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Abstract

We study the effect of magnetic field in an implosion process achieved by radiation. A time-
varying sinusoidal magnetic field is seen to affect the continuous transition of space-like deto-
nation to time-like detonation at the core of implosion region. The oscillating varying magnetic
field has a significant effect in increasing the volume of the time-like detonation of the core of
implosion and also modifies the time of the implosion process. This transition can have signifi-
cant outcome both theoretically and experimentally in the areas of high-energy hadronization
of quark–gluon plasma matter and inertial confinement fusion efforts of fuels.

Introduction

The hydrodynamics of shock waves has found numerous applications in the field of fluid
dynamics, astrophysics, high-energy physics, and cosmology. A shock wave is a wave where
the disturbance in the medium propagates faster than the local speed of sound. At either
side of the interference, the thermodynamic variables vary discontinuously. It occurs when
there is a rapid compression or expansion of the system. The mass, momentum, and energy
conservation laws across the surface lead to the Rankine–Hugoniot (RH) and Taub equation
(Taub, 1948; Landau and Lifshitz, 1987) connecting the properties of the fluid on the either of
the discontinuity. The normal vector of the surface of discontinuity is space-like (SL), and the
wave propagation velocity is less than the speed of light.

Almost four decades later, it was realized (Csernai, 1987) that under some condition the
discontinuity of the surface could also be time-like (TL) and there can be a rapid phase tran-
sition. Arguing that if a system undergoes a rapid rarefaction, bubbles can form at different
spatial points which are causally disconnected. If the thickness of the surface forming bubbles
is very thin, the boundary between the two phases of matter becomes TL. The inflationary
model of the universe was thought to be one such example.

Such treatment was successful in describing the sudden and rapid hadronization of quark–
gluon plasma (QGP) in high-energy physics (Csernai, 1994) which would have been missed by
general SL fronts. In such dense matter, an implosion induced by fast burning can smoothly
take an SL detonation to TL detonation. TL detonation found limited use in astrophysics
(Mallick and Schramm, 2014) and in most practical purposes the shocks are slow.

Recently there have been experimental efforts to observe inertial confinement fusion (ICF)
(Casey et al., 2014; Hurricane et al., 2014; Park et al., 2014). The experiments failed due to the
appearance of Rayleigh–Taylor surface instabilities. Such instabilities can be avoided if the det-
onation front moves with the speed of light, which in turn can be achieved by radiation
(Csernai and Strottmann, 2015). Therefore, such a theoretical model can have a practical appli-
cation as well.

In this work, we carry forward the theoretical work by Csernai (1987) and show the effect
of magnetic field on the continuous transition from SL to TL detonation in implosion achieved
via radiation. In “Time-like detonation due to radiation” section II, we calculate the TL deto-
nation front due to radiation. In “TL detonation in the presence of magnetic field” section, we
introduce magnetic field in our calculation. In “Results” section, we present our result, and
finally in “Summary and conclusion” section, we draw our conclusion from our results.

Time-like detonation due to radiation

Here we have assumed that there is a spherical core filled with matter having vanishing opac-
ity. The core is surrounded by a rapidly igniting shell whose radiation is responsible for the
heating of the center. When the temperature reaches a specific value Tc, it follows an exother-
mic transition. Neglecting the compression of the fuel, the heating of the inner core is assumed
to be due to isotropic radiation. The radius of the shell (R) remain unchanged, R = constant.
The shell is ignited at time t0 = 0 at all points simultaneously. Q is the heat that the shell radi-
ates in unit time through a unit surface and κ be the fraction of heat absorbed by the matter.
Then at a distance r from the center of the core (ignoring the opacity of core and measuring
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the distance in units of R and time in the units of R/c) the change
in heat per unit time is

dQ
dt

= kQ
∫t
0
dt

∫2p
0

df
∫0
1
d(cos u)

d(t− |�r ′|)
|�r ′|2 , (1)

where r′2 = 1+ r2 − 2r cos u (only radiation that have reached
inside the radius r will contribute to heating of the matter).
Assuming R = c = 1, we have

dQ
dt

= kQ
∫t
0
dt

∫2p
0

df
∫0
1
d(cos u) (2)

d(t− (1+ r2 − 2rcos u)1/2)
1+ r2 − 2rcos u

.

From the property of the δ function, we can write

d(g(cos u)) = d(cos u− cos u0)
g′(cos u0)

and θ0 is the angle for which g(cos θ) is zero.
Defining the function g(cos θ) as

g(cos u) = t− (1+ r2 − 2r cos u)1/2,

we have

g′(cos u) = r

(1+ r2 − 2rcos u)1/2 .

For cos θ0, we have

t− (1+ r2 − 2r cos u0)1/2 = 0

⇒ cos u0 = 1+ r2 − t2

2r
.

Therefore, Eq. (2) becomes dependent on cτ distance covered
by the radiation in the range (1 − r) to (1 + r)

dQ
dt

= 2pkQ
r

∫a
1−r

= 2pkQ
r

[ln t|a1−r],

where

a =
1− r t , (1− r)
t (1− r) , t , (1+ r)
1+ r t . (1+ r).

⎧⎨
⎩

Integrating the above equation, we have

dQ
dt

= 2pkQ
r

0 t , (1− r)

ln
t

1− r
(1− r) , t , (1+ r)

ln
1+ r
1− r

t . (1+ r)

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(3)

If we ignore compression and assume heat capacity of the mat-
ter, Cv = constant, we can write

dT = dQ
Cv

⇒ T(r, t) = 1
Cv

∫
dQ
dt

( )
dt

T(r, t) = 2pkQ
Cvr

∫t
0
dt

0 t , (1− r)

ln
t

1− r
(1− r) , t , (1+ r)

ln
1+ r
1− r

t . (1+ r).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

On solving the above integral, we finally have

T(r, t) = 2pkQ
Cvr

0 t , (1− r)

t ln
t

1− r
− t + 1− r (1− r) , t , (1+ r)

t ln
1+ r
1− r

− 2r t . (1+ r).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(4)

Thus if t >1 + r and r→ 0 then

T(0, t) = lim
r�0

T(r, t),

which can be simplified as

T(0, t) = 2pkQ
Cv

lim
r�0

t
ln (1+ r) − ln (1− r)

r
− 2

[ ]

⇒ T(0, t) = 4pkQ
Cv

(t − 1).

(5)

The discontinuity surface is determined by contour T(r, t) =
Tc. The critical point (rc, tc), at which the SL and TL discontinu-
ities converge, is determined by the condition

∂r
∂t

( )
Tc

= ∂T
∂t

( )
Tc

/
∂T
∂r

( )
Tc

= 1.

Substituting the value for t >(1 + r) from Eq. (6) we have

tc = ln (1+ rc/1− rc)
((2/1− r2c ) − (1/rc)ln (1+ rc/1− rc)) ,

= (1− r2c ) ln
1+ rc
1− rc

( )1/2
[ ]−1

− 1
rc

{ }−1

.

(6)

TL detonation in the presence of magnetic field

To add a magnetic field in the first law of Thermodynamics, we
use Maxwell’s fields. The energy generated within a volume V
in time δt, by an electric field ε acting on current density ȷ is
given by (Wasserman, 2011)

dW = −dt
∫
V
ȷ · 1 dV .
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For the quasi static and reversible system, work done by the
system

dW = dt
∫
V
ȷ · 1 dV . (7)

Using Maxwell’s Equation (Ampere’s law in differential form)
and after simplification, we get

dW = dt
c
4p

∫
D · (H × 1) dV +

∫
H · (D× 1) dV

{ }[

− 1
4p

∫
dD
dt

1 dV

]
.

(8)

The second term of the RHS
�
D · (H × 1) dV can be written

in terms of the surface integral using Gauss Theorem. For large
distances, the surface integral can be neglected.

Using Maxwell’s Equation (Faraday’s law) and taking only
magnetic field part, Eq. (10) reduces to

dW = − 1
4p

∫
V
H · dB dV . (9)

Using the definition of magnetization density M, as
H = B− 4pM, Eq. (11) takes the form

dW = − 1
4p

∫
V
B dB dV + 4p

∫
V′
M dB dV

[ ]
.

Here, the term −(1/4p) �V B dB dV is total field energy integrated
over all space and can be absorbed into the internal energy
(Wasserman, 2011). The second term

�
V′ M dB dV is the integral

over the volume of magnetized matter and the term of our inter-
est. Talking only about the work done by the magnetized matter
and defining

∫
V′
MdV = M, (10)

the total work done by the magnetic field is given by

dW = −MdB. (11)

The first law of Thermodynamics can be written as (ignoring
the compression)

dQ = MdB. (12)

Therefore, if our system has both radiation and magnetic field
effect, the total heat transfer in the system given by two process,
one due to radiation and other due to magnetic field, and is
given by

dQTotal = dQRadiation + dQmagneticfield

dQtotal = dQ
dt

( )
dt +MdB.

(13)

Assuming that the matter interacts with the magnetic field, the
average magnetization can be given by

M = Nm2B
kBT

.

We should also mention that as we have neglected the com-
pression of the fuel, we do not have any multiplicative term
involving radiation and magnetic field. This is to say that we
have neglected the interaction between the two processes.
Substituting M in Eq. (15), we have

dQtotal = 2pkQ
r

0 t , (1− r)

ln
t

1− r
(1− r) , t , (1+ r)

ln
1+ r
1− r

t . (1+ r)

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
dt

+ Nm2B
kBT

dB (14)

and the temperature profile can be obtained from the equation

CvdT = dQtotal. (15)

Inserting the value of dQtotal from Eqs. (16) in (17), we have

dT = 2pkQ
rCv

0 t , (1− r)

ln
t

1− r
(1− r) , t , (1+ r)

ln
1+ r
1− r

t . (1+ r)

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
dt

+ Nm2B
CvkBT

dB. (16)

The above equation implies that only a time-varying magnetic
field can contribute to the heat (or the temperature). Therefore,
we discuss our results for a sinusoidal varying magnetic field.

Figure 1 shows the schematic of a model experimental setup,
illustrating the pellet (core surrounded by the shell) in an external
magnetic field. In (a) the pellet is kept inside a toroid, with the
radius of the toroid a being sufficiently larger than the dimension
of the pellet and in (b) the pellet is placed inside a long solenoid
(length a of the solenoid being ≫R). Then the magnetic field B
inside the pellet can be assumed to be spatially constant. The close
up of the pellet is illustrated in Figure 2, showing the cross-section

Fig. 1. Figure describing the (a) toroid and (b) solenoid coils giving rise to a spatially
constant magnetic field along the pellet. The magnetic field is constant as a is
assumed to be much greater than r. The magnetic field inside the pellet is therefore
uni-directional and constant. The current I is time-varying.
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of the pellet. The spatially constant magnetic field direction and 4π
radiation inside the pellet is explained in detail.

The magnetic field is generated by a toroid or a solenoid. The
direction and the magnitude of the magnetic field is approxi-
mately constant inside the pellet (core surrounded by the shell)
and is defined as

B = B0 sin (v t) ⇒ dB = B0 v cos (v t)dt. (17)

In the case of toroidal magnetic field, B0 = μ0NI0/2πa, where a
is the distance of the pellet from the center of the toroid, μ0 is the
permeability in free space, I0 is the current, and N is the total
number of turns. It can also be written as B0 = μ0nI0, with n
being the turn density defined as n =N/2πa. The solenoid mag-
netic field can also be written as, B0 = μ0nI0, where N number
of turns per unit length defined as n =N/a. However, here the a
is defined as the length of the solenoid. The magnetic field and
the position of the pellet are shown in Figures 1 and 2. Using
Eqs. (18) and (19), we find differential equation for temperature
profile inside the pellet

dT(r, t)
dt

= K1

r

0 t , (1− r)

ln
t

1− r
(1− r) , t , (1+ r)

ln
1+ r
1− r

t . (1+ r)

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ K2v

T(r, t)
sin (v t) cos (v t) (18)

where

K1 = 2pkQ
Cv

and K2 = Nm2B2
0

CvkB
.

In our calculation, we have taken the temperature T in units of
K1, and for convenience, it is assumed to be 1.

If the magnetic field is varying very slowly such that we can
approximate sin (ω t)≈ ω t, then Eq. (18) takes the form,

dT(r, t)
dt

= K1

r

0 t , (1− r)

ln
t

1− r
(1− r) , t , (1+ r)

ln
1+ r
1− r

t . (1+ r)

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ K2
v2 t

T(r, t)
. (19)

Both the above two equations are non-linear and can be solved
numerically.

Results

In our calculation, we have neglected the compression of the core.
As compression is not taken into account, we also have neglected
any interaction between the radiation and magnetic field. Also,
the effect of the magnetic field comes through the work done
by the magnetic field. The heat generated by the fusion of the pel-
let and that from the magnetic field is added, and then from the
equation of state, the final temperature is calculated. In previous
studies and experiments, such effect of the magnetic field has
not been studied. In those studies, the effect of the magnetic
field comes from the compression of the fuel.

Recently, in the Omega facility (Chang et al., 2011;
Hohenberger et al., 2012), axial magnetic field was applied to a
laser-driven ICF, where the heat losses were suppressed consider-
ably and thereby heating of the ion temperature to higher values.
In MagLIF (Slutz et al., 2010; Cuneo et al., 2012; Gomez et al.,
2014), the cylindrical implosion with axial magnetic field was car-
ried out. The axial magnetic field reduces the thermal loss through-
out the implosion region. The laser first heats the fuel and the axial
magnetic field compresses and heats the fuel further to a higher
temperature. The magnetic field helps in confining and compress-
ing the fuel to higher temperatures. However, the work done there
is only PdV. In our case, thework is both from PdV andMdB. As we
have neglected the compression of the fuel to keep our calculation
simple, the temperature does not rise due to the compression of the
fuel. However, it should be mentioned that in actual experiments
both effects had to be taken into account to calculate the total
heat and the final temperature.

The basic idea of this present work is that as the shock wave
propagates inward, the shock shifts from SL to TL shock. Once
this happens, the likelihood of instabilities decreases and thus
the effectiveness of ICF increases. It is, therefore, necessary that
we calculate the point of this transition from SL to TL shocks.
Previously (Csernai, 1987, 1994), the point of SL to TL shock
has been calculated where the radiation effect is only taken into
account. The solution of the problem could be obtained analyti-
cally [solving Eqs. (6) and (8)]. However, when we take both
the radiation and the magnetic effect, the problem cannot be
solved analytically anymore. Therefore, we solve Eqs. (18) and
(19) numerically.

First, we have solved Eq. (18) numerically to obtain tempera-
ture T as a function of time T for some given r. To match and ver-
ify that our numerical procedure is satisfactory, we have first
solved the equation for zero magnetic fields. The numerical solu-
tion of Eq (18) (for B = 0) should match with the analytical curve.
The numerical solution of Eq. (18) is shown in Figure 3. We have

Fig. 2. The radiation and the magnetic field direction are shown inside the pellet. The
magnetic field is uni-directional whereas, the radiation is symmetric.
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plotted the T− t curve for three different values of r, r being 0.2,
0.5, and 0.99. The curve for r = 0.5 obtained numerically matches
well with the analytically obtained curve for same r. Initially, for
some time, curve has zero temperature, then after t > (1− r), there
is a logarithmic rise in the curve [consistent with Eq. (18)], and
then the curve becomes almost a straight line. For r = 0.2, 1− r
takes a large value 0.8, and so the zero temperature extends till
t = 0.8 and the logarithmic part is only between 0.8 and 1.2. For
higher values of T, the curve becomes a straight line. For r =
0.5, the T = 0 region is up to t = 0.5 and the logarithmic part
extends from t = 0.5 to 1.5 and then the curves becomes a straight
line. For r = 0.99, there is almost no T = 0 curve, the logarithmic
curve extends from t = 0− 1.99 and then it is a straight line.
The slope of the curves depends on the extent of the zero temper-
ature and logarithmic part, and the curve with the largest zero
temperature region has the least slope and vice-versa.

The above results show only the radiation contribution to the
heat and thereby to the temperature. The magnetic field (without
any radiation effect) is shown in Figure 4. For comparison with
the radiation contribution, we have also plotted the radiation
plot for r = 0.2. Although, we have assumed a sinusoidal magnetic
field, the frequency of variation is not very high. The curve
marked with only mag-K2 = 1 is the curve obtained with K2 =
K1 = 1. Similar to the sinusoidal nature, the heat due to magnetic
field variation first rises with time till t = π/2. Then the heat falls
off with time and reaches zero at t = π. The negative part of the
sinusoidal variation would make the temperature imaginary,
and therefore, the T for the negative part is assumed to be zero.
However, for our analysis, the curves are shown up to t = 3, <π
which is sufficient for our calculation as the contour plots saturate
before t = 3 (can be seen later).

The temperature curve also follows such behavior as clear from
Figure 4. The fluctuating magnetic field leads to a fluctuating tem-
perature, however the fluctuation is small. Initially, as the mag-
netic field rises with time, the heat due to the magnetic field
also grows, and that is quite natural. However, after t = π/2, as
the magnetic field decreases, the heat also decreases, that is, the
contribution due to the magnetic field goes down. However, it
is expected that the heat will need some time to equilibrate and
will not directly go down with a magnetic field. For an ideal

case, our assumption is valid for the dynamical process at the ini-
tial time and not beyond times after thermalization had taken
place. However, that will not affect our result a lot because from
the figure it is clear that after t = π/2, the radiation heat will dom-
inate the total heat or temperature of the process. The radiation
curve is plotted for r = 0.2, and for larger r, the effect due to mag-
netic field in T beyond t = π/2 will reduce further.

The strength of the magnetic field can be controlled by choos-
ing the value of K2. We have decreased the magnetic field strength
by choosing K2 = 0.1 (one-tenth of the previous value). With such
a choice of K2, the effect due to the fluctuating magnetic field
reduces even further, and it becomes almost a straight line in
comparison to the radiation temperature. Therefore, the fluctuat-
ing magnetic field will not change our result a great deal.

Once, it is established that the numerical solving procedure is
quite good, we then move on to solving Eq. (18), having a contri-
bution from radiation and magnetic field. First, we choose that the
heat contribution from the magnetic field is assumed to be of the
same order as that of the radiation (K1 = K2 = 1). In Figure 5, we
plot the T− t curve for three different values of r as done for the
non-magnetic case. For r = 0.2, the T at small T (from 0 to 0.8) is
not zero as there is some contribution from the magnetic field.
The contribution from magnetic field is continuous but the con-
tribution from the radiation is discontinuous and it is discontin-
uous at two points (t < 1− r and t > 1 + r). Therefore, the final
curve has some discontinuous jumps at these two points. The dis-
connected jumps are most prominent in r = 0.2 curve. The jump
or the discontinuity is also there in the r = 0.5 curve, but for r =
0.99 curve, the jump is almost absent as the condition t < 1− r for
the radiation is almost non-existent.

In Figure 6, we have plotted the same curve with the assump-
tion that the constant term of the magnetic contribution is 0.1
times that of the previous case (K2 = 0.1). This is to check what
the effect of the strength of the magnetic field has on the conver-
sion of SL to TL curve. The plot of T versus t for such a case is
close to that of the non-magnetic case, which is also consistent.
The discontinuity of the curve in the different regions is less
prominent than the previous one, and the curve is quite smooth.

Fig. 3. The variation of temperature T with time t is shown. Curves are shown for
three different radial distances r, where r = 0.2, 0.5, and 0.99. The black-+ curve is
for r = 0.2, the red-× curve is for r = 0.5, and the green-* curve is for r = 0.99. The mag-
netic field is zero for this figure. The analytically solved curve is marked in blue-| and
for r = 0.5.

Fig. 4. The variation of temperature T as a function of time t is shown. Only the tem-
perature due to the magnetic field is shown in the curves marked as only-mag
(purple-slash and green cross). The graph is plotted for different magnetic field
strength, the smaller being one-tenth of the larger. The field strength is given in
terms of the constant K2. For comparison with the radiative contribution, the radia-
tion temperature curve is also plotted and marked as only-rad (blue-star). The radi-
ation curve is plotted for r = 0.2.
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Finally, the last T− t curve (Fig. 7) is plotted with the assump-
tion that the magnetic field is not varying fast and the ω is small.
Solving Eq. (19) for the sin (ωt)≈ ωt, with ω being treated as a
constant. The curve almost replicates the non-magnetic curve
which is also what is expected.

The magnetic field profiles that we have assumed can be
implemented using the configuration of a toroid or a solenoid.
The toroidal shape is difficult to be realized in actual experimental
setup. However, the solenoidal configuration can be realized sim-
ilar to the set-up of that of MagLIF. There, instead of a conductor
of a cylindrical shape, we can have a solenoid. The sinusoidal
magnetic field can be obtained by a sinusoidal current. In the
case of the solenoidal setup, we can even get rid of the compres-
sion if the current density is parallel to the magnetic field.
However, to increase the efficiency of the ICF, we want the com-
pression to happen along with the magnetic work. Therefore, for
that case, we want to choose some other configuration in the
actual experimental setup.

After obtaining the T− t curve, we can then plot the t− r
curve for all of the above cases. This can be done by plotting t
as a function of r for some fixed temperature. In Figure 8, we
have plotted t as a function of r for T = 3. As evident from the fig-
ure, the analytic and the numeric curve (for B = 0) almost overlap
with each other, assuring that the numerical procedure is quite
good. The point of transition from SL to TL shocks is calculated
from the fact that at that point the slope of the curve should be
± 1. The star marked on the curves signifies those transition
points. The point (rc, tc) separates the SL and TL part of the
discontinuity surface T(r, t) = Tc.

Initially, a shock is formed at r = R at time t = 0 and then prop-
agates inward. The process initially proceeds slowly, but then accel-
erates up by the radiative heat transfer and at rc it goes over

Fig. 5. The temperature T variation with time t is plotted in the figure. Curves are
shown for three different radial distances r, where r = 0.2, 0.5, and 0.99, with the
marking of the curves remaining the same as of Figure 3. The constant K2 is of the
same value as of that for the radiation K1 = 1, which means that both effects have
almost equal contribution.

Fig. 6. The variation of temperature T with time t is shown in the figure. Curves are
shown for three different radial distances r, where r = 0.2, 0.5, and 0.99, with the
marking of the curves remaining the same. The constant K2 is taken to be 0.1
which means that the radiation effect dominates over the magnetic effect.

Fig. 7. The temperature T versus time t is illustrated. Curves are shown for three dif-
ferent radial distances r, where r = 0.2, 0.5, and 0.99, with the marking of the curves
remaining same. The curve is obtained by solving Eq. (19), that is, for small ω
approximation.

Fig. 8. t as a function of r is shown in the figure. The star marked on the curves
denotes the point of conversion of SL to TL shocks, that is to say T(r, t) = Tc. The
curve marked analytic denotes the curve obtained from the analytical solution, the
red-dash-dot curve is the numerical solution for the non-magnetic case. The three
magnetic curves are drawn as follows: the sinusoidal magnetic field with K2 = 1 is
marked with sin (green-dash), the curve with smaller field strength (K2 = 0.1) is
marked as small-sin (blue-dot), and finally the slowly varying approximation curve
with the ω constant is marked as small-omg (cyan-dash-double-dot). All the curves
are plotted for T = 3.
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smoothly into a TL discontinuity. The region inside the marked
star point is the TL region and the region outside is the SL region.
For the non-magnetic implosion, for rc = 0.51, the critical time
comes out to be tc = 2.26 [from Eq. (8)] and the critical temperature
T(rc, tc) is

T(rc, tc) = 2pCQ
Cvrc

tc ln
1+ rc
1− rc

− 2rc

[ ]

= 3
2pCQ
Cv

( )
= 3

(since K1 = 2πCQ/Cv = 1). The time required to heat the center
of core up to a temperature Tc [from Eq. (7)], is

Tc = 4pCQ
Cv

(t − 1) ⇒ 2(t − 1) = 3

⇒ t = 2.5.

Numerical analysis for T = TC = 3 gives the critical point to be
rc = 0.52, tc = 2.25, which matches quite well with analytic values.

For the magnetic field-induced implosion, we had three cases.
The first being the sinusoidal magnetic field having K2 = K1 = 1,
second also for a sinusoidal field but with field strength smaller
than the first case (K2 = 0.1), and the third calculation is done
with small ω approximation. The sinusoidal curve with K2 = 1
lies much below the non-magnetic curve which signifies that
the time taken to reach a temperature of T = 3 is much less as
compared with the non-magnetic case. This is also quite natural
as the heat from both radiation and the magnetic field contribute,
and for a particular point to reach the desired temperature
requires smaller time. The green-dash curve is plotted for a sinus-
oidal field with K2≈ K1 = 1 and blue-dot curve with sinusoidal
field having K2/K1≈ 0.1. Using the slope of contour, we find
the critical point for both the curves: rc = 0.664, tc = 1.6364 for
the green-dash curve and rc = 0.587, tc = 2.091, for blue-dot
curve. The slowly varying magnetic field approximation case is
plotted with the cyan-dash-double-dot curve. In this case, critical
point comes out to be rc = 0.56 and tc = 2.15.

For the sinusoidal curve having a significant contribution to
the TL shock region of the core extends further out. As the TL
region extends further, the chances of instabilities appearing in
the region reduces, and the heating becomes more efficient. The
curve with smaller magnetic field strength lies above the curve
with higher field strength. The time taken to heat a particular
radial point is longer than the previous case. As the efficiency
of the heating due to the magnetic field decreases with a decrease
in magnetic field strength, the time taken is longer. The transition
point (tc, rc) also shifts inward to the core. That is to say that a
smaller portion of the core now has TL shocks. This feature is fur-
ther evident when we plot the curve for slowly varying magnetic
field approximation. The magnetic field varies linearly with time,
but the strength of the field is much smaller. The curve shifts to
higher t values and lies close to the non-magnetic curve. The effi-
ciency of the magnetic heating decreases further, and most of the
contribution in the heating comes from the radiation. The transi-
tion point shifts much inward (the rc is slightly larger than the
non-magnetic case).

Therefore, from Figure 8, we can conclude that the heating due
to the magnetic field can be quite significant in determining the

transition point of SL to TL shocks and can be exploited to min-
imize the instabilities that reduce the efficiency of the ICF.

Summary and conclusion

To summarize, we have studied the effect of time-varying mag-
netic field on the smooth and continuous transition from SL to
TL detonation in an implosion induced by radiation. The heating
of the core arises due to the rapidly igniting explosive shells which
surround it. The central region is swiftly heated to a very high
temperature by incoming radiation from all directions. On top
of this, we employ a time-varying magnetic field at the core. A
constant magnetic field does not affect the heating dynamics of
the core.

The magnetic field has a significant effect on the dynamics of
continuous transition from SL to TL detonation depending on the
strength of the magnetic field. In this analysis, we have employed
a sinusoidally varying magnetic field which can be realized in lab-
oratories. We have neglected the compression of the core due to
the magnetic field. The effect of the magnetic field comes through
the work done by the magnetic field (MdB). The heat generated
by the radiation (which can be obtained by the fusion of the pellet
or by controlled laser irradiation) and that from the magnetic field
is added, and then the temperature is calculated. In previous stud-
ies and experiments carried out in laboratories, such effect due to
magnetic work has not been taken into account. In those studies,
the effect of the magnetic field comes from the compression of the
fuel. There the magnetic field helps in confining and compressing
the fuel to rise to a further higher temperature. In our case, the
work is both from radiation (PdV) and magnetic field (MdB).
We have neglected the compression of the fuel to keep our calcu-
lation simple which could be realized even in the experimental
setup if the magnetic field and the current density are parallel.
However, to increase the efficiency of the ICF, we want the com-
pression to happen along with the magnetic work. Therefore, for
that case, some other configuration needs to be sought. The
MagLIF setup can be used to have all such effects.

The basic idea of this present work is that as the shock wave
propagates inwards, there is a transition from SL to TL shocks.
Once this happens, the likelihood of instabilities decreases further
and thus the effectiveness of ICF increases. The change in the core
volume of TL detonation gets rid of unwanted RT instabilities.
The effect of the magnetic field can have enormous significance
particularly in the experimental (Hora, 2013; Casey et al., 2014;
Hurricane et al., 2014; Park et al., 2014) and theoretical
(Kasotakis et al., 1989; Atenzi et al., 2014; Csernai et al., 2018)
study of ICF of fuel. However, we should mention here that we
have assumed a model setup for the generation of the toroidal
or solenoidal magnetic field. In the actual experiments, more
complex setup may be needed for the fact that the pellet is to
be heated by lasers from all 4π directions along with magnetic
field generation. Also, the effect of the induced electric field and
radiation is not taken into account.

We should also mention that we have assumed a fluctuating
magnetic field and that expresses itself in the form of fluctuating
heat or fluctuating temperature. However, to be precise, this
assumption is valid till thermalization takes place, that is, in the
initial phase of this dynamical process. However, in our calcula-
tion, the value of the frequency we choose makes the fluctuation
is minimal, and after some time, the radiation effect dominates
over the magnetic effect. The fluctuating magnetic field would,
therefore, not change our result a great deal. The magnetic field
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effect can also affect the hadronization of QGP volume involving
detonation in high-energy experiments. The emergence of a dis-
continuity due to the application of an oscillating magnetic field
is a phenomenon which has not been observed or expected,
and further study is needed to understand it, which is our present
endeavor.
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