generations model, which we compare with the hysteretic case of infinite hori-
zons. To this end, we apply the Laplace transform technique (Judd, 1982) to a
log-linearized version of the model. Numerical examples are used to illustrate the
impulse response functions at business cycle frequencies.

We show that finite- and infinite-horizon versions of our model give rise to very
different impulse responses of a fiscal shock. The transition paths in the finite-
horizon case feature endogenously determined (dampened) cycles for a realistic
calibration. Finite horizons, together with the interplay of elastic labor supply and
external economies of scale, generate these cycles.8 The cycles are of a first-order
nature and disappear if one of the three factors is eliminated from the analysis. For
the benchmark calibration, the infinite-horizon model is unstable. By taking an
intermediate value of the degree of external economies of scale (which is smaller
than the benchmark value), we find smaller cycles in the finite-horizon model,
whereas the transition becomes monotonic in the infinite-horizon case. Thus,
we cannot reproduce Schmitt-Grohe and Uribe’s (2003) results in our context,
indicating that these are not as general as suggested. External economies of scale
cause Schmitt-Grohe and Uribe’s key result to break down.9

Our paper also contributes to the literature on the size of (balanced budget)
output multipliers of fiscal policy. Key results are the following. Long-run output
multipliers are positive and exceed those in the short run, which are also positive.
This stands in sharp contrast to the results of Coto-Martinez and Dixon (2003),
who find smaller long-run output multipliers. A more elastic labor supply re-
sponse and larger external increasing returns to scale increase the size of long-run
output multipliers within the parameter range that generates a stable outcome.
Sufficiently strong Ethier-productivity effects give rise to private consumption
and output multipliers that are both positive in the long run, a result that can-
not be obtained in the standard framework of an infinitely lived representative
household.
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The paper is structured as follows. Section 2 sets out the extended Blanchard–
Yaari model for a small open economy. Section 3 solves the log-linearized model
and studies model stability and calibration issues. Section 4 analyzes the tran-
sitional dynamics of a permanent increase in public consumption financed by
lump-sum taxes. Section 5 summarizes and concludes.

2. THE MODEL OF PERPETUAL YOUTH

This section develops a dynamic, microfounded, macroeconomic model for a
small open economy, which features agents endowed with perfect foresight. Sub-
sequently, it discusses decision making by households, firms, and the government.

2.1. Households

The household section of the model builds on Blanchard (1985) and the extension
to endogenous intertemporal labor supply by Heijdra and Ligthart (2007). The
model features a fixed population of agents (normalized to unity), each facing a
constant probability of death (β ≥ 0), which equals the rate at which new agents
are born. Labor is assumed to be immobile internationally and is supplied in a
perfectly competitive labor market. Households do not leave bequests—implying
that generations are disconnected—and do not face liquidity constraints.

During its entire life span, an agent has a time endowment of unity, which it
allocates to labor and leisure. The utility functional at time t of the representative
agent born at time v is assumed to be weakly separable in private consumption,
C(v, t), and leisure, 1 − L(v, t):

�(v, t) ≡
∫ ∞

t

{εC ln C(v, τ) + (1 − εC) ln[1 − L(v, τ)]} e(α+β)(t−τ) dτ, (1)

where α > 0 is the (constant) pure rate of time preference and εC is the share of
private consumption in utility (where 0 < εC < 1). The agent’s budget identity is

Ȧ(v, t) = (r + β)A(v, t) + w(t)L(v, t) − T (t) − C(v, t), (2)

where an overdot indicates a time derivative, A(v, t) are financial assets, r is the ex-
ogenously given and constant world rate of interest, w(t) is the (age-independent)
wage rate, and T (t) are net lump-sum taxes (all denoted in real terms). The final
good [with price P(t)] is used as the numeraire. Despite the constant rate of
interest, wages are flexible, reflecting adjustment costs in investment (see below).

The household chooses a time profile for C(v, t) and L(v, t) to maximize
�(v, t) subject to its budget identity (2) and a no-Ponzi-game solvency condition.
This yields the optimal time profile of private consumption:

Ċ(v, t)

C(v, t)
= r − α. (3)
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In the general case of β > 0, we study a patient nation (i.e., r > α), which yields
rising individual consumption profiles.10 Individual labor supply is negatively
linked to private consumption (i.e., the wealth effect) and positively associated
with wages:

L(v, t) = 1 − (1 − εC)C(v, t)

εCw(t)
. (4)

Variables at the aggregate level can be calculated as the weighted sum of the
values for different generations. For example, A(t) ≡ ∫ t

−∞ A(v, t)βeβ(v−t)dv is
aggregate financial wealth. By aggregating (3), we arrive at the aggregate Euler
equation

Ċ(t)

C(t)
= r − α − βεC(α + β)

A(t)

C(t)
= Ċ(v, t)

C(v, t)
− β · C(t) − C(t, t)

C(t)
. (5)

Equation (5) has the same form as the Euler equation for individual households
(3), except for a correction term, which captures the wealth redistribution caused
by the turnover of generations. Optimal individual consumption growth is the
same for all generations because they face the same rate of interest. But the
consumption level of old generations is higher than that of young generations,
reflecting the larger stock of financial assets owned by old generations. Because
existing generations are continually being replaced by newborns, who are born
without financial wealth, aggregate consumption growth falls short of individual
consumption growth. The correction term appearing in (5) thus represents the
difference between average consumption, C(t), and consumption by newborns,
C(t, t).11

We model a household-investor that optimizes its investment portfolio. There
are two assets in the economy, claims on domestic capital goods, V (t), and net
foreign assets, F(t) (which are all measured in real terms). Assets are assumed
to be perfect substitutes in the household’s portfolio, so that they earn the same
real rate of return. The household’s cash flow from investing in physical capital is
given by

V (t) ≡
∫ ∞

t

[rK(τ)K(τ) − I (τ )]er(t−τ) dτ, (6)

where K(t) denotes physical capital, rK(t) is the rental rate on capital, and I (t)

denotes gross investment. We follow Uzawa (1969) by postulating a concave ac-
cumulation function, �(·), that links net capital accumulation to gross investment:

K̇(t) =
[
�

(
I (t)

K(t)

)
− δ

]
K(t), �(0) = 0, � ′(·) > 0, � ′′(·) < 0,

(7)
where δ > 0 is the constant rate of capital depreciation.

The household-investor chooses paths for gross investment and the capital stock
to maximize (6) subject to (7), taking as given the initial capital stock, K(0) > 0.
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The first-order conditions are

1 = q(t)� ′
(

I (t)

K(t)

)
, (8)

q̇(t) =
[
r + δ − �

(
I (t)

K(t)

)]
q(t) − rK (t) + I (t)

K(t)
, (9)

where q(t) denotes Tobin’s q, which measures the market value of capital relative
to its replacement costs. The degree of physical capital mobility is given by
σ ≡ −(I/K)� ′′/� ′ > 0, where a small σ characterizes a high degree of capital
mobility.12

2.2. Firms

Following Hornstein (1993), the production sector consists of two types of firms.
The first type concerns monopolistically competitive firms, each of which pro-
duces a unique variety of an intermediate input (which are close but imperfect
substitutes). The second type are perfectly competitive firms that produce a ho-
mogeneous final output using differentiated intermediate goods.

Technology in the final goods sector can be described by a Dixit–Stiglitz (1977)
specification,

Y (t) = N(t)η−µ

[∫ N(t)

0
Zj(t)

1/µdj

]µ

, η ≥ 1, µ > 1, (10)

where Y (t) denotes aggregate output of final goods, Zj(t) is the quantity of variety
j of the intermediate good, N(t) denotes the number of input varieties, and µ is a
technological parameter measuring the ease with which different varieties can be
substituted for each other in production. (In the Chamberlinian equilibrium, the
markup of price over marginal cost charged by a firm in the intermediate goods
sector will be equal to µ—see below.) The parameter η represents the Ethier
(1982)-productivity effect. Increased input diversity allows firms to use a more
roundabout production technology, giving rise to external economies of scale. For
η = 1, the Ethier-productivity effect is switched off. Following Bénassy (1996),
Fatás (1997), and Broer and Heijdra (2001), we parameterize η and µ separately
with a view to disentangling the output effect of external economies of scale from
that of imperfect competition (see Section 2.4).

The representative producer in the final goods sector minimizes the cost of
producing a given quantity of final goods by choosing the optimal mix of input
varieties. Input demand functions feature a constant elasticity of demand,

Zj(t) = N(t)(η−µ)/(µ−1)Y (t)

[
Pj (t)

P (t)

]µ/(1−µ)

, (11)
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where Pj (t) is the price of input variety j and P(t) is the unit cost function
corresponding to equation (10):

P(t) ≡ N(t)µ−η

[∫ N(t)

0
Pj (t)

1/(1−µ) dj

]1−µ

. (12)

The intermediate goods sector features an endogenously determined number of
monopolistically competitive firms, each of which produces a single differentiated
input. Firm j rents capital and labor from the household sector to produce gross
output according to

Zj(t) + f ≡ Lj(t)
εLKj (t)

1−εL , 0 < εL < 1, (13)

where f are fixed costs modeled in terms of the output of firm j . Consequently,
firms enjoy (local) internal increasing returns to scale; that is, (Zj (t)+ f )/Zj > 1.
The representative firm maximizes profits by choosing its price and primary factor
demands subject to (11). As a result, the factor demands of firm j are determined
by the usual marginal productivity conditions for labor and capital,

∂Zj (t)

∂Lj (t)
= µ

w(t)P (t)

Pj (t)
, (14)

∂Zj (t)

∂Kj (t)
= µ

rK(t)P (t)

Pj (t)
, (15)

which feature the firm’s markup µ > 1. If η = µ, we get the familiar Dixit–
Stiglitz case in which primary input use by firms is below its social optimal
value.13 Following Schmitt-Grohe (1997), we assume Chamberlinian monopolistic
competition, implying that the instantaneous entry and exit of firms eliminates all
pure profits for each firm. Accordingly, the intermediate input price equals average
cost, which implies a constant equilibrium firm size of Zj ≡ f/(µ − 1), where
µ > 1 for the equilibrium to exist. A larger markup thus implies a smaller
equilibrium firm size. If µ → 1 and f → 0, then the model converges to a
perfectly competitive economy.

2.3. Government and External Sector

The government is assumed to play a rather simple role in our stylized economy.
Government spending, G(t), neither yields utility to individuals nor is productive.
We assume that all spending is financed by lump-sum taxes; that is, G(t) = T (t)

for all t ≥ 0.14

In the nondegenerate case of r > α, households use the current account to
smooth consumption (and thus acquire net foreign assets). Foreign financial capital
is perfectly mobile. The change in net foreign assets equals the current account
balance,

Ḟ (t) = rF (t) + [Y (t) − C(t) − I (t) − G(t)] , (16)
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where the term in square brackets is the trade account, showing that domestic
output, Y (t), less domestic absorption, C(t) + I (t) + G(t), equals net exports,
X(t). National solvency requires that F(t) = − ∫ ∞

t
X(τ)er(t−τ)dτ, showing that

the preexisting level of net foreign assets (debt) should equal the present value of
trade balance deficits (surpluses).

2.4. Symmetric Perfect Foresight Equilibrium

The supply side of the model is symmetric and can thus be expressed in aggregate
terms. All existing firms in the intermediate goods sector are of equal size, Z̄,
and thus charge the same price and demand the same amounts of capital and
labor; that is, Kj(t) = K̄(t) and Lj(t) = L̄(t). In view of this, (10) yields
aggregate output of final goods as an isoelastic function of the number of input
varieties:

Y (t) = N(t)ηZ̄ = N(t)η
f

µ − 1
. (17)

A higher level of output thus sustains a larger number of firms in the new equilib-
rium. Alternatively, by using (17) and (13), we can derive

Y (t) = �0L(t)ηεLK(t)η(1−εL), �0 ≡
(

1

µ

)η (
µ − 1

f

)η−1

> 0, (18)

where K(t) ≡ N(t)K̄(t), L(t) ≡ N(t)L̄(t), and �0 is a constant. To ensure
diminishing returns to capital accumulation, we impose Assumption 1. Note that
this condition is rather mild. It is easily satisfied for εL = 2/3 and typical values
of η (see Section 3.3).

Assumption 1. The Ethier-productivity effects are bounded; that is, χ ≡ 1 −
η(1 − εL) > 0, implying that ∂2Y (t)/∂K(t)2 = −χ(1 − εL)ηY (t)/K(t)2 < 0.

Equations (17) and (18) show that η determines the degree of external increasing
returns to scale at the aggregate level, whereas µ affects the equilibrium firm size.15

The stock market value of the firm, V (t), equals q(t)K(t). Accordingly, port-
folio equilibrium amounts to A(t) = q(t)K(t)+F(t). For r > α, we assume that
there are no net foreign assets in the initial steady state [i.e., F(0) = 0] so that the
physical capital stock is fully owned domestically.

3. SOLVING THE MODEL

This section log-linearizes the model around its steady state, analyzes its stability,
and discusses calibration issues.
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3.1. Log-Linearized Model

To solve the model, we log-linearize it around an initial steady state (Table A.1).
A tilde (˜) denotes a relative change for most variables; for example, C̃(t) ≡
dC(t)/C∗ (Appendix A.1). The dynamics of the model can be summarized by
two predetermined variables, the physical capital stock and financial assets, and
two nonpredetermined variables, Tobin’s q and private consumption:⎡

⎢⎢⎢⎢⎢⎣

˙̃K(t)

˙̃q(t)

˙̃C(t)

˙̃A(t)

⎤
⎥⎥⎥⎥⎥⎦ = 

⎡
⎢⎢⎢⎣

K̃(t)

q̃(t)

C̃(t)

Ã(t)

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎣

0
0
0

γA(t)

⎤
⎥⎥⎦ , (19)

where γA(t) = rωGT̃ (t) is the exogenous policy shock and ωG is the output share
of government spending. The Jacobian matrix (and its typical element δij ) is

 ≡

⎡
⎢⎢⎢⎢⎢⎣

0
ȳωI

σ
0 0

(1 − εL) ȳ[1 − ηφ (1 − εL)] r (1 − εL) ȳ (φ − 1) 0

0 0 r − α − r − α

ωA

rεLηφ (1 − εL) 0 −r [ωC + εL(φ − 1)] r

⎤
⎥⎥⎥⎥⎥⎦ ,

where ȳ ≡ Y ∗/(q∗K∗), ωA ≡ r/ȳ, ωC ≡ C∗/Y ∗, and ωI ≡ I ∗/Y ∗. The pa-
rameter regulating the strength of the intertemporal labor supply effect is given
by

φ ≡ 1 + θL

1 + θL(1 − ηεL)
≥ 1, (20)

where θL ≡ (1 −L∗)/L∗ ≥ 0 is the ratio of leisure to labor, which also represents
the intertemporal substitution elasticity of labor supply. Labor supply is exogenous
if εC = 1, in which case φ = 1 (because L∗ = 1 and θL = 0). For 0 < εC < 1,
labor supply is endogenous and φ > 1 (since 0 < L∗ < 1 and θL > 0). We
find that ∂φ/∂η > 0, implying that the diversity effect magnifies the labor supply
effect. To guarantee a positive denominator of (20), we impose the following:

Assumption 2. If ηεL > 1, we assume that 0 ≤ θL < θ̄L ≡ 1/(ηεL − 1).

If ηεL > 1 (due to a large η), φ has a vertical asymptote at θ̄L = 1/(ηεL − 1).
On the interval (0, θ̄L), φ is an increasing function of θL, which exceeds unity.

In the next section we show that the model is saddle-point stable for φ values
in the range 1 ≤ φ ≤ φ̂.16 To streamline the discussion to follow, we provide
the following definition regarding the strength of the intertemporal labor supply
effect:

DEFINITION 1. The labor supply effect is small for 1 < φ < φ̄ ≡ 1/[η(1 −
εL)], whereas it is large for φ̄ < φ ≤ φ̂.

https://doi.org/10.1017/S1365100509080286 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509080286


10 BEN J. HEIJDRA AND JENNY E. LIGTHART

3.2. Stability

The dynamics of the finite-horizon model depends crucially on the intertemporal
labor supply effect. The trivial special case of exogenous labor supply (i.e., θL = 0
and φ = 1, so that δ23 = 0 in (19)) renders the model recursive; that is, the
investment system [denoted by q̃(t), K̃(t)] can be solved completely independent
of the savings system [denoted by C̃(t), Ã(t)]. This special case always yields
a saddle-point stable steady state. For θL > 0, however, φ > 1 and δ23 > 0,
so that the investment system is nonrecursive. Provided that φ < φ̂, we find two
negative roots and two positive roots that are potentially complex-valued (with two
negative and two positive real parts). Consequently, the system with endogenous
labor supply is also saddle-point stable (Proposition 1). In the stable complex
case, the analytical solution for the transition paths of the variables includes
cosine and sine terms, which give rise to endogenously determined (dampened)
cycles (Appendix A.4).17 Proposition 1 summarizes the local stability properties
of the system.

PROPOSITION 1. If φ ∈ [1, φ̂), the overlapping generations model (β > 0)
has a unique and locally saddle-point stable steady state, featuring four char-
acteristic roots that are potentially complex-valued. The complex roots have two
negative real parts and two positive real parts.

Proof. See Appendix A.2.

Our model nests the infinite-horizon case for which β = 0. To ensure the
existence of a steady state for this special case, the knife-edge condition r = α

should hold. Notice that the economy would keep accumulating assets (and cease
being small in world capital markets) if r > α or be depleting assets if r < α. In
addition, φ < φ̄ is a necessary condition for saddle-path stability. As compared
to finite horizons, smaller values of η and θL are permitted in the infinite-horizon
framework (see also the discussion in Section 3.3). For infinite horizons, the rate
of growth of aggregate consumption does not depend on the holdings of financial
assets. Mathematically, in terms of the Jacobian matrix, we have δ33 = δ34 = 0
(i.e., the third row of  consists of zeros), yielding a singular Jacobian matrix.
Thus, the infinite-horizon model introduces a zero root in private consumption
and labor supply, making the steady-state levels of the variables dependent on the
initial stock of financial assets (Proposition 2). Provided labor supply is elastic
(i.e., φ > 1 so that δ23 > 0), there is also hysteresis in the physical capital stock
and all variables dependent on it.18

PROPOSITION 2. The infinite-horizon model (imposing β = 0 and r = α)
features a hysteretic steady state. To guarantee saddle-point stability, it is required
that φ < φ̄. The four characteristic roots are real and distinct: h∗

1 = 0, −h∗
2 =

(r −
√

r2 + 4δ12δ21)/2, r∗
1 = r , and r∗

2 = (r +
√

r2 + 4δ12δ21)/2.

Proof. See Appendix A.2.
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TABLE 1. The model parameters

Parameter Value

β 0.015
δ 0.100
εL 0.680
η 1.300
ωG 0.200
r 0.040
θL 2.250
z̄ 0.532

3.3. Calibration

To study the quantitative significance of the comparative dynamics, a numerical
treatment is pursued. Table 1 shows the parameter values, which are taken from
the literature. The time unit represents a year. We follow Mendoza (1991), who
calibrates a dynamic general equilibrium model for the Canadian economy, in
assigning values to δ, εL, r , and θL. In the benchmark model, the intertemporal
substitution elasticity of labor supply (θL) is set to 2.25. This implies a labor supply
effect that is large (i.e., φ = 2.577 and φ̄ ≡ 2.404 < φ < φ̂ ≡ 2.732). The value
of the external-economies-of-scale parameter (η = 1.30) is taken from Caballero
and Lyons (1992). It gives rise to ηεL = 0.88, which implies a downward-sloping
labor demand function. We thus do not need to invoke Assumption 2. We also
arrive at χ = 0.584, implying that Assumption 1 is easily satisfied. Following
Baxter and King (1993), the public consumption-to-output ratio (ωG) is set to
20%. Letendre (2004) uses roughly the same value for the Canadian economy.
Last but not least, we assume a probability of death (β) of 1.5% [cf. Cardia (1991)],
so that agents have an expected life span of 67.7 years.

We have chosen a logarithmic specification for the installation function,19

�(x) ≡ z̄ ln

(
x + z̄

z̄

)
, (21)

where z̄ is an exogenous constant and x ≡ I/K . From (21) and the definition of
σ , we derive σ = x/(x + z̄), which features an asymptote at x = −z̄. We have
set the steady-state value for x at x∗ = 0.11 and we choose z̄ = 0.532, implying
steady-state adjustment costs of about 0.2% of output. The latter value is roughly
in line with that employed by Mendoza (1991), who calibrates adjustment costs
of 0.1% of output. The degree of physical capital mobility is σ = 0.17.

The pure rate of time preference (α) is used as a calibration parameter. Its implied
value is 3.91%. Once the parameters are set, all other information on output shares,
Tobin’s q, and the output–capital ratio can be derived.20 We find an investment-
output ratio of 22.2% and a consumption-output ratio of 57.8%. Given the fixed
rate of interest, our calibration yields rising individual consumption profiles in the
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finite-horizon model. All four characteristic roots are complex-valued. The roots
feature two negative and two positive real parts (i.e., ν, ν̄ = −0.0204 ± 0.0590i

and λ, λ̄ = 0.0609 ± 0.0587i, where i denotes the imaginary unit). Note that in
the special case of infinite horizons, we employ the same fundamental parameters,
except that we set β = 0 and r = α = 0.04.

Figure 1 shows the parameter values for which the model is stable while distin-
guishing between real roots (yielding noncyclical dynamics) and complex roots
(yielding cyclical dynamics). The dashed line represents the upper bound of the
stable region in the finite-horizon model (i.e., combinations of η and θL for which
φ = φ̂). Figure 1a shows that it lies above the dotted line (representing the bound
φ̄, which also defines the upper stability bound for the infinite-horizon model),
indicating that the stable region is smaller for infinite horizons. Indeed, the critical
η for which the infinite-horizon model is still stable at benchmark values (see the
asterisk) lies below the calibration point (denoted by C). The latter is situated in
the stable, cyclical region, where the cycles are of first-order magnitude. The solid
line (demarcating the upper bound on the noncyclical region) shows that a smaller
value of θL needs to be compensated for by a higher η to obtain cycles. In the
absence of external increasing returns to scale (i.e., η = 1), we end up on the
horizontal axis of Figure 1a, yielding a stable (noncyclical) outcome. The solid
line approaches the θL-axis only if θL → ∞, whereas it approaches the η-axis
at relatively small values (i.e., η = 3.11, not drawn). Figure 1b shows that for
β = 0 or η = 1 we can never end up in the cyclical region, reflecting the real
nature of the roots. For the benchmark value of η = 1.30, the infinite-horizon
model is unstable. Taking a slightly smaller value (i.e., η = 1.25), brings us into
the saddle-path stable region. The lower part of the figure shows that for smaller
values of η, a higher β is needed to take the economy into the cyclical range.
In sum, all three elements (i.e., endogenous labor supply, external economies of
scale, and finite horizons) are necessary to give rise to cyclical dynamics.

4. THE MACROECONOMIC EFFECTS OF FISCAL POLICY

This section studies the short-run, transitional, and long-run effects of unantici-
pated and permanent fiscal policy shocks (i.e., G̃ > 0) financed by lump-sum taxes.
Unanticipated shocks are defined as shocks for which the dates of announcement
and implementation of the policy change coincide. The sensitivity of the results
to alternative parameterizations is studied. First, an analytical discussion of the
long-run results is provided. Next, the impact and transitional effects are quantified
and visualized.

4.1. Long-Run Analytical Results

The analytical expressions for the long-run allocation effects are obtained by
solving (19), which yields [K̃(∞), q̃(∞), C̃(∞), Ã(∞)]′ = −1�, where � is
the vector of shock variables, −1 is the inverse of , and t → ∞ denotes the
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FIGURE 1. Stability regions for various values of η, θL, and β. Notes: The solid line represents the upper bound of the stable, noncyclical region for
the finite-horizon model, the dotted line demarcates the upper bound of the stable region in the infinite-horizon model, and the dashed line denotes
the lower bound of the unstable region in the finite-horizon model. The area in between the solid line and the dashed line represents parameter
combinations for which the finite-horizon model yields stable, cyclical dynamics. C denotes the calibration point and ∗ indicates a value of η

(given θL = 2.25) for which the infinite-horizon model is still stable.
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long run. The response of the investment system is

K̃(∞)

G̃
= ηεLφ̄

φ̄ − 1

L̃ (∞)

G̃
= −δ12δ23δ34ωG

|| > 0,
q̃(∞)

G̃
= 0, (22)

and that of the savings system is

dC(∞)

dG
= δ34δ12δ21

|| � 0,
Ã(∞)

G̃
= δ33ωG

|| > 0, (23)

where δ12 is unambiguously positive and || > 0 denotes the determinant of .
For the case of finite horizons (i.e., r > α), the elements of  take on the following
signs: δ33 > 0 and δ34 < 0. We can now demonstrate the importance of the labor
supply effect. If labor supply is exogenous, it follows that δ21 > 0 and δ23 = 0.
Consequently, a rise in public spending does not affect the long-run capital stock
[see equation (22)]. Equation (23) shows that public consumption crowds out
private consumption one for one in the long run. If labor supply is endogenous
(φ > 1 and thus δ23 > 0), the long-run capital stock and employment both rise.
Interestingly, the sign of the effect on long-run private consumption depends on the
size of the labor supply effect. If 1 ≤ φ < φ̄ (so that δ21 > 0), private consumption
falls, whereas for φ̄ < φ < φ̂ (so that δ21 < 0), private consumption rises. To
clarify the long-run relationship between private consumption and employment,
we introduce the following two expressions:21

φ − φ̄

φ̄
K̃(∞) = (φ − 1) C̃(∞), (24)

ηεLL̃(∞) = (φ − 1)

[
1

φ̄
K̃(∞) − C̃(∞)

]
. (25)

Equation (24) describes long-run capital market equilibrium. As a result of open-
ness, the long-run supply of capital is horizontal; that is, r̃K(∞) = 0. If φ > φ̄

(φ < φ̄), long-run capital demand is upward (downward) sloping. In either case,
an increase in private consumption leads to a downward shift in capital demand.
Equation (25) describes long-run labor market equilibrium. Intuitively, an in-
crease in K̃ (∞) boosts equilibrium employment via demand whereas an increase
in C̃ (∞) reduces employment via the fall in the supply of labor. Using (24) and
(25), we can eliminate K̃ (∞) and derive the long-run relationship between private
consumption and employment:

C̃(∞)

L̃(∞)
= ηεL(φ − φ̄)

(φ − 1)(φ̄ − 1)
� 0, φ � φ̄. (26)

As was pointed out above, a fiscal impulse increases both employment and the
capital stock in the long run. In contrast to the perfectly competitive model (for
which φ must be less than φ̄), private consumption rises if the labor supply effect is
large (i.e., φ > φ̄). In this case, equation (24) shows that capital market equilibrium
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TABLE 2. Allocation effects in the finite- and infinite-horizon models

Infinite horizons (β = 0) Finite horizons (β > 0)

η = 1.00 η = 1.25 η = 1.00 η = 1.25 η = 1.30
(1) (2) (3) (4) (5)

dY (0)

dG
0.4514 0.0902 0.4503 0.1625 0.0342

dY (∞)

dG
1.1417 3.2168 1.1194 1.4505 1.5197

dC (0)

dG
−0.2931 −0.0364 −0.2924 −0.0656 −0.0125

dC (∞)

dG
−0.2931 −0.0364 −0.2874 −0.0164 0.0402

dI (0)

dG
0.4103 0.2240 0.4108 0.3352 0.2507

dI (∞)

dG
0.2539 0.7154 0.2490 0.3226 0.3380

dX(0)

dG
−0.0053 −0.0088 −0.6682 −1.1070 −1.2040

dX(∞)

dG
0.0014 0.0123 0.1578 0.1443 0.1415

L̃(0)

G̃
0.0374 0.0212 0.1324 0.0382 0.0077

L̃(∞)

G̃
0.2283 0.4541 0.2239 0.2048 0.2008

K̃(0)

G̃
0 0 0 0 0

K̃(∞)

G̃
0.2283 0.6434 0.2239 0.2901 0.3004

w̃(0)

G̃
−0.0425 −0.0032 −0.0424 −0.0057 −0.0009

w̃(∞)

G̃
0 0.1892 0 0.0853 0.1031

Notes: Unless indicated otherwise, all parameters are set at their benchmark values (see Table 1). The infinite-
horizon model sets r = α and β = 0. The finite-horizon model is represented by r > α and β = 0.015. The
benchmark calibration of η = 1.30 yields an unstable outcome in the infinite-horizon model (see also Figure 1),
explaining why this column is not presented.

is restored at a higher level of consumption. Intuitively, a given rise in investment
yields more output as a result of Ethier-productivity effects, thereby creating room
for a rise in private consumption.

4.2. Quantitative Short-Run and Long-Run Effects

Table 2 summarizes numerical results for the impact effect (recorded at t = 0)
and the long-run effect (taken at t → ∞) of a fiscal shock of size G̃ = 0.1. We
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consider three calibrations for the finite-horizon case (β > 0): (i) the benchmark
calibration of η = 1.30 (yielding a large labor supply effect, that is, φ̄ < φ < φ̂);
(ii) the alternative case of η = 1.25 (generating a small labor supply effect, that is,
1 < φ < φ̄); and (iii) η = 1.00 (in which case there are no external economies of
scale). Under infinite horizons (i.e., β = 0), we consider the latter two calibrations
only, owing to the instability of the model for the benchmark value of η. For the
size of output multipliers, we find the following two results. First, short-run output
multipliers are shown to fall short of those found in the long run irrespective of the
type of model. Second, for the benchmark calibration, long-run output multipliers
are substantially greater than unity, reflecting the presence of external economies
of scale.

External economies of scale increase long-run output multipliers, implying that
input diversity (generated by monopolistic competition) truly matters. But external
economies of scale decrease short-run output multipliers [compare columns (1)–
(2) and (3)–(5)]. Because of the Ethier-productivity effects, employment rises by
less than without external economies of scale, thus yielding a smaller output gain.
The external economies of scale (if η = 1.3) are responsible for a rise in long-run
private consumption (see also the first expression of (23) and the surrounding
discussion). Long-run private consumption and employment both rise [see also
(26)]. Because of the predetermined capital stock, public consumption crowds out
short-run private consumption.

Without Ethier-productivity effects [see columns (1) and (3)],22 we obtain a
long-run output multiplier a little above unity. In this case, the long-run output
multipliers of the finite- and infinite-horizon models are very similar in size.23

Consumption multipliers are negative both in the short and in the long run,
which is in line with standard findings in the literature. Long-run employment
effects are smaller and wage effects are larger than in the benchmark model.
Intuitively, without Ethier-productivity effects, the long-run capital-labor ratio
is unaffected by the fiscal shock, explaining why steady-state wages do not
change.

4.3. Transitional Dynamics

We use the analytical impulse response functions (as derived in Appendix A.4)
to plot impulse-response diagrams for the key macroeconomic variables over 200
years. We first discuss the dynamic linkages between variables for the benchmark
calibration (see the solid line in Figure 2). On impact, private consumption is
crowded out by public consumption, owing to the rise in lump-sum taxes that is
required to balance the government’s budget. Consequently, households supply
more labor (via the negative wealth effect on labor supply), which pushes down
wages in the short run (not shown in the figure). Given the predetermined capital
stock in the short run, the capital–labor ratio falls and output rises. Tobin’s q rises,
reflecting a rise in the marginal productivity of capital. Accordingly, private in-
vestment rises. The combined increase in investment and public spending exceeds
the fall in private consumption thereby boosting domestic absorption. Because the
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FIGURE 2. Permanent spending shock (η = 1.30, various values of θL). Notes: θL takes on
the values 0.50 (dashed line), 2.25 (solid line), and 2.5355 (dotted line), respectively. The
other parameters are set at their benchmark values.

output increase falls short of the rise in domestic absorption in the short run, the
trade account swings into deficit. Net foreign debt starts accumulating.

Private investment increases the physical capital stock over time and pushes
up the capital–labor ratio. Because capital and employment are modeled as
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cooperative factors of production, the demand for labor will increase too. Conse-
quently, wages rise gradually. Capital accumulation induces a fall in the marginal
product of capital, gradually pushing down Tobin’s q. The increment in the capital–
labor ratio falls and thus Tobin’s q rises again over time (and even goes through
various cycles). In the new steady state, wages have risen, owing to an increased
capital–labor ratio. Long-run private consumption rises, reflecting a rise in employ-
ment induced by capital accumulation. In the new steady state, the current account
is balanced again, so that the trade balance surplus offsets interest payments on
foreign debt. Because of the cyclical feature of the transitional dynamics, time
periods with a negative association between consumption multipliers and output
multipliers are followed by time periods with a positive association.

Figure 2 also presents transition paths for alternative values of θL. The dotted
line shows the value of θL for which the real parts of the stable complex roots
turn zero; that is, θL = 2.5355, in which case we find φ = φ̂ ≡ 2.732. The
dynamics of the system can then be characterized as a vortex, which generates
cycles with a constant amplitude. Hence, there is no steady state. The dashed lines
in Figure 2 represent a small value of θL for which the cycles disappear, owing to
characteristic roots that are real. It can be seen that the bulk of adjustment toward
the new steady state takes place during the first 20 years. The solid line is the
benchmark value of θL = 2.25, which shows dampened cycles of a first-order
nature. Long-run output effects are positive and increasing in θL. Furthermore,
the amplitude of the cycles increases for larger values of θL within the feasible
region.

Figure 3 plots the impulse response functions for β = 0, β = 0.015, and
β = 0.05. Finite horizons and infinite horizons yield very different transitional
dynamics. The transition is monotonic in the infinite-horizon case (dashed line),
whereas it is nonmonotonic for finite horizons (solid and dotted lines). Infinitely
lived households face flat individual consumption profiles, represented by the
horizontal dashed line in the consumption panel. This economy gradually ac-
cumulates domestic capital over time, explaining the smooth rise in output. In
the finite-horizon model, the long-run output effects of fiscal policy are unaf-
fected by β (see the coinciding dotted and solid lines). Intuitively, the rate of
interest is fixed, which pins down the capital-labor ratio and thus the long-run
marginal product of capital. The size of β, however, does affect the transi-
tional dynamics. A larger β gives rise to a less pronounced peak in the output
path.

5. CONCLUSIONS

The paper has analyzed the dynamic macroeconomic effects of fiscal policy
shocks. To this end, a Blanchard–Yaari model for a small open economy is ex-
tended to include (i) monopolistic competition in the intermediate goods sector
(yielding Ethier-productivity effects in the final goods sector) and (ii) endoge-
nous intertemporal labor supply. Such a framework gives rise to an endogenously
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FIGURE 3. Permanent spending shock (η = 1.25, various values of β). Notes: η is set to
1.25 and β takes on the values 0 (dashed line), 0.015 (solid line), and 0.050 (dotted line),
respectively. The other parameters are set at their benchmark values.

determined (nonhysteretic) steady state, whereas the standard infinite-horizon
model features hysteresis. The comparative dynamic properties of the finite-
horizon model are compared with those of an infinitely lived representative agent
model.
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A number of key results can be extracted from the analysis. The first is that finite
and infinite horizons give rise to very different impulse responses of a fiscal shock.
The transition paths in the finite-horizon case feature endogenously determined
(dampened) cycles of a first-order nature. All three elements (i.e., endogenous
intertemporal labor supply, Ethier-productivity effects, and finite horizons) are
necessary to obtain cyclical dynamics. In the benchmark calibration, the infinite-
horizon model is unstable, suggesting that finite horizons extend the parameter
range for which a stable steady state materializes. Intermediate values of the Ethier
parameter (for which both models are stable) give rise to cycles of a second-order
nature in the finite-horizon model, whereas the transition is monotonic in the
infinite-horizon case. The two models deliver virtually identical impulse responses
if the Ethier-productivity effect is switched off. Consequently, the often assumed
approximate validity of infinite-horizon models is tenuous in an environment
characterized by Ethier-productivity effects.

A second result is that the sign of steady-state output multipliers of fiscal policy
shocks is robust to parameter changes. Both long-run and short-run output multipli-
ers are positive, where long-run output multipliers always exceed short-run output
multipliers. The size of output multipliers, however, is affected by alternative
parameterizations. Stronger Ethier-productivity effects boost output multipliers,
and more so in the infinite-horizon model. Note that imperfect competition in itself
does not affect the size of output multipliers. Smaller intertemporal substitution
elasticities of labor supply reduce output multipliers, possibly below unity.

Another key result is that the sign of steady-state consumption multipliers is
not robust to parameter changes. In the benchmark calibration, a fiscal impulse
increases private consumption, reflecting strong Ethier-productivity effects. The
latter increase the productivity of inputs, implying that a given rise in investment
yields a larger increase in the economy’s resources. In this context, a rise in
public spending and investment does not have to come at the expense of private
consumption. For small Ethier-productivity effects, however, we obtain the classic
result of a negative private consumption multiplier.

There are of course many aspects of fiscal policy that have not been addressed
here, such as the intergenerational welfare effects of fiscal policy, the output effects
of anticipated fiscal shocks, and the optimal level of public spending. We leave
these extensions for further research.

NOTES

1. The Stability and Growth Pact applied to the third stage of Economic and Monetary Union,
which began on January 1, 1999. The Stability and Growth Pact was implemented to ensure that EU
member states maintained budgetary discipline after the introduction of the euro.

2. There are many remotely connected contributions. Buiter (1981), Frenkel and Razin (1987),
and Buiter and Kletzer (1991) study public spending policy in two-country models. Cardia (1991)
and Mendoza (1991) analyze fiscal policy in a real business cycle (RBC) model. Giovannini (1988),
Sen and Turnovsky (1989, 1990), and Bovenberg (1993) also employ small open economy models but
focus on tax or tariff policy rather than on public spending policy.
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3. Devereux et al. (1996), Heijdra (1998), and Heijdra and Ligthart (2007) analyze fiscal policy in a
closed economy in which goods markets are imperfectly competitive. The first paper takes a stochastic
RBC approach, whereas the latter two assume a deterministic setting.

4. If the rate of interest exceeds (falls short of) the pure rate of time preference, households
permanently accumulate (deplete) foreign assets. To obtain a steady state, the exogenous world rate of
interest should equal the pure rate of time preference. See Turnovsky (2002).

5. The steady state of the infinite-horizon model depends on the initial conditions. This implies
that temporary shocks will have permanent effects on the economy; that is, the equilibrium dynamics
possesses hysteresis (or nonstationarity in the stochastic environment of an RBC model).

6. Authors have used various specifications of overlapping generations. Giovannini (1988), Cardia
(1991), and Bovenberg (1993) also use the Blanchard–Yaari framework. Buiter (1981) and Buiter and
Kletzer (1991) employ a Diamond (1965)-style life-cycle model.

7. Schmitt-Grohe and Uribe (2003) consider four instruments to arrive at an endogenously deter-
mined steady state: (i) an endogenous discount factor; (ii) a debt-elastic interest premium; (iii) convex
portfolio adjustment costs; and (iv) complete asset markets.

8. Employing habit formation as a stationarity-inducing device in a framework of infinitely lived
households, Karayalçin (2003) also finds cycles of first-order magnitude.

9. The existence of imperfect competition is a necessary but not a sufficient condition for this
result. Indeed, in the absence of Ethier-productivity effects, finite and infinite horizons yield very
similar impulse responses originating from a fiscal shock, supporting the widely held view that finite
horizons can be approximated by infinite horizons (see Bernheim, 1987).

10. Rising individual consumption profiles imply a positive stock of financial assets in the initial
equilibrium. By using (5) in steady state, we arrive at (r − α)C∗ = βεC(α + β)A∗, where asterisks
indicate steady-state values of variables. For the general case of β > 0 and r − α > 0, we find that
A∗ > 0.

11. We use C(t) = εC(α + β)[A(t) + H(t)] and C(t, t) = εC(α + β)H(t), where H(t)

is “full” human wealth, that is, the after-tax value of the household’s time endowment: H(t) ≡∫ ∞
t [w(τ) − T (τ)] e(r+β)(t−τ )dτ.

12. Without adjustment costs we have � (·) = I (t)/K(t) (and thus σ = 0), which implies that
q = 1 (from (8)). As a result, q(t) and K(t) adjust instantaneously to their steady-state levels,
reflecting an infinite rate of investment in an infinitesimally small time period (i.e., perfect physical
capital mobility). Consequently, (9) reduces to rK = r + δ, which is the familiar rental rate derived in
a static framework.

13. See Broer and Heijdra (2001) for an analysis of the case in which η 	= µ. They show that if
η > µ, it is socially optimal for society to produce many varieties. In that case, lump-sum subsidies to
firms are required to take the decentralized market equilibrium to the socially optimal outcome.

14. We do not explicitly distinguish between lump-sum tax and debt financing. See Heijdra and
Ligthart (2006, 2007) for analyses pertaining to debt financing in a small open economy and the closed
economy, respectively.

15. Coto-Martinez and Dixon (2003) do not distinguish between internal and external economies
of scale.

16. The bound φ̂ is discussed in Appendix A.2 and numerically determined in Figure 1.
17. If φ > φ̂, the real parts of the complex roots turn positive, thus yielding an outright unstable

solution.
18. In their analysis of the current account effects of tariff policy, Sen and Turnovsky (1990) also

find hysteresis in the capital stock.
19. It is easy to see that limz̄→∞ � (x) = x; that is, the installation function is linear (and adjustment

costs are zero) for large z̄.
20. Equations (7) and (8) are solved, using (21), to yield (I/K)∗ = z̄[e(δ/z̄) − 1] and q∗ = e(δ/z̄).
21. Equations (24) and (25) are obtained from equations (A.4) and (A.2), respectively.
22. The case without Ethier-productivity effects is represented by η = 1, which implies that

φ = 1.89 < φ̄ = 2.404.
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23. The transition paths are also virtually identical, explaining why we will not cover the special
case of η = 1 in Section 4.3.

24. Recall that the exponential form of any complex number is e(b±θk i)t = ebt [cos θkt ± i sin θkt],
where k = {ν, λ} and b = {−h∗, r∗}. It follows that the sign of the real part (denoted by b) dictates
stability.

25. L{G, s} is the Laplace transformation of G(t) evaluated at s, which is given by L{G, s} ≡∫ ∞
0 G(t)e−st dt . Intuitively, L{G, s} represents the present value of G(t), using s as the discount rate.

26. The details of the derivations are more straightforward than for complex roots and can be found
in Heijdra and Ligthart (2008).

27. The cyclical terms also drop out from the finite-horizon model if θL is sufficiently low so that
the stable roots are real and distinct. See Heijdra and Ligthart (2008) for a derivation of the expressions.
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APPENDIX
A.1. LOG-LINEARIZATION

Log-linearizing the key expressions of the finite-horizon model of Section 2 around
an initial steady state (assuming that F ∗ = 0) yields Table A.1. The following

https://doi.org/10.1017/S1365100509080286 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509080286


24 BEN J. HEIJDRA AND JENNY E. LIGTHART

TABLE A.1. The log-linearized model

˙̃K(t) = ȳωI [Ĩ (t) − K̃(t)] (AT1.1)
˙̃q(t) = rq̃(t) − (1 − εL)ȳ(Ỹ (t) − K̃(t)) (AT1.2)
˙̃C(t) = (r − α)[C̃(t) − (1/ωA)Ã(t)] (AT1.3)
˙̃A(t) = r[Ã(t) + εL(w̃(t) + L̃(t)) − ωT T̃ (t) − ωCC̃(t)] (AT1.4)

0 = ωGG̃(t) − ωT T̃ (t) (AT1.5)
L̃(t) = Ỹ (t) − w̃(t) (AT1.6)

r̃K(t) = Ỹ (t) − K̃(t) (AT1.7)
q̃(t) = σ [Ĩ (t) − K̃(t)] (AT1.8)
L̃(t) = θL[w̃(t) − C̃(t)] (AT1.9)
Ỹ (t) = η[εLL̃(t) + (1 − εL)K̃(t)] (AT1.10)(

η − 1

η

)
Ỹ (t) = εLw̃(t) + (1 − εL)r̃K(t) (AT1.11)

Ã(t) = ωA[q̃(t) + K̃(t)] + F̃ (t) (AT1.12)

Notes: The following definitions are used: εL ≡ w∗L∗/Y ∗, ȳ ≡ Y ∗/(q∗K∗), ωA ≡ r/ȳ, ωC ≡ C∗/Y ∗,
ωI ≡ I ∗/Y ∗, ωG ≡ G∗/Y ∗, ωT ≡ T ∗/Y ∗, θL = (1 −L∗)/L∗, and σ ≡ −(I/K)∗(� ′′/� ′) > 0. Asterisks
indicate steady-state values of variables. A tilde (˜) denotes a relative change for most variables; for
example, C̃(t) ≡ dC(t)/C∗. Financial assets [i.e., A(t), F (t)], however, are scaled by steady-state output
and multiplied by r; for example, Ã(t) ≡ rdA(t)/Y ∗.

notational conventions are employed. A tilde (˜) denotes a relative change, such as
C̃(t) ≡ dC(t)/C∗, for most variables. Financial assets [i.e., A(t) and F(t)], however, are
scaled by steady-state output and multiplied by r , for example, Ã(t) ≡ rdA(t)/Y ∗. Time
derivatives are defined as ˙̃C(t) ≡ dĊ(t)/C∗, except for financial assets, such as ˙̃A(t) ≡
rdȦ(t)/Y ∗.

Conditional on the state variables and the policy shocks, the static part of the model can
be condensed to the following quasi-reduced form expressions:

Ỹ (t) = ηφ (1 − εL) K̃(t) − (φ − 1)C̃(t), (A.1)

ηεLL̃(t) = (φ − 1)[η(1 − εL)K̃(t) − C̃(t)], (A.2)

ηεLw̃(t) = (ηεL − 1)Ỹ (t) + η(1 − εL)K̃(t), (A.3)

r̃K(t) = [ηφ(1 − εL) − 1]K̃(t) − (φ − 1)C̃(t). (A.4)

Equation (A.1) is obtained using (AT1.6), (AT1.9), and (AT1.10). Using (A.1) and (AT1.6),
we can also solve for L̃(t), which yields (A.2). Equation (A.3) is derived from (AT1.6)
and (AT1.10). The expression for the rental rate follows from combining (AT1.7) and
(A.1). Given the level of private consumption, the capital demand curve slopes downward
if 1 < φ < φ̄, but slopes upward for φ̄ < φ < φ̂ (Definition 1).

A.2. STABILITY

Using (A.1), (A.2), and the expressions in Table A.1, the system of equations can be written
as in (19). Proposition 1 pertains to the general finite-horizon case, whereas Proposition 2
considers infinite horizons.
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Proof of Proposition 1

For the general case of finite horizons, the following nonzero elements of  have an
unambiguous sign:

δ12, δ22, δ33, δ41, δ44 > 0, (A.5)

δ34, δ43 < 0. (A.6)

The sign of δ21 depends on the strength of the labor supply effect:

δ21 � 0, φ � φ̄ ≡ 1

η(1 − εL)
. (A.7)

If the labor supply is endogenous (i.e., φ > 1), we can also determine that δ23 > 0.

Solving the dynamic system (19) gives rise to a characteristic polynomial of the fourth
order,

P(s) ≡ |sI − | = ϕ (s) ψ (s) − δ12δ23δ34δ41 = 0, (A.8)

where I is the identity matrix and ϕ (s) and ψ (s) are

ϕ (s) ≡ (s − δ33) (s − δ22) − δ34δ43, (A.9)

ψ (s) ≡ s (s − δ22) − δ12δ21. (A.10)

We can rewrite P(s) as

P(s) = s4 + a3s
3 + a2s

2 + a1s + a0 = 0, (A.11)

where the ai’s are

a3 ≡ −tr() = −(2δ22 + δ33) = −(3r − α) < 0,

a2 = δ2
22 − δ12δ21 + 2δ22δ33 − δ34δ43 ≷ 0,

a1 = δ12δ21(δ22 + δ33) + δ22 [δ34δ43 − δ22δ33] ≷ 0,

a0 ≡ || = −δ12 [δ12(δ22δ33 − δ34δ43) + δ23δ34δ41]

= r

ωA

ȳ2ωI

σ
(1 − εL) (r − α)[ωG(φ − 1) + φχ(ωC − ωA)] > 0.

Note that we have made use of −tr() = −(ν + ν̄ + λ + λ̄) and || = νν̄λλ̄, where ν̄

and λ̄ are the characteristic roots of the investment system and ν and λ are the roots of the
savings system. If all roots are complex, we find

ν ≡ −h∗ + θνi, ν̄ ≡ −h∗ − θνi, λ ≡ r∗ + θλi, λ̄ ≡ r∗ − θλi, (A.12)

where an overbar denotes a complex conjugate and i is the imaginary unit. We define h∗

and r∗ to be positive. The first terms of the roots in (A.12) represent the real parts.24 If the
roots are real, the cyclical terms, θk , disappear from (A.12).

The positive determinant (see a0 > 0) may indicate either two positive roots and two
negative roots or four positive roots (in which case the system is unstable). The case of
four negative roots—giving rise to an indeterminate steady state [see Benhabib and Farmer
(1994, p. 30)]—is excluded because of the positive trace of  (i.e., tr() > 0). To prove
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local stability, we can use Routh’s criterion [cf. Shi and Epstein (1993)], which considers the
number of sequential sign changes in the first column of the Routh scheme as an indicator
of the number of unstable roots. The first column of the Routh scheme corresponding to
(A.11) is

1, a3, b1, c1, a0, (A.13)

where we have used that a4 = 1. The coefficients b1 and c1 are defined as

b1 ≡ a2 − a1

a3
, c1 ≡ a1 − b2

b1
a3, b2 = a0. (A.14)

We note from (A.11) that a3 < 0, generating already one sign change when we move from
the first to the second element on the left-hand side of (A.13). The signs of b1 and c1 are
not determined yet, because we do not know the signs of a1 and a2. This gives rise to four
possible cases: (i) a1 > 0 and a2 > 0; (ii) a1 < 0 and a2 < 0; (iii) a1 > 0 and a2 < 0; and
(iv) a1 < 0 and a2 > 0. It is immediately evident that cases (i) and (ii) yield unambiguously
two sign changes in (A.13). As a result, we find two stable roots and two unstable roots. The
sign changes in case (iii) are as follows. If b1 > 0, we find c1 > 0, giving rise to two sign
changes. If b1 < 0 then c1 ≶ 0. In either case, there are just two sign changes. This leaves
us with case (iv), for which further restrictions have to be imposed to determine the number
of sign changes. If b1 < 0, we find two sign changes. Conditional on b1 > 0 and φ < φ̂,
we get c1 > 0, thus yielding two sign changes. Thus, for 1 � φ < φ̂, the equilibrium is
unique and saddle-path stable.

Proof of Proposition 2

For infinite horizons, we find δ33 = δ34 = 0, so that the third row of  consists of zeros.
The polynomial takes the form

P(s) ≡ s(s − δ22)[s
2 − δ22s − δ12δ21] = 0. (A.15)

The roots are thus real (assuming that φ < φ̄) and distinct:

h∗
1 = 0, (A.16)

−h∗
2 = δ22 −

√
δ2

22 + 4δ12δ21

2
, (A.17)

r∗
1 = δ22, (A.18)

r∗
2 = δ22 +

√
δ2

22 + 4δ12δ21

2
, (A.19)

yielding tr() = 2r . If the labor supply effect is small (i.e., φ < φ̄), it follows readily that
δ21 ≡ (1 − εL) ȳ[1 − ηφ (1 − εL)] > 0. Because δ12 > 0 and δ22 > 0, the discriminant in
(A.17) and (A.19) is positive, so that

√
δ2

22 + 4δ12δ21 > δ22 > 0. We thus find that −h∗
2 < 0

and r∗
2 > 0. The steady state is well defined because the number of nonpredetermined

variables equals the number of roots with strictly positive real parts [cf. Giavazzi and
Wyplosz (1985)]. For φ ≥ φ̄, the discriminant may turn negative, so that −h∗

2 and r∗
2 are

complex conjugates with real part δ22 > 0. Because the real part is positive, the steady state
is unstable.
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A.3. SOLVING FOR THE COMPARATIVE DYNAMICS

The Laplace transform method of Judd (1982) is used to solve the model. By taking the
Laplace transform of (19), and noting that K̃(0) = 0 and Ã (0) = ωAq̃ (0), we obtain

�(s)

⎡
⎢⎢⎢⎣
L{K̃, s}
L{q̃, s}
L{C̃, s}
L{Ã, s}

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
q̃(0)

C̃(0)

ωAq̃ (0) − L{γA, s}

⎤
⎥⎥⎥⎦ , (A.20)

where �(s) ≡ |sI −| and L denotes the Laplace transform operator.25 By premultiplying
both sides of (A.20) by

�(s)−1 ≡ 1

(s − ν)(s − ν̄)(s − λ)(s − λ̄)
adj �(s) (A.21)

and rearranging, we find the following expression in Laplace transforms:

(s − ν)(s − ν̄)

⎡
⎢⎢⎢⎢⎣
L{K̃, s}
L{q̃, s}
L{C̃, s}
L{Ã, s}

⎤
⎥⎥⎥⎥⎦ =

adj �(s)

⎡
⎢⎢⎢⎣

0
q̃(0)

C̃(0)

ωAq̃ (0) − L{γA, s}

⎤
⎥⎥⎥⎦

(s − λ)(s − λ̄)
. (A.22)

The adjoint matrix is equal to

adj �(s)

≡

⎡
⎢⎢⎢⎣

(s − δ22) ϕ (s) δ12ϕ (s) δ12δ23 (s − δ22) δ12δ23δ34

δ21ϕ (s) + δ23δ34δ41 sϕ (s) δ23s (s − δ22) δ23δ34s

δ34δ41 (s − δ22) δ12δ34δ41 (s − δ22) ψ (s) δ34ψ (s)

δ41 (s − δ22) (s − δ33) δ12δ41 (s − δ33) δ43ψ (s) + δ12δ23δ41 (s − δ33) ψ (s)

⎤
⎥⎥⎥⎦ .

A.4. ANALYTICAL IMPULSE RESPONSES

This section derives analytical impulse response functions of fiscal shocks. The mathe-
matical expressions pertain to the case of complex roots. We can easily show that both the
impact and the long-run results are still valid even if the stable roots are real and distinct (the
unstable roots can be complex or real). In the latter case, the expressions for the transition
terms differ from those under complex roots because the cyclical terms disappear.26

The jumps in C̃(0) and q̃ (0) can be derived from (A.22). Because the rank of adj �(s)

equals 1 (for s = λ, λ̄) either row of the matrix can be used. Using the first row of adj �(s),
for example, we get a system of two equations in C̃(0) and q̃(0), which can be solved to
yield [

q̃ (0)

C̃ (0)

]
= δ23δ34

[
ϕ (λ) + δ23δ34ωA δ23 (λ − δ22)

ϕ(λ̄) + δ23δ34ωA δ23(λ̄ − δ22)

]−1 [
L{γA, λ}
L{γA, λ̄}

]
. (A.23)

The analytical expressions for the transition paths [see (A.24)–(A.27) below] feature
temporary transition terms and a general adjustment term, which are specified in Definitions
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2 and 4. The transition and adjustment terms consist of exponential functions weighted by
functions generating periodic cycles.

DEFINITION 2. The first temporary transition term,

T1 (h∗, θν, t) ≡ 1

θν

e−h∗ t sin θνt,

has properties (i) T1 (h∗, θν, 0) = 0, and (ii) limt→∞ T1 (h∗, θν, t) = 0.

DEFINITION 3. The second temporary transition term,

T2 (h∗, θν, t) ≡ e−h∗ t

[
cos θνt − h∗

θν

sin θνt

]
,

has properties (i) T2 (h∗, θν, 0) = 1 and (ii) limt→∞ T2 (h∗, θν, t) = 0.

DEFINITION 4. The general adjustment term is given by

A (h∗, θν, t) ≡ 1

h∗2 + θ2
ν

[
1 − e−h∗t

(
cos θνt + h∗

θν

sin θνt

)]
,

which has properties (i) A(h∗, θν, 0) = 0; (ii) limt→∞ A(h∗, 0, θν, t) = 1/[(h∗)2 + θ2
ν ];

and (iii) limt→∞ A(h∗, θν, t) = 0.

We first study transition in the investment system. The transition path for the capital
stock is derived by taking the inverse Laplace transform of the first row of (A.22):

K̃ (t) = δ12q̃ (0) T1 (h∗, θν, t) − δ12δ23δ34rωGG̃

λλ̄
A (h∗, θν, t) . (A.24)

Similarly, we can derive the path for Tobin’s q:

q̃(t) = q̃(0)T2(h
∗, θν, t) + [(λ + λ̄ − δ22 − δ33)q̃(0) + δ23C̃(0)]T1(h

∗, θν, t). (A.25)

The second term in (A.24) drops out for exogenous labor supply (i.e., δ23 = 0) or for infinite
horizons (i.e., δ34 = 0) or both. In addition, the cosine and sine terms disappear from the
transition terms for these cases.27 In this context, the adjustment speed to the new steady
state is driven by h∗.

We now turn to the savings system. The paths for private consumption and financial
capital are

C̃(t) = [δ34ωAq̃(0) + (λ + λ̄ − 2δ22)C̃(0)]T1(h
∗, θν, t)

+ C̃(0)T2(h
∗, θν, t) + δ34δ12δ21rωGG̃

λλ̄
A(h∗, θν, t), (A.26)

Ã(t) = [ωA(λ + λ̄ − δ22 − δ33)q̃(0) + δ43C̃(0)]T1(h
∗, θν, t)

+ ωAq̃(0)T2(h
∗, θν, t) − δ33δ12δ21rωGG̃

λλ̄
A(h∗, θν, t). (A.27)

Note that equations (A.1) and (A.3) can be used to derive the transition paths for Y (t), L(t),

and w(t). The paths for F(t) and I (t) follow from (AT1.12) and (AT1.8), respectively.
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