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Direct measurement of thrust and efficiency of
an airfoil undergoing pure pitching
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We experimentally investigate the thrust and propulsive efficiency of a NACA
0012 airfoil undergoing oscillating pitching motion at a Reynolds number of
1.7× 104. While previous studies have computed thrust and power indirectly through
measurements of momentum deficit in the object’s wake, we use a pair of force
transducers to measure fluid forces directly. Our results help solidify a variety of
experimental, theoretical and computational answers to this classical problem. We
examine trends in propulsive performance with flapping frequency, amplitude and
Reynolds number. We also examine the measured unsteady forces on the airfoil and
compare them with linear theory dating from the first half of the 20th century. While
linear theory significantly overpredicts the mean thrust on the foil, its prediction for
the amplitude and phase of the time-varying component is surprisingly accurate. We
conclude with evidence that the thrust force produced by the pitching airfoil is largely
insensitive to most wake vortex arrangements.

Key words: propulsion, swimming/flying, vortex streets

1. Introduction
1.1. Background

One of the classical problems in fluid mechanics is predicting the forces imparted
to an airfoil in a flow. While solutions for steady lift and drag on an airfoil are
well-known, adding airfoil motion to the problem vastly increases its difficulty in every
aspect. Because unsteady airfoil motion mandates resolving time-dependent forces,
solutions becomes more elaborate theoretically and significantly more expensive
computationally. Experimentally, measuring unsteady fluid forces is also much more
difficult than measuring steady ones; techniques that work well for steady forces,
such as measuring momentum deficit in the wake, can break down in the case of
highly unsteady flow. Further, even with direct force measurement one encounters
a problem of scale. The experimental apparatus must be robust enough to measure
extremely large oscillating forces, yet sensitive enough to accurately report relatively
tiny mean forces.

There is more than a just a pedagogic reason for studying the forces on an unsteady
airfoil. Just as steady models for airfoil lift and drag find use in designing airplanes,
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Thrust and efficiency of an airfoil undergoing pure pitching 525

there is recent interest in using oscillating bodies for propulsion and manoeuvering
in micro-air vehicles and autonomous underwater vehicles (see, for instance, Platzer
& Jones 2000; Read, Hover & Triantafyllou 2003; Jones et al. 2005). Oscillating
airfoils have also gained attention as a means of energy extraction from a fluid, such
as McKinney & DeLaurier (1981), Jones & Platzer (1997) and Bryant & Garcia
(2009). Finally, understanding the mechanics of flight and propulsion of animals was
recognized as a motivation for early theoretical efforts regarding unsteady airfoils, as
specifically noted in Garrick (1936). Researchers have used unsteady fluid mechanics
as a tool to understand aspects of biology, such as the theoretical model of fish
swimming by Lighthill (1970) and calculation of optimal propulsion parameters for
aquatic animals (see Triantafyllou, Triantafyllou & Grosenbaugh 1993; Triantafyllou,
Triantafyllou & Yue 2000; Eloy 2012).

The theoretical groundwork for analysing unsteady airfoils was laid in the first part
of the 20th century. The mean propulsive force produced by an airfoil undergoing
pitching and/or heaving motions was investigated by Garrick in 1936, building off
results by Theodorsen (1935) for unsteady lift forces and von Kármán & Burgers
(1935) for streamwise forces. This analysis assumes inviscid flow, small amplitudes
in the airfoil’s motion, and a non-deforming vortex wake behind the airfoil. Given
these conditions, Garrick was doubtful of the theory’s ability to make experimental
predictions, noting that ‘quantitative agreement with experimental values . . . can hardly
be expected’. While this concern bears true with the mean thrust (where viscous drag
and wake deformation are important), we will show that linear theory is surprisingly
accurate in predicting the thrust’s unsteady amplitude and phase.

More recently, there has been a wealth of experimental and computational research
on flapping airfoils and plates and their suitability for propulsion. Apart from a variety
of outstanding papers dealing with more biomimetic systems, noteworthy reviews of
elementary flat-plate and airfoil studies include McCroskey (1982), Rozhdestvensky &
Ryzhov (2003) and Platzer et al. (2008). In the present study, we are interested in
the 2D fluid mechanics of an oscillating NACA 0012 airfoil at low Reynolds number.
A direct numerical simulation of heaving motion by Tuncer & Platzer (1996) at a
Reynolds number of 3× 106 reported propulsive efficiencies reaching 70 % for this
type of airfoil section. For the case of combined pitching and heaving of a NACA
0012 airfoil, experiments by Anderson et al. (1998) showed that certain parameter
choices could produce a propulsive efficiency reaching 87 % at a Reynolds number
of 40 000. An experimental study by Heathcote & Gursul (2007) for pure heaving at
Reynolds numbers of 10 000, 20 000 and 30 000 showed propulsive efficiencies under
28 %. These figures agree with computations by Ashraf, Young & Lai (2012) for the
same heaving airfoil at a Reynolds number of 20 000 that show propulsive efficiencies
under 30 %. Experimental studies of finite-span pitching plates by Buchholz & Smits
(2008) show much lower propulsive efficiencies in the range of 10–20 %. Interestingly,
the researchers find that the panel aspect ratio does not strongly affect measurements
of propulsive efficiency. This conclusion is echoed in an earlier computational study
by Dong, Mittal & Najjar (2006) at a much lower Reynolds number of 200.

1.2. Previous results for pure pitching
The analysis by Garrick treats a flat-plate airfoil with specified heaving amplitude,
pitching amplitude, pitching axis, phase between heaving and pitching, as well as
motion of an attached aileron. Because there are too many independent kinematic
parameters to allow for a complete experimental confirmation, it is useful to examine
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526 A. W. Mackowski and C. H. K. Williamson

a simpler case where the airfoil only performs pitching motion. This leaves us with
three kinematic parameters: the pitching amplitude, frequency and location of the
rotational axis. It is also instructive to study pitching-only motion because thrust
is produced through purely unsteady means. For a heaving airfoil at low values of
reduced frequency, a component of thrust can be attributed as the result of steady
effects due to the non-zero apparent angle of attack. In comparison, a pitching foil
never has a steady mechanism in its thrust. Further, in the case where both pitching
and heaving motion are present and in phase, we can approximate the system as one
with pure pitching about a different axis.

One of the principal experimental investigations of thrust from a pitching airfoil
comes from Koochesfahani (1989). In addition to producing flow visualization of
the oscillating NACA 0012 airfoil, Koochesfahani estimated its thrust by calculating
momentum deficit in the mean wake profile. However, this technique of measuring
thrust falls apart as the flow becomes more unsteady, and tends to greatly over-predict
the net force (Jones, Dohring & Platzer 1998; Streitlien & Triantafyllou 1998;
Ramamurti & Sandberg 2001). The presence of strong vortices in the airfoil’s
wake invalidates several assumptions used in the mean momentum analysis. Bohl &
Koochesfahani (2009) improve on the earlier experiment by presenting a revised set
of thrust measurements for a pitching foil after measuring the full unsteady flowfield
in the wake. By including a careful accounting of unsteady terms in their thrust
calculations, the authors were able to produce thrust estimates that agree much better
with existing models and simulations. The present study, by employing direct force
measurement, may be compared directly with this type of thrust calculation.

1.3. Research objectives
Our overarching goal is to produce a set of direct, accurate measurements of the
forces on a pitching airfoil, parametrized by oscillation amplitude, frequency and
Reynolds number. These results are necessary to gauge the accuracy of previous
theoretical, computational and experimental approaches to this classical problem. In
addition to the mean thrust produced by the airfoil, we are interested in exploring
the unsteady forces acting on the airfoil: these have typically attracted less attention
in the literature. For the case of unsteady thrust, we are not aware of any previous
experimental treatment.

By understanding the true forces on a pitching airfoil, we can make conclusions as
to when certain models are appropriate to the problem. When does linear theory or a
fast panel code sufficiently capture the fluid dynamics? As another angle towards this
question, we examine the flow structure behind the pitching airfoil to look for any
connection between its vortex wake and the forces we measure.

1.4. Terms and definitions
One of the difficulties in characterizing the behaviour of an oscillating foil is the large
number of parameters that characterize the foil kinematics and fluid mechanics. We
can deal with fewer parameters by restricting ourselves to the scenario of pure pitching
about a fixed point. We define the kinematics of the airfoil as a sinusoidal oscillation
given about its quarter-chord point with frequency f and amplitude θ0, so that θ(t)=
θ0 sin(2πft). In terms of fluid mechanics, the flapping frequency of the foil is non-
dimensionalized with the freestream velocity U∞ and airfoil chord length c to produce
the Garrick reduced frequency k, defined as

k= 2πfc
2U∞

. (1.1)
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Airfoil (fluid forces)

Airfoil (inertial forces)

X-direction linear stage

Y-direction linear stage

Rotational encoder

Force/torque sensor

Rotational stage

Force/torque sensor

FIGURE 1. Illustration of the experimental set-up on the Cornell-AFOSR hybrid water
channel facility. The flow direction is from left to right.

The reduced frequency is proportional to the number of flapping wavelengths per
airfoil chord length. A related definition is the Strouhal number based on the wake
width A: StA = fA/U∞. Because the wake width is difficult to determine in practice,
we replace it with the vertical peak-to-peak excursion of the airfoil’s trailing edge:

StA = fA
U∞
= f 2crp sin θ0

U∞
. (1.2)

Here, rp is the non-dimensional distance from the pivot point to the trailing edge (for
pitching at the quarter-chord, rp = 0.75). For small values of θ0, the Strouhal number
is proportional to the reduced frequency times the oscillation amplitude.

The quantities we are most interested in for the pitching airfoil are its thrust,
power and propulsive efficiency. We report these quantities non-dimensionally as
CT = Fx/((ρU2

∞ch/2)), CP = P/((ρU3
∞ch/2)) and η=CT/CP, respectively, where h is

the submerged length of the foil section. The propulsive efficiency represents the ratio
of useful thrust power to the total power imparted to produce the airfoil’s oscillatory
motion.

2. Experimental set-up
2.1. Physical description

Our experiment is conducted in the Cornell-AFOSR hybrid water channel facility,
shown in figure 1. The water channel has a test section width of 38 cm and maximum
depth of 46 cm. To facilitate comparison to existing unsteady airfoil studies, we
choose a NACA 0012 profile for our airfoil section. The airfoil has a chord length
of 10 cm and an aspect ratio of 2.4. We command the channel velocity to produce
a desired chord-based Reynolds number for our experiments. In this paper, we
examine some cases at Re = 12 000 for the purpose of comparison with previous
work, otherwise we use a slightly higher Reynolds number of 16 000 to achieve
higher force resolution. To limit airfoil end-effects, we use an endplate attached to
the bottom of the channel, positioned with a gap of 3 mm between itself and the
airfoil tip.
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(a)

(b)

(c)

FIGURE 2. Characterization of two-dimensional flow: here we show PIV measurements of
the airfoil pitching vigorously at a Reynolds number of 16 600, amplitude θ0 = 16◦, and
reduced frequency k = 2.35. Measurement (a) represents a slice of spanwise vorticity at
the airfoil mid-span. Measurement (b) shows vorticity at a plane located 1/8-span from
the endplate (airfoil end-effects will be most pronounced on this side). Measurement (c)
was performed at the same location, but with the endplate removed.

Although the aspect ratio of the airfoil section is relatively low, it should be
noted that the free surface allows the vortex lines to extend upwards and increase
their effective aspect ratio. One can also make the case that the aspect ratio of the
vortices themselves (rather than the airfoil) is a more relevant parameter for the
current arrangement, especially at high oscillating frequencies. Nevertheless, we show
an example from a particle image velocimetry (PIV) study to confirm that our end
conditions are adequate in creating a nominally two-dimensional flowfield. The PIV
measurement in figure 2(b) shows spanwise vorticity produced by a pitching airfoil at
a plane located 1/8-span from the endplate. If the flow was highly three-dimensional,
vortex lines near the tip would bend back towards the airfoil along the chordwise
direction. This bending, in turn, would cause most of the vorticity to leave the plane
of the PIV measurement. With the endplate removed, figure 2(c) demonstrates this
effect.

Figure 2(b) almost completely matches the vorticity distribution found at the airfoil
mid-span (shown in figure 2a). This tells us that the endplate serves its purpose of
keeping shed vortices aligned in the spanwise direction along the vast majority of the
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airfoil length. While the endplate is able to keep the flow primarily two-dimensional
in the vicinity of the airfoil, the shed vorticity will inevitably form three-dimensional
structures as it advects downstream. However, by this point the structures are far
enough from the airfoil surface that the forces they exert on it are minimal.

The airfoil is attached to a rotational stage driven by a stepper motor, with
position feedback provided by a high-resolution rotary encoder. The rotational stage
is mounted on a transverse (Y) stage powered by a brushless linear motor (producing
up to 60 pounds force, with an integral 1 µm linear encoder). The transverse stage
is mounted atop a second stage that provides motion in the streamwise (X) direction
(this one producing up to 120 pounds force, also with a 1 µm linear encoder). A
computer control system running at 1000 Hz controls the X and Y linear motors, both
of which achieve less than 5◦ of phase lag while oscillating at 10 Hz. A separate
control loop commands the rotational stage, which is capable of oscillating at 8 Hz
with 7◦ of phase lag.

2.2. Force measurement
To measure fluid forces and moments, we employ a three-axis force/torque sensor
(calibrated to 20 N and 1 N m). To compensate for forces caused by the airfoil
section’s inertia, we mount an identical airfoil and sensor out of the flow to directly
measure inertial forces. After we rotate and orient force measurements from both
sensors back to the lab reference frame, we simply subtract the inertial forces from
measurements by the in-fluid airfoil, leaving us with only the fluid forces.

Fluid forces on the pitching airfoil can be very small; for instance, the drag force
on our airfoil while stationary is about the equivalent weight of 0.7 g. On the other
hand, unsteady lift forces can reach the equivalent weight of 0.27 kg. The latter forces
and moments dictate the requirements for the force/torque sensor’s measurement range
(with an additional safety margin on top). Unfortunately, this means that measurements
of the comparatively tiny thrust or drag forces are susceptible to drift and random
fluctuations. To achieve precise readings it is therefore necessary to take ensemble
averages of repeated experiments; every data point shown in the following figures is
the average of 120 identical experiments, each up to 2 min long and rounded to an
integer number of oscillation cycles. The process of performing and interpreting these
experiments is entirely automated, including stopping the water channel and zeroing
the force/torque sensors before and after each run.

At the free surface, we choose our experimental parameters so that significant
sloshing or waves do not occur. As an added precaution, each experiment takes place
at a randomized position within 3 cm of the channel centreline and inside a 14 cm
region in the streamwise direction. Randomizing the initial position controls for some
of the electromagnetic interference from the linear stages on the force/torque sensor,
as well as helping to reduce resonant wave action within the test section. We use
laser Doppler velocimetry (LDV) measurements to confirm flow speed in the airfoil
vicinity. While it is difficult to predict blockage for an unsteady flow, models from
Garner et al. (1966) indicate that steady blockage effects are small for our airfoil
section and off-centre effects are negligible for the ±3 cm experimental region in
the transverse direction. Computations by Lian (2010) indicate that blockage effects
for a pitching airfoil decrease with increasing reduced frequency and increase with
pitching amplitude, an the effects are minimal for a domain width greater than about
two chord lengths.
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Pivot point

Physical attachment point

x
y

xp

yp

r

FIGURE 3. Schematic showing coordinates for the airfoil section. The physical attachment
point is at the foil’s centroid, while the pivot point is at the quarter-chord.

2.3. Pitching about an arbitrary axis
The airfoil section is mounted in such a way that its centre of mass (located 42.04 %
of the chord length from the leading edge) is aligned with the axis of the rotational
stage, which is coaxial with the force/torque sensors. However, our desired axis of
rotation is the quarter-chord point, as illustrated in figure 3. To produce rotation about
the desired axis, we combine rotation with translation in the X and Y directions such
that there is zero velocity at the pivot point (i.e. ẋp = ẏp = 0).

We specify the foil’s rotation as θ̇ (t) = 2πf θ0 cos(2πft), where θ0 is the pitching
amplitude. To move the axis of rotation to the quarter-chord point, we introduce the
additional kinematics ẋ(t) = r sin(θ)θ̇ and ẏ(t) = −r cos(θ)θ̇ . Here, r represents the
distance from the physical attachment point to the desired pitching point. Because the
axis of pitching is now different from the axis of the force/torque sensor, we must
include these translational velocities when calculating the power input to the airfoil,
giving Pin =−(Mzθ̇ + Fxẋ+ Fyẏ).

2.4. PIV measurements
We take selected PIV measurements of the flow’s velocity field with a 1600× 1200
resolution camera and a light sheet (produced by dual, pulsed Nd:YAG lasers)
positioned halfway down the airfoil’s span. The computer control system that
commands airfoil motion can additionally output trigger pulses to the PIV camera
and laser firing inputs. We use this functionality to produce phase-averaged PIV
measurements. By linking the PIV timing directly to the foil movement, we can
precisely specify the phase of every PIV image taken, obviating the need for
oversampling and grouping PIV measurements. We use a customized MATLAB
program based upon the open-source PIVlab software (Thielicke & Stamhuis 2012)
to analyse and process PIV image pairs.

3. Measurements of mean thrust and efficiency
We show measurements of the airfoil’s mean thrust in figure 4, along with

comparisons with existing experimental data. As a point of reference, we have
included static drag measurements for the same airfoil at zero angle of attack from
Laitone (1997) and Sheldahl & Klimas (1981). These reported values for the static
value of thrust coincide well with the corresponding datum in Koochesfahani (1989)
and that of the present study.

The results in figure 4 illustrate the amount by which a simple, steady momentum
deficit calculation is liable to overestimate the thrust force on a flapping airfoil,
as encountered in Koochesfahani (1989). Data from Bohl & Koochesfahani (2009),
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0
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k

CT

Koochesfahani (1989), Re 12 000

Present work, Re 12 000

Bohl & Koochesfahani (2009), Re 12 600

FIGURE 4. Experimentally determined values of thrust coefficient for a NACA 0012
airfoil pitching about its quarter-chord point, θ0 = 2◦. Present measurements have a 95 %
confidence interval of approximately ±0.0034.

computed from an updated momentum analysis and unsteady wake velocity
measurements, agree reasonably well with the present direct force measurements.
The agreement fares best at moderate to high values of reduced frequency. However,
at lower values of reduced frequency, results from the aforementioned study indicate
abnormally high levels of drag on the airfoil, up to twice the static amount. While
accounting for unsteady terms in a momentum-deficit thrust calculation produces
significant improvement over the steady model, the present results indicate that there
is opportunity for further improvement in the unsteady momentum-deficit approach at
low flapping frequencies.

It is also instructive to compare our direct force measurements of thrust with
results from theory and simulation. Figure 5 includes a comparison with the inviscid
linear theory in Garrick (1936) and panel codes from Jones & Platzer (1997) and
Ramamurti & Sandberg (2001). A constant offset representing the viscous, static drag
of the airfoil section has been added to these results to present a more meaningful
comparison with measured data. The difference in thrust between linear theory and the
panel codes is chiefly due to the ability of the vortex wake to leave the plane of the
x-axis and deform under its own influence. The fact that linear theory overestimates
thrust much more than the panel codes indicates that the presence of a non-planar
wake plays an important role in the propulsion process.

As expected, results from direct numerical simulation of the Navier–Stokes
equations (see the lower part of figure 5) match much better with experimental
results than the inviscid methods (shown in the upper part of the figure). Our direct
force measurement data shows very good agreement with the viscous simulation by
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Garrick (1936), with CT0
Jones & Platzer (1997), with CT0
Ramamurti & Sandberg (2001), with CT0
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–0.05
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Ramamurti & Sandberg (2001), Re 12 000
Young & Lai (2004), Re 12 000
Present work, Re 12 000

CT
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(a)

(b)

FIGURE 5. Theoretical and computational values for the thrust coefficient of a NACA
0012 airfoil pitching about its quarter-chord point, θ0 = 2◦: (a) inviscid methods (linear
theory and panel codes) with static profile drag added in to facilitate comparison; (b)
viscous simulations.

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

FIGURE 6. Experimentally determined values of propulsive efficiency for a NACA 0012
airfoil pitching about its quarter-chord point, shown for different values of maximum pitch
angle θ0. Data are shown for a Reynolds number of 16 600.

Ramamurti & Sandberg (2001). The numerical study by Young & Lai (2004) does
not fare as well, though still matches the trend of thrust coefficient versus pitching
frequency.

In terms of propulsive efficiency, the pitching airfoil performed far below the limit
from linear theory (η= 50 %) and well below peak measured efficiencies for heaving
airfoils. Figure 6 shows measured values of propulsive efficiency for different pitching
amplitudes as a function of the Strouhal number. Moderate values of θ0 give similar
results for efficiency, reaching a maximum of 12 % for the case of an 8◦ pitching
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FIGURE 7. The value of reduced frequency k at which an airfoil pitching at θ0 = 2◦
transitions from net drag to net thrust. At higher Reynolds numbers, the airfoil produces
more thrust at a given non-dimensional flapping frequency.

amplitude. As predicted by linear theory, higher pitching amplitudes attain their best
efficiency at slightly larger values of Strouhal number.

While the system geometry here is different than that employed in the pitching
study by Buchholz & Smits (2008) (which investigates a finite-span section), the
results for propulsive efficiency are reasonably similar. This affirms the notion that
pure pitching is an inefficient method of producing thrust, even in approximately
two-dimensional flow conditions. It is also worth noting that the aforementioned study,
along with others such as Triantafyllou et al. (1993), have found that efficiency is
maximized at a Strouhal number of around 0.25. However, the presence of surface
waves and sloshing at high amplitudes and frequencies prevented us from exploring
higher Strouhal numbers with our current experimental arrangement.

3.1. Effect of Reynolds number on thrust production
Our experimental technique allows us to examine how the thrust properties of the
pitching airfoil change with Reynolds number. Figure 7 shows the value of the reduced
frequency k at which the airfoil transitions from producing net drag to net thrust.
This crossover point decreases monotonically, indicating that the airfoil becomes more
capable of producing thrust at higher Reynolds numbers (recall that k is already non-
dimensionalized by the flow speed).

As the Reynolds number changes we also experience a change in the airfoil’s static
drag coefficient CD0. However, while the decrease of CD0 with Reynolds number does
contribute to a decrease in the drag–thrust crossover point, the magnitude of this effect
is not enough to produce the data shown in figure 7. The trend of this plot is to
be expected given that at higher Reynolds numbers, the inviscid assumption behind
Garrick’s analysis becomes more valid. As the thrust predictions from Garrick (1936)
rise quickly with reduced frequency, we in turn see a crossover from drag to thrust
at a low value of k.

Physically speaking, the trend in drag–thrust crossover point versus Reynolds
number results from the effect of viscosity on the process of vortex roll-up and
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FIGURE 8. Amplitude of the time-varying component of the airfoil’s thrust coefficient,
shown for various values of maximum pitch angle θ0 and compared with predictions from
linear theory. Experiments performed at a Reynolds number of 16 600.

shedding. At low Reynolds numbers, it is likely that a thick boundary layer along
the airfoil inhibits a sharply localized buildup of vorticity at the airfoil’s trailing edge.
With weaker, globular vortices shed behind the airfoil it becomes harder to produce
a jet profile in the wake, resulting in decreased thrust production.

4. Measurements of unsteady forces
4.1. Thrust

We can approximate the unsteady part of the thrust force on the airfoil as a sinusoidal
force with a frequency double that of the oscillation frequency, i.e. FT = AT sin(2 ·
[2πfθ t − φT]). Here, φT represents the phase of the unsteady thrust force behind the
pitch oscillation. From before, we concluded that while the linear theory compiled
by Garrick (1936) captured the trend of the mean thrust with frequency, it was not
capable of making quantitative predictions. However, figure 8 shows that linear theory
is capable of making quantitatively accurate predictions for the oscillation amplitude
of the thrust coefficient, even at surprisingly high pitching angles.

Figure 9 shows the unsteady thrust amplitude normalized by the square of the
pitching angle, as suggested by the linear theory. This scaling works remarkably well
across the entire range of pitching angles. Figure 10 presents measurements of the
phase φT of the thrust force compared with the prediction from linear theory. Overall,
it is remarkable that linear theory, which assumes inviscid flow, a non-deforming
wake, and small pitching amplitudes, is able to match experimental measurements
to this extent. This result suggests that the unsteady part of the thrust force on a
pitching airfoil is (i) largely an inviscid phenomenon and (ii) not strongly dependent
on wake features.

At high pitching amplitudes, we would ordinarily expect massively stalled, separated
flow to ruin the applicability of inviscid theory. However, it is possible that for
medium to high oscillation frequencies we encounter an effect analogous to dynamic
stall. The intense vorticity concentrations produced by flapping likely help keep flow
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FIGURE 9. Collapse of the data sets shown in figure 8 by scaling with θ 2
0 , following

the relationship from linear theory.
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FIGURE 10. Phase of the oscillating component of the airfoil’s thrust coefficient
compared with the prediction from linear theory. Phase values represent a delay
behind θ(t).

attached to the airfoil surface, at least to the extent that inviscid theory produces a
passable approximation of the overall fluid dynamics.

In figures 9 and 10 one can discern a slight jump in thrust amplitude and phase
between reduced frequencies of three and four. The point k = π corresponds to
the scenario where the freestream fluid advances one chord length during each
oscillation cycle. In other words, this point represents the transition where the
oscillation wavelength becomes shorter than a chord length. Physically speaking, the
point k= π occurs during a transition where vorticity shed from the airfoil’s trailing
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FIGURE 11. Amplitude of the lift force acting on the airfoil for different values of
pitching angle, Re= 16 600.

edge begins to roll up and coalesce closer to the airfoil itself, in the near-wake region.
This vorticity, which was previously convected downstream, is now concentrated in
discrete vortices which exert more thrust on the airfoil.

4.2. Lift
For completeness, in addition to the thrust force we measured the unsteady amplitude
and phase of the lift force produced by the airfoil. Figure 11 shows the lift force
amplitude as a function of reduced frequency for a range of pitching angles. As with
the thrust amplitude, the oscillating lift force agrees very well with linear theory from
Theodorsen (1935), even at low values of reduced frequency where added-mass effects
are less important. While the thrust amplitudes scale with θ 2

0 , the theory indicates
that the unsteady lift amplitudes scale with θ0. As figure 12 demonstrates, this scaling
produces a remarkably good collapse of the measured data.

The good agreement here between unsteady lift forces and linear theory was noted
in a combined experimental/computational study by Kang et al. (2009). The authors
found that Theodorsen’s model did an excellent job capturing time-varying lift forces
when the flow on the airfoil was attached. When there was significant flow separation,
the linear theory fared worse, however, the overall force characteristics (i.e. amplitude
and phase) were still a reasonably good match.

Figure 13 shows the measured phase of the lift force behind the pitching oscillation.
The match with linear theory is reasonable for all pitching amplitudes. As with the
thrust force, we see a slight jump in the lift force’s amplitude and phase between
reduced frequencies of three and four.

4.3. High-amplitude pitching
Figure 14 shows measurements of mean thrust on the airfoil as a function of Strouhal
number for the full series of pitching angles. Thrust measurements for small angle
cases (two, four and to a certain extent 8◦) collapse reasonably well with Strouhal
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FIGURE 12. Collapse of the data sets shown in figure 11, produced by scaling with the
pitching angle θ0.
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FIGURE 13. Phase of the lift force behind pitching oscillations, compared with linear
theory.

number. However, for larger amplitudes of oscillation a different trend emerges.
At a low Strouhal number, the mean thrust force is consistent with its quasi-static
value (the asymptote of force as flapping frequency approaches zero). We compute
the quasi-static thrust force by integrating the airfoil’s static drag force through a
cycle of oscillation, then dividing by the oscillation period. It is interesting that with
increasing oscillation frequency, the thrust coefficient for these large-amplitude cases
actually decreases. The magnitude of the drag force for the oscillating foil represents
a sizeable portion of the static drag force at θ0, as illustrated by the bottom portion
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FIGURE 14. Mean thrust coefficient as a function of Strouhal number, measured for all
pitching amplitudes at a Reynolds number of 16 600. Lines shown represent a curve fit
through the data. The shaded bands for pitching amplitudes of 8, 16 and 32◦ show a
reference interval. The lower bound of the interval represents the airfoil’s maximum static
drag force at this angle of attack. The upper part of the interval represents the thrust force
as the flapping frequency asymptotically approaches zero, computed from static force data.

of the shaded regions in figure 14. One could use this effect in a flapping-foil vehicle
to produce a braking force for manoeuvering.

5. Vortex dynamics of thrust production
5.1. Motivation for PIV study

In this section we examine PIV vorticity measurements behind the pitching airfoil
to elucidate the physical flow processes behind our force measurements. It has
long been known that the crossover from net drag to net thrust approximately
corresponds to a change in wake from a von Kármán street (vK) to an inverse-vK
arrangement (von Kármán & Burgers 1935). The latter phenomenon is illustrated
in figure 2(c) for our airfoil pitching at a Reynolds number of 16 600. Because of
profile drag, the inverse-vK arrangement appears slightly before the airfoil produces
positive thrust. At somewhat lower values of reduced frequency, previous studies (for
example Koochesfahani 1989) have observed the 2P-type vortex arrangement shown
in figure 2(b). Here, we borrow the nomenclature of Williamson & Roshko (1988),
where nS+mP indicates n single vortices and m vortex pairs per cycle.

We seek to understand how much further the connection extends between vortex
shedding modes and forces imparted on the airfoil. Comparison between linear theory
and panel codes demonstrates that the presence of discrete vortex formation affects
thrust production, however, the role of particular vortex arrangements remains to
be determined. Researchers have approached the problem of airfoil flapping through
classifying and mapping the observed wake structure. Godoy-Diana, Aider & Wesfreid
(2008) investigated the wake structure behind a pitching airfoil at a Reynolds number
on the order of 104, producing a map of vortex shedding modes and comparing it with
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(a)

(b)

(c)

FIGURE 15. Phase-averaged PIV measurements of spanwise vorticity for an airfoil
pitching with amplitude θ0=2◦. The vorticity contour levels are identical across all images.
(a) At k= 2, we observe synchronization between the flapping motion and small vortices
shed from boundary layer rollup. (b) At k= 5 there is a distinct 2P vortex mode in the
wake. (c) At k = 9, where the airfoil is close to producing net thrust, we observe an
inverse-vK wake structure.

a map of net thrust coefficient. Using a soap-film experiment, Schnipper, Andersen &
Bohr (2009) produced an even more detailed map of wake vortex structure (including
complex modes such as 6P + 2S). As with the aforementioned studies, we find a
vast array of vortex arrangements as we vary the pitching amplitude and frequency.
However, aside from the eventual transition to an inverse-vK vortex arrangement,
we see no evidence of particular vortex patterns having a distinct effect on force
characteristics. The plot of thrust versus frequency shown in figure 4 has a smooth
trend, even though the vortex wake transitions through multiple arrangements (some
of which are shown in figure 15).

5.2. Why do we see no effects of vortex patterns in force data?
The apparent insensitivity of airfoil force to vortex arrangements hints that the
underlying process of thrust production is dominated by the inviscid mechanisms
captured in Garrick’s analysis. Although the presence of viscosity and vortex roll-up
works to diminish the magnitude of thrust produced, both our measurements and
linear theory exhibit a smooth trend in thrust, unaffected by the presence of vortex
patterns in the wake. The unexpected agreement of unsteady forces with linear theory
echoes this conclusion. (It is important to note, however, that for other types of
oscillation (e.g. heaving) the airfoil’s leading edge may play a larger role in shedding
vortices that produce a noticeable effect on the thrust force.)

When we consider the flow physics, there are a couple features that may contribute
to the disconnect between vortex patterns and thrust forces. For one, vortices
downstream of the airfoil exert most of their influence in a direction normal to
the airfoil chord line. Even as we move a wake vortex away from the centreline,
the incremental change in its x-direction influence is small. Further, by the time the
wake vortex arrangement has stabilized, its effect on the airfoil surface may be small
enough that the particular arrangement of vortices is insignificant.
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(a)

(b)

FIGURE 16. Phase-averaged PIV measurements of vorticity for pitching with θ0 = 32◦,
both taken at a phase of 108◦: (a) corresponds to pitching at a reduced frequency k =
0.025, while (b) depicts k= 0.25.

5.3. Effect of vorticity at large pitching amplitudes
One scenario where we do see a clear connection between vortex arrangements and
force measurements is when the airfoil pitches at large amplitudes. In figure 14,
we observe pronounced dips in the thrust coefficient for 8, 16 and 32◦ oscillations.
The Strouhal number where this phenomenon occurs tends to be higher for higher
pitching amplitudes (roughly at a value of k/θ0 of 0.4). We can explain this drop in
thrust force by looking at the wake structure behind the pitching airfoil. Figure 16
shows two PIV measurements at the same pitching phase for a 32◦ oscillation. At
a reduced frequency of 0.025 (StA = 0.0063), the flow is entirely separated. The
airfoil here experiences forces that are essentially quasi-static. However, at a higher
reduced frequency of 0.25 (StA = 0.063), we see a strong vortex retained behind
the airfoil’s leading edge. The higher frequency of oscillation allows for a process
analogous to dynamic stall, amalgamating leading-edge vorticity into a coherent
structure that resists being convected downstream. The low-pressure region created by
this leading-edge vortex causes the dramatic increase in drag (decrease in CT) shown
in figure 14.

6. Conclusions

We have experimentally investigated the forces acting upon a NACA 0012 airfoil
pitching about its quarter-chord point at low Reynolds number. This problem serves
as an elementary test case for the study of oscillating foils, and by extension various
methods of aquatic and aerial propulsion. By measuring fluid forces directly, we
are able to bypass issues related to deriving force measurements from the local
flowfield. Our results generally confirm the experimental method employed by Bohl
& Koochesfahani (2009), although measurements from the present study are more
reasonable at low values of reduced frequency.
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By itself, a pure pitching motion is a relatively inefficient mechanism of propulsion,
reaching a peak efficiency of only 12 % in our tests. We note that this low efficiency
seems to be typical of pitching-only mechanisms. Our measurements of thrust on
the airfoil lie slightly below inviscid predictions from panel codes, and significantly
below predictions from linear theory. This suggests that the presence of a deforming,
non-planar wake influences the mean propulsive force on a pitching airfoil. However,
the same cannot be said for the unsteady component of the propulsive force. Linear
theory reasonably predicts the unsteady amplitude and phase of both the thrust and lift
forces acting on the airfoil, even at high amplitudes of oscillation where one might
expect flow separation. We postulate that an effect similar to dynamic stall helps to
diminish flow separation effects at moderate to high oscillation frequencies, explaining
why linear theory produces a reasonable approximation.

The fact that linear theory produced any utility for our low-Reynolds-number
experiments leads us to believe that thrust production of a pitching airfoil is dominated
by the inviscid effects captured in Garrick’s analysis. Viscous effects are observed to
limit the total magnitude of thrust produced, but do not seem to significantly affect
the unsteady dynamics.

Regarding the unsteady lift force on the airfoil, our results confirm the conclusion
of Hall & Hall (2001), who compare flapping-wing numerical studies with and
without the effects of wake rollup. They find that there is no significant difference in
the airfoil’s unsteady lift coefficient between a prescribed wake model and one that
is free to deform. Remarkably, our experimental results show an even more drastic
relation: unsteady lift forces from small-amplitude, inviscid linear theory agree well
with measured forces in an actual viscous flow, even at surprisingly high amplitudes
of pitch oscillation (θ0 = 32◦).

We also use PIV to investigate the vortex wake behind the airfoil at different
pitching conditions. Even though we conclude that the presence of a non-planar wake
is important in predicting the mean thrust force on the airfoil, at the same time
we find little correspondence between the measured mean thrust coefficient and the
particular arrangement of vortices in the airfoil’s wake. The mean thrust coefficient
tends to increase smoothly and monotonically with flapping frequency (with the
exception of the high-amplitude, low-frequency cases discussed in § 3.1), even as the
flow passes through several regimes of vortex patterns. This result starkly contrasts
with bluff bodies undergoing vortex-induced vibration, where the mode of vortex
shedding in the wake is closely related to fluid forces on the immersed body.

The aforementioned observations lead us to believe that the effect of vorticity on
the airfoil’s thrust production is highly localized. This would explain why the myriad
vortex arrangements that eventually form downstream leave no distinguishing trace
on force measurements. Unlike a bluff body, the mode of the vortex wake behind a
pitching airfoil seems to be a remnant of force generation, rather than a driver.
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