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Abstract

Poisson-like behavior for event count data is ubiquitous in nature. At the same time,
differencing of such counts arises in the course of data processing in a variety of areas
of application. As a result, the Skellam distribution – defined as the distribution of the
difference of two independent Poisson random variables – is a natural candidate for
approximating the difference of Poisson-like event counts. However, in many contexts
strict independence, whether between counts or among events within counts, is not a
tenable assumption. Here we characterize the accuracy in approximating the difference
of Poisson-like counts by a Skellam random variable. Our results fully generalize
existing, more limited, results in this direction and, at the same time, our derivations
are significantly more concise and elegant. We illustrate the potential impact of these
results in the context of problems from network analysis and image processing, where
various forms of weak dependence can be expected.
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1. Introduction

Given two independent Poisson random variables X and Y with means λ1 and λ2, the
Skellam distribution, originally attributed to [24], is defined as the distribution of the difference
of X and Y . Formally, a random variable W defined on the integers is said to have Skellam
distribution with parameters λ1, λ2 > 0, which we will denote by Sk(λ1, λ2), if for all k ∈ Z,

P(W = k) = e−(λ1+λ2)

(√
λ1

λ2

)k

Ik(2
√

λ1λ2),

where Ik(2
√

λ1λ2) denotes the modified Bessel function of the first kind with index k and
argument 2

√
λ1λ2.

In light of the ubiquity of Poisson-like behavior in nature and the ease with which differencing
can arise in data processing, it is perhaps no surprise that the Skellam distribution has seen use in
a variety of areas of application. These include application to neural decoding in computational
neuroscience [23], denoising [14] and edge detection [16] in image processing, conservation
laws in particle physics (see, for example, [12] and [21]), x-ray fluoroscopy in radiology [13],
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Skellam approximation 417

and the identification of genetic variants in bioinformatics [2]. Most recently, the Skellam
distribution has been found to have a role in network analysis [4].

In each of these contexts, there are two categories of events being counted and the resulting
sums (i.e. denoted X and Y above) are then differenced. The counting, of course, motivates
the use of the Poisson distribution in modeling. The events being counted might be the spiking
of neurons in two areas of the brain, the arrival of particles in two adjacent detectors in an
array, the genetic variants in two nearby regions of the genome, or the presence/absence of
a given subgraph across subsets of nodes in a network. Ideally, indicators of these events
are independent, both within each type of event category and across the two categories.
Independence within is ideal for arguing a Poisson approximation to the counts in each of
the two event categories (i.e. in arguing Poisson approximations to the distributions of each
of X and Y ). At the same time, strictly speaking, independence across the two categories
would seem to be necessary, as it is inherent to the definition of the Skellam distribution (i.e.
the distribution of X − Y ).

However, just as it is known that a Poisson approximation to event counts can be accurate
under various forms of weak dependence, it is natural to expect that the difference of Poisson-
like counts might be similarly well-approximated under some form of weak dependence.
If the events are dependent within each category but independent between categories, then
formal results of this nature follow from a trivial extension of existing results for Poisson
approximation. On the other hand, if events are dependent between categories then such results
are not immediate.

Motivated by the problem of subgraph counting in noisy networks, where it was noted that
such complex dependencies can arise easily, Balachandran et al. [4] initiated work on such a
general Skellam approximation using Stein’s method. However, the results provided in [4] are
limited, in that the bounds for the Stein factors therein were derived using a purely analytic
approach for the Kolmogorov metric and were restricted to the λ1 = λ2 case. In pursuing the
same problem of general Skellam approximation here, also using Stein’s method, our approach
in this paper will use the so-called probabilistic method by exploiting properties of generators of
Markov processes, in contrast to the direct analytic approach used in [4]. The main advantages
of our approach here are that we can derive bounds for the more general λ1 �= λ2 case, and that
the proofs via this approach are significantly easier to derive.

The importance of our work is fundamental in nature, yet it has the potential to be wide-
ranging in its practical impact. In each of the application domains described above, there is
the very real possibility of general weak dependence among event counts (i.e. both within and
between categories). For example, dependencies arise naturally when counting subgraphs in
noisy networks, either through dependency in the measurements underlying the construction
of the network in the first place or through overlap of vertex subsets while counting [4].
Alternatively, dependency can be expected in particle counts obtained by the types of charge-
coupled device (CCD) imaging instruments commonly used in astrophysics, due to so-called
spillover effects; see, for example, [3] and [25]. We will expand more on both of these examples
in a later section.

There is by now, of course, a large and rich literature on the use of Stein’s method to
characterize the accuracy of Poisson approximation to event counts, see [8] for a monograph on
the topic. However, the focus of this paper is on approximating the difference of two Poisson-
like counts, which to the best of the authors’ knowledge is yet to be studied in depth other
than the work of [4]. In [4], the focus was on approximating the distribution of what were
termed ‘noisy’ subgraph counts, i.e. subgraph counts in graphs wherein our knowledge of the
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presence/absence status of edges among vertex pairs is uncertain. There the focus was on a
centered version of such counts, which was found upon manipulation to yield a difference of
two Poisson-like sums and, hence, motivated approximation by Skellam. We use a simple
version of the same type of problem as one of two illustrations of our results later in this paper.
Nevertheless, as also pointed out by Balachandran et al. [4], the use of Stein’s method for noisy
graphs is different from that used traditionally for random graphs. Stein’s method was first
introduced to approximation theory for random graphs by Barbour [5], wherein both Poisson
and normal approximation results for isolated trees in random graphs were derived. The results
for the normal case were expanded in [9] to a variety of applications such as subgraph counts and
the number of isolated vertices. For summaries of Stein’s method results for random graphs,
see [8] and [18]; particularly the former for Poisson approximation results that are more relevant
to the work in this paper for obvious reasons.

This paper is organized as follows. In Section 2 we construct our framework for Stein’s
method for the Skellam distribution, and derive bounds for the relevant Stein factors. In Sec-
tion 3 we utilise each of these bounds in two example applications: counting subgraphs in
noisy networks and counting particles in imaging. Both examples are relatively simple but can
be easily generalised. The paper concludes with a discussion of our results and some open
questions in Section 4.

2. Stein’s method for the Skellam distribution

Our results are derived using an adaptation of the multivariate Poisson approximation. While
the Skellam distribution is univariate, the objects we are typically interested in approximating
with the Skellam distribution are differences of two random variables. Our approach reflects this
by initially considering the bivariate Poisson approximation and then choosing test functions
that project down to the univariate case appropriately.

We begin by noting the bivariate Poisson–Stein identity. Note that (X, Y ) are said to be
bivariate Poisson with parameters (λ1, λ2) if X and Y have marginal distributions Poisson(λ1)

and Poisson(λ2) and are independent.

Lemma 1. (Bivariate Poisson–Stein identity.) We say that (X, Y ) is a bivariate Poisson-
distributed random vector with parameters (λ1, λ2) if and only if for all functions h in a family
of suitable functions, E(Ah(X, Y )) = 0, where

Ah(x, y) = λ1[h(x + 1, y) − h(x, y)] + x[h(x − 1, y) − h(x, y)]
+ λ2[h(x, y + 1) − h(x, y)] + y[h(x, y − 1) − h(x, y)]. (1)

Details about multivariate Poisson approximation via Stein’s method can be found in [6]
and [7]. For the Skellam distribution, we seek to modify the bivariate Poisson approximation by
considering test functions that depend only upon the difference between X and Y . Noting that
we will be abusing notation slightly by often writing bivariate functions that depend only upon
the difference as a univariate function, for example f (x, y) = f (x −y), for any function f we
define the Stein equation where we set hf (x, y) =: h(x, y) by

Ahf (x, y) = f (x − y) − Sk(λ1, λ2){f }, (2)

where Sk(λ1, λ2){f } := Ef (Z) and Z
d= Sk(λ1, λ2). Hence, by taking expectations it is

sufficient to find a uniform bound for EAhf (X, Y ) to bound Ef (X − Y ) − Sk(λ1, λ2){f } for
any f . We will consider all f from the family of test functions corresponding to indicator
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functions on the difference of the two coordinates, which encapsulates the total variation (TV)
distance. That is, FTV = {f : f (x, y) = 1A(x−y), A ⊂ Z}, where 1A is the indicator function
of the event A.

Let �ih(x, y) = h((x, y) + e(i)) − h(x, y), where e(i) denotes a unit vector in coordinate i

for i ∈ {1, 2}. Also, let �2
ij h(x, y) = �i(�jh(x, y)), where j ∈ {1, 2} also. To apply Stein’s

method successfully, bounds of the correct order are required for the Stein factors

‖�ih‖ = sup
f ∈FTV

sup
x,y

|�ih(x, y)|,

‖�2
ij h‖ := sup

f ∈FTV

sup
x,y

|�2
ij h(x, y)|

= sup
f ∈FTV

sup
x,y

|h((x, y) + e(i) + e(j)) − h((x, y) + e(i)) − h((x, y) + e(j))

+ h(x, y)|.
Theorem 1. For i, j ∈ {1, 2},

‖�ih‖ ≤ min

{
1,

√
2

e max{λ1, λ2}
}
, (3)

‖�2
ij h‖ ≤ min

{
1,

1

2 max{λ1, λ2}2 +
√

2 log+(
√

2 max{λ1, λ2})
max{λ1, λ2}

}
, (4)

where log+(x) = max{log(x), 0}. Furthermore,

‖�ih‖ ≤
∫ ∞

0
e−t max{1, e−(λ1+λ2)(1−e−t )I0((λ1 + λ2)(1 − e−t ))} dt

∼
√

2

π(λ1 + λ2)
, (5)

where the asymptotic equivalence is for when both λ1 and λ2 are large.

Proof. Our proof will follow similar ideas and techniques used in the univariate Poisson
approximation, for example Lemma 10.2.5 of [8]. Note that we will prove the bounds in the
i = j = 1 case, and the other cases follow essentially the same proof and, hence, are not
included.

It can be shown that for any bounded function f , the (well defined) solution to the Stein
equation (2) is

hf (x, y) = −
∫ ∞

0
[Ef (Zx,y(t)) − Sk(λ1, λ2){f }] dt,

where Zx,y(t) is a Markov process starting at (x, y) and following generator (1). Hence,

�1h(x, y) = −
∫ ∞

0
E[f (Zx+1,y(t)) − f (Zx,y(t))] dt, (6)

�2
11h(x, y) = −

∫ ∞

0
E[f (Zx+2,y(t)) − f (Zx+1,y(t)) − f (Zx+1,y(t)) + f (Zx,y(t))] dt.

We will construct couplings by defining the following independent processes:

D1(t), a pure death process with rate 1 and D1(0) = 1;

D2(t), a pure death process with rate 1 and D2(0) = 1;
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Dx(t), a pure death process with unit-per-capita death rate and Dx(0) = x;

Dy(t), a pure death process with unit-per-capita death rate and Dy(0) = y;

Z
λ1
0 (t), an immigration–death process with immigration rate λ1, unit-per-capita death

rate, and Z
λ1
0 (0) = 0;

Z
λ2
0 (t), an immigration–death process with immigration rate λ2, unit-per-capita death

rate, and Z
λ2
0 (0) = 0.

We can define a coupling (see Theorem 2.1 of [7] for more details) such that

Zx+1,y(t) := Zx,y(t) + (D1(t), 0),

Zx,y(t) := (Z
λ1
0 (t), 0) + (0, Z

λ2
0 (t)) + (Dx(t), 0) + (0, Dy(t)).

Using this coupling, (6) now becomes

�1h(x, y) = −
∫ ∞

0
e−t

E[f (Z
λ1
0 (t) + Dx(t) − Z

λ2
0 (t) − Dy(t) + D1(t))

− f (Z
λ1
0 (t) + Dx(t) − Z

λ2
0 (t) − Dy(t)) | 1{D1(t)=1}] dt.

Note that if D1(t) = 0 then the two terms in the expectation cancel out. Given f ∈ FTV, then
as f is either 0 or 1, the constant bound is immediate. For the (λ1, λ2) dependent bound, the
term in the expectation can be evaluated as

∞∑
k=0

{E[f (k + Dx(t) − Z
λ2
0 (t) − Dy(t) + 1) | Z

λ1
0 (t) = k]P(Z

λ1
0 (t) = k)

− E[f (k + 1 + Dx(t) − Z
λ2
0 (t) − Dy(t)) | Z

λ1
0 (t) = k + 1]P(Z

λ1
0 (t) = k + 1)}

− f (Dx(t) − Z
λ2
0 (t) − Dy(t))P(Z

λ1
0 (t) = 0)

=
∞∑

k=0

E[f (k + 1 + Dx(t) − Z
λ2
0 (t) − Dy(t))](P(Z

λ1
0 (t) = k) − P(Z

λ1
0 (t) = k + 1))

− f (Dx(t) − Z
λ2
0 (t) − Dy(t))P(Z

λ1
0 (t) = 0). (7)

Noting that Z
λ1
0 (t)

d= Poisson(λ1(1 − e−t )) (see [15, p. 101]), the above can be bounded by

∞∑
k=0

|P(Z
λ1
0 (t) = k + 1) − P(Z

λ1
0 (t) = k)| + P(Z

λ1
0 (t) = 0) = 2 max

x≥0
P(Z

λ1
0 (t) = x)

≤ 2
1√

2eλ1(1 − e−t )
, (8)

where the final bound on the Poisson probabilities can be found from Equation (A.2.7) of [8].
Recall that the functions f under consideration are indicator functions on the real line. Now,
given that each of the first differences of the Poisson probabilities is multiplied by f in (7),
then the worst case for the function f would be to include either all the positive or negative
differences from P(Z

λ1
0 (t) = k) − P(Z

λ1
0 (t) = k + 1). As the bound in (8) contains both the

https://doi.org/10.1017/jpr.2018.27 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.27


Skellam approximation 421

positive and negative differences, we can drop a factor of 2 in our final bound.

|�1h(x, y)| ≤
∫ ∞

0
e−t min

{
1,

1√
2eλ1(1 − e−t )

}
dt

=
∫ − log(1−1/2eλ1)

0
e−t dt +

∫ ∞

− log(1−1/2eλ1)

e−t√
2eλ1(1 − e−t )

dt

=
√

2

eλ1
− 1

2eλ1
.

The final result in (3) is achieved by noting that instead of conditioning upon Z
λ1
0 (t) we could

equally have conditioned upon Z
λ2
0 (t) with the same corresponding final result.

For the second bound (5), instead of conditioning upon only Z
λ1
0 (t), we will condition on

both Z
λ1
0 (t) and Z

λ2
0 (t). Therefore, similarly to earlier, we need to bound

∞∑
k=0

E[f (k + 1 + Dx(t) − Dy(t))](P(Z
λ1
0 (t) − Z

λ2
0 (t) = k) − P(Z

λ1
0 (t) − Z

λ2
0 (t) = k + 1))

− f (Dx(t) − Dy(t))P(Z
λ1
0 (t) − Z

λ2
0 (t) = 0) (9)

and, hence, we need a suitable bound for maxk{P(Z
λ1
0 (t) − Z

λ2
0 (t) = k)}. Recalling the

distributions of Z
λ1
0 (t) and Z

λ2
0 (t), this essentially amounts to finding a uniform bound for the

maximum of a Skellam distribution. Using the characteristic function inversion formula,

Sk(λ1, λ2){k} = 1

2π

∫ π

−π

e−itk exp(λ1(e
it − 1)) exp(λ2(e

−it − 1)) dt

≤ 1

2π

∫ π

−π

e(λ1+λ2)(cos t−1) dt

= e−(λ1+λ2)I0(λ1 + λ2),

where the last equality follows from Equation (9.6.19) of [1]. The final bound in the theorem
is now clear by starting with (9), following the same argument as for the bound which only
depends upon λ1, and then where a bound is required for maxx≥0 P(Z

λ1
0 (t) = x) in the earlier

argument in (8), use the above Skellam bound. The asymptotic result can be derived from the
fact that I0(z) ∼ ez/

√
2πz from Equation (9.7.1) of [1].

The bounds for the second difference are derived in a similar manner, i.e.

�2
11h(x, y)

= −
∫ ∞

0
e−2t

E[f (Z
λ1
0 (t) − Z

λ2
0 (t) + Dx(t) − Dy(t) + D1(t) + D2(t))

− f (Z
λ1
0 (t) − Z

λ2
0 (t) + Dx(t) − Dy(t) + D1(t))

− f (Z
λ1
0 (t) − Z

λ2
0 (t) + Dx(t) − Dy(t) + D2(t))

+ f (Z
λ1
0 (t) − Z

λ2
0 (t) + Dx(t) − Dy(t)) | 1{D1(t)=D2(t)=1}] dt. (10)

Similarly to earlier, we have conditioned upon D1(t) = D2(t) = 1 in the above equation. Note
that, as f ∈ FTV, we can bound the expectation in the integral by 2. This immediately gives
the first of the two bounds in the theorem.

https://doi.org/10.1017/jpr.2018.27 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.27


422 H. L. GAN AND E. D. KOLACZYK

We now work on a (λ1, λ2)-dependent bound in a similar fashion as for the first difference.
Without loss of generality, assume that λ1 ≥ λ2. The term in the expectation can be evaluated
as follows:

∞∑
k=−2

{E[f (k − Z
λ2
0 (t) + Dx(t) − Dy(t) + 2) | Z

λ1
0 (t) = k]P(Z

λ1
0 (t) = k)

− 2E[f (k + 1 − Z
λ2
0 (t) + Dx(t) − Dy(t) + 1) | Z

λ1
0 (t) = k + 1]P(Z

λ1
0 (t) = k + 1)

+ E[f (k + 2 − Z
λ2
0 (t) + Dx(t) − Dy(t)) | Z

λ1
0 (t) = k + 2]P(Z

λ1
0 (t) = k + 2)}

=
∞∑

k=−2

{E[f (k + 2 − Z
λ2
0 (t) + Dx(t) − Dy(t))]

× (P(Z
λ1
0 (t) = k) − 2P(Z

λ1
0 (t) = k + 1) + P(Z

λ1
0 (t) = k + 2))}. (11)

Note that in order to bound �2
12h(x, y), we modify this approach by conditioning on Z

λ1
0 (t)

being equal to k, k − 1, k + 1, k, respectively, for the four terms in (10). The other cases follow
by symmetry. Given |f (x)| ≤ 1, the absolute value of the above is bounded by

∞∑
k=−2

|P(Z
λ1
0 (t) = k) − 2P(Z

λ1
0 (t) = k + 1) + P(Z

λ1
0 (t) = k + 2)|,

which has a natural bound of 2. Recalling Z
λ1
0 (t)

d= Poisson(λ1(1 − e−t )), the above becomes
a sum of second differences of the Poisson probabilities. For X

d= Poisson(λ),
∞∑

k=0

|pk − 2pk−1 + pk−2| = 1

λ2

∞∑
k=0

pk|λ2 − 2kλ + k(k − 1)|

= 1

λ2 E|λ2 − 2Xλ + X(X − 1)|

≤ 1

λ2

√
E[(λ2 − 2Xλ + X(X − 1))]2

=
√

2

λ
,

where the inequality is from Hölder’s inequality. If max{λ1, λ2} < 1/
√

2 then we achieve the
constant bound in (4), so assuming max{λ1, λ2} ≥ 1/

√
2, this yields

‖�2
11h‖ ≤

∫ ∞

0
e−2t min

{
2,

√
2

max{λ1, λ2}(1 − e−t )

}
dt

= 1

2 max{λ1, λ2}2 +
√

2 log(
√

2 max{λ1, λ2})
max{λ1, λ2} . �

Remark 1. Noting that 1
2 (λ1 + λ2) ≤ max{λ1, λ2} ≤ λ1 + λ2, we can replace the maximum

terms in (3) and (4) with the following more aesthetically pleasing but less sharp bounds:

‖�ih‖ ≤ min

{
1,

√
4

e(λ1 + λ2)

}
,

‖�2
ij h‖ ≤ min

{
1,

2

(λ1 + λ2)2 + 2
√

2 log+(
√

2(λ1 + λ2))

λ1 + λ2

}
.
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3. Applications

We illustrate the use of our results on approximation by the Skellam distribution through two
applications. Each is a simple caricature of a more complicated application in which such an
approximation has been explored in the context of a specific real application. The first pertains
to the problem of subgraph counts in noisy networks, as introduced in [4], while the second
relates to photon counting devices in image processing.

3.1. Measurement errors in Erdős–Rényi graph edge counts

The analysis of network data is widespread across the scientific disciplines; see, for example,
[17], [19], and [22]. In applied network analysis, a common modus operandi is to first gather
basic measurements relevant to the interactions among elements in a system of interest, then
construct a graph-based representation of that system, with nodes serving as elements and links
indicating interactions between pairs of elements, and finally summarize the structure of the
resulting graph using a variety of numerical and visual tools. See [19, Chapters 3 and 4] for
background and several case studies illustrating this process. Key here is the point that the
process of network analysis usually rests upon some collection of measurements of a more
basic nature and there are usually errors inherent in those measurements. Unfortunately, the
uncertainty in approximating some true graph G = (V , E) by some estimated graph Ĝ =
(V , Ê), which manifests as errors in our knowledge of the presence/absence of edges between
vertex pairs, must necessarily propagate to any estimates of network summaries η(G) we
seek. Yet currently there is little in the literature by way of formal and principled statistical
methodology for dealing with this propagation of error. A natural first step in this direction is
a distributional analysis.

This problem was first formalized by Balachandran et al. [4], where the focus was on the
distribution of subgraph count statistics in noisy networks. And, since it is standard in the
applied network analysis literature to cite observed subgraph counts, the quantity studied in [4]
was the discrepancy between observed and true subgraph counts. Particular emphasis was
placed on the simplest case where the subgraph of interest is an edge, and the corresponding
subgraph count, the total number of edges. The statistic of interest therefore was the discrepancy
D = |E|− |Ê|. Accordingly, we consider the same statistic here, but in the specific case where
the true underlying graph G is a classical random graph.

Formally, suppose that G is an Erdős–Rényi random graph with n possible edges (i.e.
for notational simplicity, n refers to the number of vertex pairs rather than the number of
vertices). This graph is not necessarily a complete graph, but rather each vertex pair has an
edge independently with probability pi . We will denote by Ui , i ∈ {1, . . . , n}, the indicator
random variable such that Ui = 1 if an edge exists between the ith vertex pair.

Motivated by the discussion above, suppose that instead of observing the true graph G,
we instead observe a version Ĝ with errors. Let Vi , i ∈ {1, . . . , n}, be the associated edge
indicator variable for the observed graph and furthermore set the conditionally independent
error probabilities to be

P(Vi = 0 | Ui = 1) = ri, P(Vi = 1 | Ui = 0) = si .

In this setup, let U = ∑n
i=1 Ui and V = ∑n

i=1 Vi with Vi independent of Uj , j �= i. In this
case, U − V would therefore represent the difference in the number of edges of each graph.
That is, U − V = |E| − |Ê|. We will aim to explicitly quantify the accuracy of a Skellam
approximation for U − V .
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The details of our problem statement differ slightly from that of [4], in that the true underlying
graph G is random, but the spirit remains the same, in that the discrepancy D is the difference
of two random variables U and V that are certainly not independent. Furthermore, and a
significant departure from [4], we do not require that E[U − V ] = 0. Leveraging the main
result of this paper, we have the following result.

Theorem 2. In the above setup, if we set λ1 = ∑n
i=1 ripi and λ2 = ∑n

i=1 si(1 − pi), then

dTV(L(U − V ), Sk(λ1, λ2))

≤
n∑

i=1

(piri + (1 − pi)si)
2
[

2

[∑n
i=1(piri + (1 − pi)si)]2

+ 2
√

2 log(
√

2
∑n

i=1(piri + (1 − pi)si))∑n
i=1(piri + (1 − pi)si)

]
.

Proof. The first thing to note that is while we are trying to estimate the difference of U

and V , we do not need to consider edges that exist in both random graphs. Let Û denote the
number of edges that are in the true graph but not the observed graph, and similarly let V̂ be
the number of edges that are not in the true graph but are in the observed graph. In this fashion,
U − V = Û − V̂ . (As an aside, we note that in [4] the problem was necessarily formulated
directly in terms of what we refer to as Û − V̂ , since there the true graph G was assumed to
be nonrandom.) We similarly define Ûi and V̂i as indicators for individual edges, noting that
P(Ûi = 1) = piri and P(V̂i = 1) = (1 − pi)si . We are required to bound

EAh(Û, V̂ ) = E

[ n∑
i=1

[piri(h(Û + 1, V̂ ) − h(Û, V̂ ))] + Û (h(Û − 1, V̂ ) − h(Û, V̂ ))

]

+ E

[ n∑
i=1

[(1 − pi)si(h(Û , V̂ + 1) − h(Û, V̂ ))]

+ V̂ (h(Û , V̂ − 1) − h(Û, V̂ ))

]
. (12)

We begin with

E[Û (h(Û − 1, V̂ ) − h(Û, V̂ ))]

= E

n∑
i=1

Ûi(h(Û − 1, V̂ ) − h(Û, V̂ ))

=
n∑

i=1

E[Ûi(h(Û − 1, V̂ ) − h(Û, V̂ )) | Ûi = 1, V̂i = 0]P(Ûi = 1, V̂i = 0)

=
n∑

i=1

piriE[h(Û (i), V̂ (i)) − h(Û (i) + 1, V̂ (i))],

where Û (i) = Û − Ûi and V̂ (i) = V̂ − V̂i . Hence, the first half of (12) becomes

n∑
i=1

piriE[(h(Û + 1, V̂ ) − h(Û, V̂ )) + (h(Û (i), V̂ (i)) − h(Û (i) + 1, V̂ (i)))]. (13)
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We now consider three cases:

(i) Ui = 0 and Vi = 0;

(ii) Ui = 1 and Vi = 0;

(iii) Ui = 0 and Vi = 1.

Case (ii) can be termed a false negative, and (iii) a false positive. Note that it is impossible for
an edge to be a false positive and false negative at the same time. In case (i), the terms in (13)
will cancel out to 0, and in (ii) and (iii) we have exactly a second difference of the function h,
and these two cases take probability piri and (1 − pi)si , respectively. Therefore, (13) can be
bounded by

‖�2
ij h‖

n∑
i=1

piri(piri + (1 − pi)si). (14)

An analogous argument follows for the second half of (12) and, therefore, the entirety of (12)
can be bounded by

‖�2
ij h‖

n∑
i=1

(piri + (1 − pi)si)
2,

and the final bound follows from Theorem 1 and Remark 1. �
As a simplification to aid with interpretation of the bound, if we set pi = p, ri = r and

si = s, the bound becomes

2

n
+ (pr + (1 − p)s)2

√
2 log(

√
2n(pr + (1 − p)s)).

The assumption that the error probabilities ri and si are constant across the graph is referred
to as a homogeneity assumption in [4]. While likely not strictly true in practice, it is a useful
assumption for better illustrating how the relevant aspects of the problem combine to influence
the accuracy of approximation by Skellam. If we further assume that λ1 and λ2 are equal to
some common value, say λ, our setup is then roughly equivalent to that of [4]. This assumption
can be viewed as imposing a type of centering on the noise at the level of individual edges, since
it dictates that in expectation we have |E| equal to |Ê|. In this case, since rp = s(1−p) = λ/n,
the bound becomes

1

n
[2 + 4

√
2λ log(2

√
2λ)].

When it is not unreasonable to expect that λ vary with n, we then find that the accuracy of
approximation by Skellam in this problem – for this special case – varies like O(λn log(λn)/n).

The method of proof of this bound is unsurprisingly similar to the Poisson approximation
of the sum of independent but not necessarily identical Bernoulli trials. In our case, there are
essentially three components of the error terms that we would expect to appear: two of them
will result from the individual Poisson approximations of Û and V̂ and then there should be a
third term which deals with the fact that Û and V̂ are not independent. For the reader familiar
with Poisson approximation, it should be clear where the ‘third’ component of the error appears
in (14). The difference arises because the conditioning we make upon Ui has ramifications
on Vi as they are not independent. One would expect a single univariate Poisson approximation
would only have a sum of the p2

i r
2
i in (14), but we require the second term in our scenario.

However, in some sense, this extra term disappears in the final bound because our Stein factor
has both λ1 and λ2 in the denominator.
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3.2. Haar wavelet coefficients under photon imaging with spillover effects

Current state-of-the-art high-quality imaging applications, such as those encountered in
medicine and scientific research, make heavy use of what is known as a charge-coupled device
(CCD). A CCD converts electrical charges to digital values. In the context of imaging, these
electrical charges in turn derive from the conversion of photons – essentially particles of light –
into an electrical signal. Therefore, CCDs (and a variety of other related devices) are central to
modern image acquisition and digital image processing, in that by assembling arrays of CCDs
and orienting them towards an object of interest it is possible to represent that object through a
matrix of photon counts over the individual CCDs in the array.

Ideally, the count in each CCD would be independent of the others and relevant only to a
certain corresponding portion of the imaged object. However, for technical reasons, there can
be various types of degradation. For example, it is typically the case that photons that should be
counted in a given CCD can actually be counted in others. This effect is sometimes referred to as
‘spillover’and can be thought of as inducing a type of blurring in the image. Standard practice is
to calibrate imaging instruments before use, yielding a (usually) probabilistic mapping function
that characterizes the blurring. Depending on the extent of such degradation and the application
at hand, this may be used, in turn, for deblurring in the image processing stage. See, for example,
[12] and [21] for a detailed description of this paradigm in the context of X-ray imaging in
astrophysics.

Here we set up a simple caricature of the type of image degradation problem just described, in
which a weak dependence among photon counts results. Without loss of generality, we consider
a one-dimensional signal rather than a two-dimensional image. In practice, the indexing in this
dimension is typically photon energy, rather than photon source location. But the same type of
degradation issues can be present. For our signal processing, we consider the use of wavelets,
a work-horse in signal and image processing for over 20 years; see [20]. Specifically, both
for simplicity and to match most closely the focus of this paper, we consider the use of the
Haar wavelet. The result of applying a Haar wavelet transform to a one-dimensional signal
is to produce a collection of Haar coefficients which, as the inner product of the wavelet and
the signal, are proportional to the difference of the sums of the signal values over two adjacent
windows.

Suppose we have n bins (for example, corresponding to CCDs), and note in the following
that all defined vectors will be of length n. Let the vector X be the true signal and suppose that
X

d= Poisson(f ), so the Xi
d= Poisson(fi) and are also independent from each other. Hirakawa

and Wolfe [14] showed that both the wavelet and scaling coefficients for the Haar wavelet
are distributed as (proportional to) Skellam random variables with parameters comprised of
sums and differences of the elements of f . Set P where Pi ∈ {0, 1} denote the positive
inclusions for a given Haar wavelet coefficient, similarly N with Ni ∈ {0, 1} for the negative
inclusions and P + N = {0, 1}n, i.e. there is no overlap of the 1’s. Then the Haar wavelet
coefficient can be represented as U − V , where U = P · X, V = N · X and ‘·’ denotes the dot
product. Furthermore, U − V

d= Sk(P · f , N · f ). In the following we will investigate how
measurement errors would impact the distribution of these coefficients.

A simple variant of the type of spillover referred to above, in the context of a one-dimensional
signal, is when a particle may actually end up being observed at a lower energy level than its
true energy. In our model we will assume that each particle that arrives is independent and
there is a probability p that the particle will be observed in exactly one level lower than its true
energy. Let Yi denote the number of particles in bin i that are observed correctly, and Y ∗

i denote
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the number of particles in bin i that are the result of errors in measurement. That is, Y ∗
i is the

number of particles of energy level i + 1 but are measured at level i.
Due to the thinning property of Poisson random variables, Y and Y ∗ are independent. Set

U ′ = P ·Y +P ·Y ∗ and V ′ = N ·Y +N ·Y ∗. The observed Haar wavelet coefficient satisfies

U ′ − V ′ d= Sk((1 − p)P · f + pP · f (−1), (1 − p)N · f + pN · f (−1)),

where f
(−1)
i = fi+1. Note that we can set P−1 = N−1 = 0 and fn+1 = 0 to avoid

boundary issues. So our question is, what is the difference between these two different Skellam
distributions, i.e. between the distributions of the true and observed Haar wavelet coefficients.

Theorem 3. In the above set up,

dTV(L(U ′−V ′), L(U−V )) ≤
√

2p2

e max(P · f , N · f )
[|P ·f −P ·f (−1)|+|N ·f −N ·f (−1)|].

Proof. To bound this difference in total variation, we use a simple adaptation of Theo-
rem 1.C(i) of [8]. Using the true distribution of U − V as our ‘reference’ measure, we need to
bound |EA(U ′, V ′)| from (1), where λ1 = P · f and λ2 = N · f . Note that using the usual
Poisson–Stein identity,

E[U ′[h(U ′ − 1, V ′) − h(U ′, V ′)] | V ′]
= −((1 − p)P · f + pP · f (−1))E[h(U ′ + 1, V ′) − h(U ′, V ′) | V ′],

therefore to bound the first half of (1),

|E[P · f [h(U ′ + 1, V ′) − h(U ′, V ′)] + U ′[h(U ′ − 1, V ′) − h(U ′, V ′)]]|
= |((P − (1 − p)P ) · f − pP · f (−1))E[E[h(U ′ + 1, V ′) − h(U ′, V ′) | V ′]]|
≤ ‖�ih‖ p |P · f − P · f (−1)|.

An analogous bound can be derived for the second half of (1) and this yields the final result.
The proof is complete. �

Note that the bound in the above theorem is larger when, relative to the larger of total signal
intensity in the positive or negative window (i.e. the larger of P ·f or N ·f ), the discrepancy in
those totals resulting from a shift of the windows by 1 is large. That is, when the windows are
near a spike or jump in the underlying signal f . Therefore, in particular, the effects of spillover
are minimal in regions of the signal that are smooth.

Remark 2. If we want to generalise this result to allow the error probability to be random, for
example the error rate for bin i could depend upon Xi , this should in theory be possible by
adapting Theorem 1.C(ii) of [8].

4. Discussion

There is one notable drawback in the approach used in this paper. Given that our approach is to
project from two dimensions to one using appropriate test functions, this will only be applicable
when approximating the difference of two random variables. If one wishes to approximate a
single univariate random variable with the Skellam distribution directly, then this approach will
not be useful. It remains an open question as to whether a direct one-dimensional approach is
possible.
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Poisson approximation via the generator method involves characterising the Stein identity as
the generator of an immigration–death Markov process where the immigration rate is constant λ
and the death rate is unit-per-capita. Such a generator characterises the Poisson distribution as
it is the unique stationary distribution of such a process. Intuitively, for the Skellam distribution
one would aim to construct a generator defined on the integers such that λ1 would denote the
rate of increase of ‘positive particles’, λ2 the rate of increase of ‘negative particles’, and then an
offsetting death-type rate that would remove particles appropriately, thus ensuring the process
does not explode in either direction so that the associated stationary distribution is Skellam.
The problem with attempting such a construction, from a one-dimensional viewpoint, is that
if we only know the difference between the two counts of positive and negative particles, this
is not enough information to properly define the transition rates of the process. For example,
if we know that the difference of the two counts is 0, there are infinitely many possibilities
for the number of positive and negative particles, and to properly define the process we need
to know how many positive and negative particles there are. The problem described above
with constructing an appropriate one-dimensional generator for the process is what leads us to
believe that a one-dimensional approach is not possible using the generator method, however
we concede that it is possible that there may exist a generator representation that would be
amenable to analysis.

An interesting question is whether there exists a nice clean bound for the first difference
of h of the order 1/

√
λ1 + λ2 as opposed to our two bounds in (3) and (5). Our bound (5)

was derived via the inversion formula for characteristic functions. The ‘usual’ method that is
used in Poisson approximation does not seem viable in the Skellam scenario, primarily because
it involves finding a uniform bound for the maximum of the Poisson mass function in terms
of λ. For the Skellam distribution, one might suspect an analogous approach, however given
we have one quantity to bound but two parameters to work with, this method seems unfruitful.
We expect that it should be possible to find such a bound, and this remains an interesting open
problem.

Similarly, for the second difference, our bound involving the maximum of λ1 and λ2 should
be able to have all the maximum terms replaced with the sum of the two parameters without the
penalty invoked in Remark 1. The correct way to derive such a bound would be to condition
upon the difference Z

λ1
0 (t) − Z

λ2
0 (t) in (11) rather than just one of the two processes. This

would ultimately require a bound upon the sum of the absolute second differences of Skellam
probabilities. For pk = P(Z = k), where Z

d= Sk(λ1, λ2), numerical results indicate that∑
k |pk −2pk−1 +pk| ≤ 1/(λ1 +λ2), which intuitively makes sense, given the Poisson bound,

as both λ1 and λ2 will ‘flatten’out the mass function as they increase. However, we were unable
to prove such a result, as the Bessel functions proved to be not very tractable.

It is worth comparing our bound for the second difference to the Stein solution (4) to the
corresponding bounds derived in Theorem 4 of [4], where it was shown that ‖�2

11h‖ ≤ 160/2λ,
but limited to the case where λ = λ1 = λ2 and for the Kolmogorov metric. However, given
the test functions for the total variation distance and Kolmogorov distance are not completely
dissimilar, a comparison is still worthwhile. Our bound in this paper is of order log(λ1 +
λ2)/(λ1 + λ2), so for very large λ1, λ2 this will fare worse. However, our constant is much
better so this will only be worse on very large λ1 and λ2. And, obviously, our bounds have the
significant added flexibility of not requiring λ1 = λ2.

In light of the bounds of order 1/(λ1 + λ2) in [4], an interesting question is whether our
bounds in this paper of log(λ1 + λ2)/(λ1 + λ2) are of the right order. Given that Barbour
[7] has shown that for the multivariate Poisson approximation, the Stein factors are of strict
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order log(λ1 + λ2)/(λ1 + λ2), and since our approach involves adapting the bivariate Poisson
approximation on specific test functions, we believe that our order may be the best possible
using our approach.

Using the generator approach, the standard bound for the Poisson–Stein factor (see, for ex-
ample, Corollary 2.12 of [11]) involves a coupling based upon hitting times of an immigration–
death process. However, this coupling is difficult to use in the multivariate case as hitting times
become significantly more complicated when there are multiple dimensions. Logarithmic
terms are quite common in Poisson related approximation theory, such as multivariate Poisson
as discussed above, and also for process approximation where it has been shown that logarithmic
terms are strictly necessary if we wish to use uniform bounds for the Stein factors [10]. Our
approach in this paper has both aspects of multivariate and univariate analysis, multivariate in
the sense that we are essentially considering a special case of bivariate Poisson approximation,
but the ultimate target is Skellam which is univariate. As a result, it is not clear what the correct
order should be. We would lean towards the correct order not including a logarithmic term,
but such a bound is likely beyond the methods used in this paper. Whether a direct analytic or
alternative approach would yield a better result is unknown.
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