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Knowledge space theory (KST) is a mathematical 
theory, developed by Doignon and Falmagne (1985, 
1999) and Falmagne and Doignon (2011) for the  
individual knowledge assessment. The aim of a KST 
assessment is to find, with maximum accuracy and 
efficiency, the set of problems that a student masters in 
a specific knowledge domain (the student’s knowledge 
state). In real contexts, some of the student’s answers 
could be affected by noise, like careless errors due to 
time pressure or to turmoil, or correct answers result-
ing from guessing. Because of the noise, the student’s 
knowledge state is not directly observable, and it has 
to be inferred from the student’s responses to the 
problems. To provide realistic predictions of student’s 
responses, probabilistic models have to be considered. 
The first and the most used probabilistic model, devel-
oped in KST, is the so-called basic local independence 
model (BLIM; Falmagne & Doignon (1988a, 1988b).

Knowledge about the properties of this model has 
grown over the years. For example, methods for es-
timating its parameters (Heller & Wickelmaier, 2013; 
Schrepp, 2005; Stefanutti & Robusto, 2009) and for 
testing its identifiability (Spoto, Stefanutti, & Vidotto, 
2012; Stefanutti, Heller, Anselmi, & Robusto, 2012) 
are available. Furthermore, some extensions of the 
BLIM have been proposed, like, for example, the Gain-
Loss Model (Robusto, Stefanutti, & Anselmi, 2010; de 
Chiusole, Anselmi, Stefanutti, & Robusto, 2013), a model 
for assessing learning processes, and a probabilistic 

model for skill dependence (de Chiusole & Stefanutti, 
2013) were developed and applied to real data.

The focus of this article is on one of the properties of 
the BLIM, that is the parameter invariance assumption. 
In de Chiusole, Anselmi, et al. (2013) de Chiusole, 
Stefanutti et al. (2013) it is shown that, even when the 
invariance assumption is violated by the data, the 
goodness of fit of the BLIM might be acceptable. For 
this reason, having a method that shows up invariance 
violations becomes essential. The method proposed by 
the authors consists in comparing the BLIM with other 
models, called bipartition models (BPMs), in which 
the invariance assumption is explicitly violated. If the 
comparison favors a BPM, then the parameter invari-
ance assumption is violated, meaning that the BLIM is 
not adequate for those data.

In the same article, another method to discover such 
type of violations was considered. The method was 
inspired by the IRT approach (Andersen, 1973; Glas & 
Verhelst, 1995), and consists in partitioning the observed 
data set into two or more independent groups, to  
fit the BLIM in each of the groups, and to apply some 
suitable statistical test to evaluate the difference 
between the parameter estimates of the two groups. In 
the simplest case, two groups are formed by separating 
all the subjects with score levels below the median 
from those with score levels above the median. If the 
test is significant, then the conclusion would be that 
the parameter invariance assumption is violated.

Even if this method seems to be the most natural 
way to discover violations, it has been formally 
proven that, with the BLIM, it does not work properly. 
The main concern with this method is that the error 
parameter estimates in the two groups will significantly 
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differ one another even when the invariance assump-
tion is, indeed, respected. For this reason, in the sequel 
we refer to this method as the naïve test of invariance.

A procedure, similar to the one described above, was 
developed by de La Torre and Lee (2010) in the area of 
cognitive diagnostic models, for showing up violations 
of the parameter invariance of the DINA (deterministic 
inputs, noisy AND-gate) model (Junker & Sijtsma, 
2001). Instead of forming two ‘pure’ groups below and 
above the median, they produced two data sets that 
were mixtures of the two pure groups. A first group 
collected about 60% of respondents that were below 
the median, and about 40% of those that were above 
it. The second group was constructed by reversing 
these proportions. By applying that procedure to a 
data set on fraction subtraction, de la Torre and Lee 
concluded that the parameter invariance of the DINA 
model may not hold in real data. It is worth noting 
that, on the performance level, the DINA model is 
equivalent to the BLIM (Heller, Stefanutti, Anselmi, & 
Robusto, 2014).

The aim of this article is to generalize the theoret-
ical results concerning inadequacy of the naïve test 
to any choice of the proportion p, used to form the two 
groups. After presenting the BLIM, naïve tests of  
invariance are presented along with theoretical results 
showing that also the general version of the test suf-
fers for the same problems. The theoretical results are 
illustrated through a simulation study and an empir-
ical application.

The BLIM and the Parameter Invariance

The aim of a KST assessment is to uncover the knowl-
edge state that characterizes a student, on the basis of 
her responses to a given set Q of problems. The collec-
tion of responses is named response pattern, and it is 
represented by the subset R ⊆ Q of all problems that 
received a correct response. For a KST assessment, a 
deterministic model on all problems q ∈ Q, called 
knowledge structure, is required, along with a proba-
bilistic model, like for example, the BLIM. A knowl-
edge structure is defined as a pair (Q, K), in which Q is 
a collection of problems, and K is a collection of sub-
sets of Q, called knowledge states. The BLIM is defined 
as a quadruple (Q, K, π, r), in which:
 
 a.  (Q, K) is a knowledge structure on a finite set Q;
 b.  π is a probability distribution on K
 c.  r is the response function and, for every R ⊆ Q and 

every K ∈ K, it is defined by
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where βq, ηq∈(0, 1] are two parameters of each of the 
items, respectively called careless error probability and 
lucky guess probability;

The probability of sampling a student whose 
response pattern is R ⊆ Q is
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It has to be pointed out that the parameters βq and ηq 
are attached to the items and do not vary with the 
knowledge states of the students, in other words they 
are invariant across individuals. We will refer to this 
property as the invariance assumption.

Before to get into the question of how this assumption 
can be tested, it is worth providing some basic notation. 
The set Kq = {K ∈ K : q ∈ K} collects all knowledge states 
containing a given item q ∈ Q, and ∈ ∉= { : }K Kq K q K  
is its complement in K. Similarly, for R = 2Q, let Rq = 
{R ⊆ Q : q ∈ R} be the set of all response patterns contain-
ing q, and ⊆ ∉= { : }Rq R Q q R  be its complement in R. 
Finally, for any F ⊆ R and any J ⊆ K let

∑∑
∈ ∈

π( , ) = ( , )

F J

F J K

R K

P r R K

be the joint probability of F and J.

Naïve Tests of Invariance: Restricted Case

A way to assess violations of the parameter invariance 
assumption of the BLIM would be to partition the 
whole data set into two independent groups, to fit the 
BLIM in each of them (say, Group 1 and Group 2), and 
to apply some suitable statistical test of the difference 
between the parameter estimates in the two groups. If 
the test is significant then the conclusion would be that 
the parameter invariance is violated by the data.

As a criterion to form the two groups, consider the 
one that consists of choosing a certain quantile c > 0 
(e.g. the median) of the sample distribution of the size 
of the response patterns. Those having size less or 
equal to c are assigned to Group 1, and those having 
size greater than c are assigned to Group 2. With these 
two groups, a test of the invariance would not work 
properly, since parameter estimates would be biased in 
both groups, even when the independence assumption 
is, indeed, respected. Because of this bias, the statistical 
test would lead to a rejection of the local independence 
assumption too often.

To see this, consider some cutoff c ∈ {0, 1,…,|Q| − 1}, 
and let = { :| | }↓ ∈ ≤R RR R c  be the collection of all 
response patterns whose size is less or equal to c, and 

= { :| |> }↑ ∈R RR R c  be the collection of all response 
patterns whose size is greater than c. Then, accord-
ing to the BLIM, the conditional probability that in a 
randomly sampled response pattern R, an item q is 
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failed by careless error, given that the size of R is 
below the cutoff is
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whereas the conditional probability that in a ran-
domly sampled response pattern R, item q is solved by 
lucky guess, given that R is below the cutoff is
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Similar equations are obtained for the ↑βq  and ↑ηq  
parameters, by replacing R↓ with R↑ in Equations 3 and 4.

In de Chiusole, Anselmi et al. (2013), it is shown 
that, for any choice of the cutoff c and any item q ∈ Q 
and βq,ηq ∈ (0, 1), the following inequalities hold true: 

↑ ↓β β β< <q q q ; and ↓ ↑η η η< <q q q .
These two inequalities show that careless errors are 

more likely when one samples below the cutoff, whereas 
lucky guesses are more likely when one samples above 
the cutoff. Thus, when the parameters of the BLIM are 
estimated from only a part of the data set (below/
above), one obtains biased parameter estimates.

Naïve Tests of Invariance: General Case

It might be argued that the rule of forming the two 
groups by assigning all patterns below a certain cutoff 
to one group, and all the remaining ones to the other 
group is too strong. Maybe, there exist weaker rules 
that reduce or even remove the bias.

The following, more general, rule is considered here: 
Given some proportion p↓, with 0 ≤ p↓ ≤ 1, a sufficiently 
large number n↓ of response patterns are randomly 
sampled with replacement from R↓, and each of them 
is assigned to Group G1 with probability p↓, and to 
Group G2 with probability 1 − p↓. Analogously, given a 
proportion p↑, 0 ≤ p↑ ≤ 1, n↑ response patterns are ran-
domly sampled with replacement from R↑, and each of 
them is assigned to G1 with probability p↑, and to G2 
with probability 1 − p↑.

As the following proposition shows, even the more 
general rule suffers from the same problem as the naïve 
test of invariance.

Proposition 1

Let β(1)
q  be the probability that, in a randomly sampled 

response pattern, an item q is failed by careless error, given 
that the pattern belongs to Group G1, and (1)

qη  be the 

probability that a lucky guess occurs for q, given that the 
pattern belongs to G1. Then (1)

q qβ ≤ β  if and only if
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where =q q
↓ ↓∩R R R  and =q q

↑ ↑∩R R R . Moreover, 
(1)
q qη ≤ η  if and only if
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where =q q
↓ ↓∩R R R  and =q q

↑ ↑∩R R R .
What Proposition 1 essentially says is that the 

method that consists in partitioning the sample into 
two subgroups by using any arbitrary proportions p↑ 
and p↓ will lead to biased estimates of the βq and ηq 
parameters, even when the invariance assumption is 
indeed respected by the data. Depending on the ratio 
p↓/p↑ that one chooses, the βq and ηq probabilities might 
be either over- or underestimated in both groups G1 
and G2. For this reason it is recommended not using 
methods like the one described in this section for 
testing parameter invariance of the BLIM.

Proof of Proposition 1

Suppose that the probabilities of the response patterns 
in a population are given by Equation (2). The proba-
bility that in a randomly sampled response pattern, an 
item q is failed by careless error, given that the pattern 
belongs to group G1 is

∩
β = | = 1(1)

1
1

( , )
( , ) .

( , )

R G K
R K G

K G

q q

q q q

q

P
P

P
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The numerator of the right hand side of Equation (7) 

can be written as 1 1( , ) = ( , )
↓∩ ∩ ∩ +R G K R R G Kq q q qP P

1( , ),
↑∩ ∩R R G Kq qP  and, by applying the concatenation 

rule of conditional probabilities, 1( , ) =
↓∩ ∩R R G Kq qP

1( , ) ( , ).
↓ ↓| ∩ ∩G R R K R R Kq q q qP P  Moreover, given R↓, 

G1 is independent of both R
q
 and Kq, hence
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inator of (7) can be written as

1 1 1

1 1

( , ) ( , ) ( , )

( | , ) ( , ) ( , ) ( , )

( , ) ( , ).

↓ ↑

↓ ↓ ↑ ↑

↓ ↓ ↑ ↑

= ∩ + ∩

= + |

= +

K G K G R K G R

G R K R K G R K R K

R K R K

q q q

q q q q

q q

P P P

P P P P

p P p P

https://doi.org/10.1017/sjp.2015.24 Published online by Cambridge University Press

https://doi.org/10.1017/sjp.2015.24


4  D. de Chiusole et al.

2The number of items/states of the structure was not extensively 
varied. Nonetheless this particular choice suffices as a counterexample 
showing that the naïve method does not work in general.

Thus, with the notation ↓ ↓= ∩R R Rq q , and ↑ ↑= ∩R R Rq q ,  
Equation (7) can be rewritten as

↓ ↓ ↑ ↑

↓ ↓ ↑ ↑

+
β

+
(1)

( , ) ( , )
= .

( , ) ( , )

R K R K

R K R K

q q q q

q

q q

p P p P

p P p P

 (8)

By substituting β(1)
q  with the right hand of this last 

equation in the inequality β ≤ β(1)
q q , after some algebra 

we obtain

[ ( , ) ( , )] [ ( , ) ( , )].↓ ↓ ↓ ↑ ↑ ↑− β ≤ β −R K R K R K R Kp P P p P Pq q q q q q q q  (9)

We know from Proposition 1 in de Chiusole, Anselmi, 
et al., 2013; de Chiusole & Stefanutti (2013) that ↑β > βq q . 

Since, by definition, ↑ ↑ ↑β = /( , ) ( , ),q q q qP PR K R K  we have 

that ↑ ↑β −( , ) ( , ) > 0R K R Kq q q qP P . Thus, dividing both 

terms of the inequality in (9) by p↑ and, then, by 
↓ ↓− β( , ) ( , )R K R Kq q q qP P , one obtains the Inequality in (5).

The proof concerning the conditions for η ≤ η(1)
q q  

follows an identical line of reasoning, provided that 
Rq

 is replaced by Rq and Kq by Kq.
Proposition 1 holds true with arbitrary values of the 

two proportions p↓ and p↑. A special case arises when 
the choice of p↓ and p↑ is such that p↑ = 1 − p↓.

Proposition 2

If p↑ = 1 − p↓ then:
 
 1.  β ≤ β(1)

q q  if and only if β ≥ β(2)
q q ;

 2.  η ≤ η(1)
q q if and only if η ≥ η(2)

q q.
 

Proof. (1) Let f (βq) represent the right hand term in the 

inequality (5). The we have β ≤ β(1)
q q iff ↓ ↓− ≤ β/(1 ) ( )qp p f  

iff ↓ ↓− ≥ β(1 )/ ( )qp p f  iff ↑ ↑− ≥ β/(1 ) ( )qp p f  iff (2)β ≥ βq q. 
An analogous development, applied to inequality (1), 
leads to condition (2).

As Equation (8) shows, the value of (1)βq  is a function 
of: (i) the cutoff c used to partition the dataset; (ii) the 
values of p↑ and p↓; (iii) the BLIM’s parameter values 
(i.e., the βq, ηq and πK probabilities). To illustrate propo-
sitions 1 and 2, Figure 1 shows how (1)βq  varies as a 
function of the true parameter βq and the proportion p↓. 
In the figure the x-axis represents the parameter βq and 
each of the curves corresponds to a different choice of p↓. 
The remaining parameters of the BLIM were fixed to 
constant values, and the restriction p↑ = 1 − p↓ was used.

It can be seen from the figure that, when p↓ is less 
than a certain value1 (.5 in this particular example), the 
βq parameter is underestimated in group G1 (and thus 

overestimated in group G2), and the size of the bias 
increases as p↓ approaches zero. On the other hand, 
when p↓ is greater than .5, the βq parameter is overes-
timated in group G1 (and thus underestimated in 
group G2), and the size of the bias increases as p↓  
approaches one. A similar example could be provided 
for the ηq parameter. In that case one obtains an oppo-
site behavior.

A Simulation Study

The theoretical results obtained in previous section are 
illustrated by means of a simulation study in which the 
two proportions p↓ and p↑ are varied systematically. 
The aim of the simulations is to show that, by esti-
mating the BLIM’s parameters in each of the two 
groups G1 and G2, leads to reject the error parameter 
invariance assumption of the BLIM even when it is 
respected by the data, irrespectively of the values of 
the proportions p↓ and p↑. In particular, it is expected 
that on the average, the maximum likelihood estimates 
of the βq and ηq parameters in group Gi (with i ∈ {1,2}) 

approach the theoretical values ( )β ≠ βi

q q and ( )η ≠ ηi

q q.
For all the simulations a set of MATLAB functions, 

available on request to the first author, were developed.

Simulation Design

A number of 9 simulation conditions were considered 
in which the following variables were held fixed: a ran-
dom knowledge structure, composed of 16 items and 
400 knowledge states2; the true error parameter values, 
chosen at random from a uniform distribution in the 
interval (0,.25); the cutoff used for creating the two 
groups, that, for this knowledge structure, was the me-
dian (8). What varied among the 9 conditions was the 
proportion p↓ used to form groups G1 and G2. The 
values of p↓ were taken from the open interval (0,1) at 
equally spaced intervals of length 0.10. In all simula-
tions the constraint p↑ = 1 − p↓ held true.

In each of the 9 conditions, 100 samples of 1,000 
response patterns were generated. For each sample, 
the two groups were then formed choosing, with  
replacement, a proportion p↓ of the patterns below the 
median and a proportion 1−p↓ of the patterns above 
the median. In this way, for each of the 100 replications, 
9 pairs {G1, G2}, both composed of 1,000 response 
patterns, were obtained. The BLIM was then estimated 
to both groups, in each of the 9 pairs, and the means of 
the parameter estimates were compared to those com-
puted by applying Equation (8) for (1)βq  and the cor-
responding equation for (1)ηq

1The value is obtained by replacing the inequality ≤ in (5) with an 
equality and solving for p↓, with the constraint p↓ = 1 − p↑.
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Results

The size and the direction of the bias, in the 9 simu-
lation conditions, were examined. Figure 2 shows 
the results for the βq error parameter, obtained for 
both G1 and G2. In the figure, the true value of βq is 
along the x-axis, whereas the theoretical and the 
mean estimates of βq are along y-axis. The straight 
line is for reference and indicates that x = y, and 
there is one diagram for each of the 9 values of p.  
In each diagram, circles represent (1)βq , whereas triangles 
represent the theoretical value of (2)βq . Finally, the × 
and dots represent respectively the (1)βq  and the (2)βq  
mean estimates.

From the figure, it can be seen that: (1) ( )β i

q  and ( )β i

q  
parameters are in agreement for both groups, in all  
9 conditions; (2) when p = .50, no bias is observed;  
(3) going from p = .50 to p = .10, the βq parameter is 
overestimated in G2 and underestimated in G1, 
whereas going from p = .50 to p = .90, the βq param-
eter is underestimated in G2 and overestimated in 
G1. These results are in line with the predictions 
made by Proposition 2.

The results obtained for the ηq error parameters are 
very similar to those obtained for the βq. The difference 
is that going from p = .50 to p = .10, the ηq parameter is 

underestimated in G2 and overestimated in G1, whereas 
going from p = .50 to p = .90, the ηq parameter is over-
estimated in G2 and underestimated in G1.

Empirical Application

The results discussed in the previous sections are  
illustrated by an application to real data. The design 
was the same used in the simulation study: 9 condi-
tions where considered in which the proportion  
p↓ used to create the two groups G1 and G2, respec-
tively below and above the cutoff c, varied in the 
open interval (0,1) at equally spaced interval of length 
.10. For illustrative purposes, the data set provided 
by de Chiusole, Anselmi, et al. (2013 de Chiusole, 
Stefanutti et al. (2013) was used, in which 18 prob-
lems of elementary probability theory (with a knowl-
edge structure of 69 states) were administered to  
209 Italian university students. The median of the 
cardinality of the knowledge states was used as the 
cutoff (c = 9) to form the two groups. Subsequently,  
in each of the 9 conditions, the BLIM was fitted to 
the data in each of the two groups below and above 
the cutoff, and the means of the βq and ηq estimates 
were computed across the items, and compared to 
one another.

Figure 1. The probability ( )1βq  of a careless error on item q in group G1 (y-axis) varies as a function of βq (x-axis). Each of the 
curves corresponds to a different choice of the proportion p↓.
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Results

The results are shown in Table 1. Concerning the care-
less error parameters, it can be seen that in each of the 
conditions from 1 to 5, in which .1 ≤ p↓ < .5, the inequality 

G1 G2<β β  is respected, with the only exception of con-
dition 4 (where, however, the two means are very close 
to one another); whereas, in all conditions from 6 to 9, 
in which .5 ≤ p ≤ .9, the inequality G1 G2>β β  is respected. 
Concerning the lucky guess parameters, it can be seen 
that in all conditions from 1 to 5, the inequality G1 G2>η η  

holds true, whereas in all conditions from 6 to 9, the 
inequality G1 G2<η η  holds. All these results are in line 
with Proposition 2.

The BLIM’s parameter invariance says that the 
probability of a careless error or a lucky guess, for an 
item, does not depend on the student’s knowledge 
state. In de Chiusole, Anselmi, et al. (2013), de Chiusole, 
Stefanutti et al. (2013) two methods for testing this 
assumption were presented and discussed. The former, 
consists in comparing the BLIM with other models, called 
bipartition models (BPMs), in which the invariance 

Figure 2. Comparison between ( )β i

q  and ( )β i

q  parameters in G1 and G2. The true value of βq is along the x-axis, whereas the 
theoretical and the mean estimates of βq are along y-axis. The straight line is for reference and indicates that x = y, and there is 

one diagram for each of the 9 values of p. In each diagram, circles represent ( )1βq , whereas triangles represent the theoretical 

value of ( )2βq . Finally, the × and dots represent respectively the ( )1βq
 and the ( )2βq  mean estimates.

Table 1. Comparison among the mean of the item parameter estimates of the BLIM in the 9 conditions of the study. In the table p is the pro-
portion used to create the two groups below and above the cutoff; the βG1 and βG2 parameters are the mean of the careless errors of the groups 
below and above the cutoff, respectively; the ηG1 and ηG2 parameters are the mean of the lucky guesses of the groups below and above the 
cutoff, respectively

Condition p G1β G2β G1η G2η

1 .10 .1523 .4195 .3519 .1335
2 .20 .2015 .3511 .3294 .1711
3 .30 .2113 .3439 .2617 .1722
4 .40 .3240 .3135 .2152 .2140
5 .50 .2401 .3400 .2316 .1715
6 .60 .2977 .2643 .1706 .1973
7 .70 .3942 .2128 .1686 .2667
8 .80 .3715 .1750 .1403 .3504
9 .90 .4603 .1662 .1476 .2874
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assumption is explicitly violated; if the comparison 
favors a BPM, then the conclusion is that invariance is 
violated. The latter, inspired by the IRT literature, con-
sists in partitioning the observed data set into two 
groups (one containing all patterns below a certain cut-
off, and one containing all patterns above the cutoff), 
to fit the model in each of them, and to apply some 
statistical test to evaluate the difference between the 
parameter estimates of the two groups. If the test is sta-
tistically significant, then the parameter invariance is 
violated. This second method, called restricted naïve 
test, does not work properly, because it leads to biased 
parameter estimates in both groups. Indeed this bias is 
a direct effect of the manipulations introduced to parti-
tion the data into the two groups, and says nothing 
about possible departures of the data from the param-
eter invariance assumption.

In the present work, the analysis was extended to a 
more general method for constructing the two groups. 
The groups are formed by choosing a proportion p↑ of 
the patterns above a certain cutoff c, and a proportion 
p↓ of the patterns below c. Theoretical results, simula-
tions and an empirical application showed that, also 
the general method suffers of the same problems as 
the restricted naïve test. Again, the manipulations of 
the data that one implements for setting up the two 
groups, lead to biased parameter estimates that have 
nothing to do with the violation of the invariance 
assumption. Given these observations, the only avail-
able method for testing the BLIM’s invariance is, cur-
rently, bipartition models.
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