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A novel similarity-based form is derived of the transport equation for the second-order
velocity structure function of 〈(δq)2〉 along the centreline of a round turbulent jet
using an equilibrium similarity analysis. This self-similar equation has the advantage
of requiring less extensive measurements to calculate the inhomogeneous (decay and
production) terms of the transport equation. It is suggested that the normalised third-
order structure function can be uniquely determined when the normalised second-order
structure function, the power-law exponent of 〈q2〉 and the decay rate constants of
〈u2〉 and 〈v2〉 are available. In addition, the current analysis demonstrates that the
assumption of similarity, combined with an inverse relation between the mean velocity
U and the streamwise distance x − x0 from the virtual origin (i.e. U ∝ (x − x0)

−1),
is sufficient to predict a power-law decay for the turbulence kinetic energy (〈q2〉 ∝
(x− x0)

m), rather than requiring a power-law decay (m=−2) as an additional ad hoc
assumption. On the basis of the current analysis, it is suggested that the mean kinetic
energy dissipation rate, 〈ε〉, varies as (x− x0)

m−2. These theoretical results are tested
against new experimental data obtained along the centreline of a round turbulent jet as
well as previously published data on round jets for 11 000 6 ReD 6 184 000 over the
range 10 6 x/D 6 90. For the present experiments, 〈q2〉 exhibits power-law behaviour
with m = −1.83. The validity of this solution is confirmed using other experimental
data where 〈q2〉 follows a power law with −1.896m6−1.78. The present similarity
form of the transport equation for 〈(δq)2〉 is also shown to be closely satisfied by the
experimental data.

Key words: jets, turbulence theory, turbulent flows

1. Introduction
The concept of similarity, or self-preservation, which assumes that the flow scales

with single velocity and length scales, has been an important tool for analysis in
turbulence research. One major benefit of this concept is the reduction of the number
of equations that may be used to describe turbulent flows. The similarity of the mean

† Email address for correspondence: lavoie@utias.utoronto.ca
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Transport equation similarity on centreline of a turbulent round jet 741

momentum and turbulent energy equations for jet flows has been discussed extensively
in many papers (e.g. Panchapakesan & Lumley 1993; Burattini, Antonia & Danaila
2005b) and textbooks (e.g. Tennekes & Lumley 1972; Pope 2000). For turbulent
round jets, an empirical observation is that the profiles of Um/U(x) and 〈uiuj〉/U(x)2
become self-similar (i.e. independent of the downstream location of the jet, x) when
expressed in terms of ξ ≡ y/y0.5(x); here Um is the mean streamwise velocity, U(x)
is the axial velocity along the jet centreline, and 〈uiuj〉 is the Reynolds shear stress.
The parameter ξ ≡ y/y0.5(x) is the similarity variable, where y is the radial coordinate
and y0.5 is the jet half-width radius, which is defined as the radial location at which
the mean jet velocity is equal to half the local maximum mean velocity relative to
the centreline. Experimental evidence has shown that y0.5 = S(x − x0), where S is
the spread rate of the jet and x0 is the virtual origin, which depends on the initial
conditions (George 1989; Malmstrom et al. 1997; Fellouah, Ball & Pollard 2009).
Based on the classical self-similarity concept in round jets, the outer turbulent length
scale grows approximately linearly along the centreline (e.g. `∝ (x− x0), where ` is a
typical outer length scale), and the mean velocity is inversely proportional to distance
(U ∝ (x − x0)

−1). Assuming that the normalised mean kinetic energy dissipation rate
parameter is constant (Cε = 〈ε〉`/u3/2

0 , with u0 being a typical turbulent velocity scale
and assumed to vary as (x− x0)

−2), it can be obtained that the mean kinetic energy
dissipation rate, 〈ε〉, varies as (x − x0)

−4 (e.g. Antonia, Satyaprakash & Hussain
1980). It has also been documented for some time that the turbulence intensity
(〈u2〉0.5/U) reaches a plateau when the jet is self-similar. Given the fact that U is
inversely proportional to distance, 〈u2〉 therefore has to follow a power law along
the centreline with an exponent equal to −2. In Tennekes & Lumley (1972), it was
noted that turbulence intensities are about half an order of magnitude smaller than
the jet velocity if Re is infinite and y0.5/x→ 0. However, these assumptions are not
realised in turbulent flows encountered in laboratory conditions, where both Re and x
are finite. In addition, the effect of initial conditions on the power-law behaviour of
turbulent kinetic energy was ignored. A key aim of this paper is to demonstrate that
these assumptions can be relaxed significantly and that the form of the streamwise
evolution of the velocity fluctuations and dissipation, as well as their decay, can be
obtained directly from the governing equations.

The concept of similarity has been not only applied to the mean momentum and
turbulent energy equations but also investigated for all scales of motion. George (1992)
(referred to as G92 hereafter) applied his analysis (known as equilibrium similarity)
to the decay of homogeneous, isotropic turbulence by considering the spectral energy
equation

∂E(k)
∂t
= T(k)− 2νk2E(k), (1.1)

where E(k) is the three-dimensional kinetic energy spectrum and T(k) is the nonlinear
spectral transfer function. G92 showed that all terms in (1.1) evolve in exactly the
same manner, with the mean turbulent kinetic energy 〈q2〉 = 〈u2〉 + 〈v2〉 + 〈w2〉 and
the Taylor microscale λ used as appropriate scaling parameters to normalise all scales
of motion. In addition, it was shown that 〈q2〉 decays as a power law in time, and that
λ grows as the square root of time. The coefficient and decay rate in the power-law
equation of 〈q2〉 were shown to be dependent on initial conditions.

In addition to the spectral energy equation, the transport equation for the
second-order structure function has received particular attention. Burattini, Antonia &
Danaila (2005a) derived a transport equation for the total turbulent energy structure
function 〈(δq)2〉 (=〈(δu)2〉+ 〈(δv)2〉+ 〈(δw)2〉) from the incompressible Navier–Stokes
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equations along the centreline of a turbulent round jet using the same procedure as
in Danaila et al. (2001) and Danaila, Anselmet & Antonia (2002), viz.

−〈(δu)(δq)2〉 + 2ν
d
dr
〈(δq)2〉 − U

r2

∫ r

0
s2 ∂

∂x
〈(δq)2〉 ds

−2
∂U
∂x

1
r2

∫ r

0
s2(〈(δu)2〉 − 〈(δv)2〉) ds= 4

3
〈ε〉r. (1.2)

In this equation, δu ≡ u(x + r) − u(x) is the longitudinal velocity increment (for the
streamwise velocity component u), r is the distance between two points considered
along the x direction, U is the mean streamwise velocity along the centreline, s is
a dummy separation variable, and 〈(δu)2〉, 〈(δv)2〉 and 〈(δw)2〉 are the second-order
structure functions of u, v and w, respectively. The first term on the left-hand side
of (1.2) is the third-order structure function that represents advection, while the
second term is diffusion, which represents viscous effects. The third term quantifies
the role of the streamwise inhomogeneity. The fourth term represents the role of
the energy production. The right-hand side of (1.2) is proportional to the mean
dissipation rate of turbulent kinetic energy and balances the sum of the terms
on the left-hand side. In Burattini et al. (2005a), (1.2) was satisfied along the
centreline of a round jet (35 6 x/D 6 90) by the hot-wire data to an acceptable
approximation. It was shown that although the sum of the advection and diffusion
terms balances dissipation at small scales, inclusion of the production and streamwise
inhomogeneity terms leads to a satisfactory balance for the whole range of scales.
However, computation of the streamwise inhomogeneity term requires 〈(δq)2〉 to
be known at different streamwise locations, which involves significant uncertainties
associated with numerical differentiation of the data. This may lead to an imbalance
between the dissipation and the terms on the left-hand side of (1.2). As will be
discussed later, this issue can be resolved significantly by using a similarity approach
such as the one proposed here. Burattini et al. (2005a,b) were the first to consider a
similarity analysis of the transport equation for the centreline of a round jet. Burattini
et al. (2005b) suggested that self-similar forms can exist for each term of (1.2)
independent of the Reynolds number and the choice of similarity variables. They also
showed experimentally that the energy structure functions, measured at a number of
locations along the axis of the jet, collapse over a significant range of scales when
normalised by λ (as well as the Kolmogorov scale, η, and the integral scale, L)
and 〈q2〉.

In the present work, we extend the equilibrium similarity analysis of G92 to the
turbulent energy structure function in a round turbulent jet, i.e. (1.2). Based on our
analysis, the similarity variables are formally obtained from the governing equations.
One major consequence of the current analysis is that new forms of the decay law
of velocity fluctuations and dissipation are obtained with no further assumptions (or
empirical observations) on the characteristic length and velocity scales. Finally, a
novel self-similar form of (1.2) is derived. A particularly useful feature of the current
analysis is that it can alleviate some of the difficulties involved in calculating the ∂/∂x
terms (production and decay terms). As will be demonstrated, the terms in the energy
scale budget equation can be studied if 〈(δq)2〉 and the mean velocity are measured
at a single point. This avoids the necessity of measuring the structure functions at
different axial locations and the related uncertainties associated with the numerical
differentiation (Lavoie et al. 2005; Antonia & Burattini 2006). It should be mentioned
that the present equilibrium similarity solution does not require the Reynolds number
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Transport equation similarity on centreline of a turbulent round jet 743

to be large for a specified set of initial conditions (George 1992). The suggested
similarity solutions are tested against new experimental data and previously reported
data, which were all taken along the centreline of a round jet.

2. Theoretical considerations
In order to bring (1.2) into a self-similar form, following Antonia et al. (2003),

Burattini et al. (2005b) and G92, we assume that

〈(δq)2〉 =Q(x)f (r̃), (2.1)
〈(δu)2〉 =M(x)e(r̃), (2.2)
〈(δv)2〉 = R(x)h(r̃), (2.3)

−〈(δu)(δq)2〉 = T(x)g(r̃), (2.4)

where Q(x), M(x) and R(x) are velocity scales that characterise the second-order
structure functions of q, u and v, and T(x) characterises the third-order structure
function −〈(δu)(δq)2〉. Here r̃= r/`, where r is the streamwise separation and ` is a
characteristic length scale which is to be determined.

Upon substituting (2.1)–(2.4) into (1.2), differentiating, rearranging terms by
separating terms that depend on x from those that depend on r/` and multiplying by
`/(νQ(x)), we obtain[

T(x)`
νQ(x)

]
g+ [2]df

dr̃
+
[

U`
ν

d`
dx

]
Γ1

r̃2
−
[

U`2

νQ(x)
dQ(x)

dx

]
Γ2

r̃2

−
[

2
dU
dx

M(x)
νQ(x)

`2

]
Γ3

r̃2
+
[

2
dU
dx

R(x)
νQ(x)

`2

]
Γ4

r̃2
= 4

3

[ 〈ε〉`2

νQ(x)

]
r̃, (2.5)

where

Γ1 =
∫ r/`

0

( s
`

)3 df
dr̃

d
( s
`

)
, Γ2 =

∫ r/`

0

( s
`

)2
f d
( s
`

)
, (2.6a,b)

Γ3 =
∫ r/`

0

( s
`

)2
e d
( s
`

)
, Γ4 =

∫ r/`

0

( s
`

)2
h d
( s
`

)
. (2.7a,b)

Since the multiplier in the second term of (2.5) is constant, all the other terms must
also be constant for similarity to hold. They can be rewritten as[

T(x)`
νQ(x)

]
= constant, (2.8)[

U`
ν

d`
dx

]
= a, (2.9)

[
U`2

νQ(x)
dQ(x)

dx

]
= b, (2.10)[

2
dU
dx

M(x)
νQ(x)

`2

]
= c, (2.11)
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744 H. Sadeghi, P. Lavoie and A. Pollard[
2

dU
dx

R(x)
νQ(x)

`2

]
= d, (2.12)

[ 〈ε〉`2

νQ(x)

]
= constant. (2.13)

In order to calculate all the constants, some additional information is required. As
the momentum flux is constant, the velocity along the centreline of a round jet can
be obtained as (see Pope 2000)

U =C/(x− x0), (2.14)

where C is a constant and x0 is the virtual origin. For the region near the axisymmetric
jet centreline, the kinetic energy budget equation can be approximated as (see Burattini
et al. 2005a)

〈ε〉 =−U
2

d〈q2〉
dx
− (〈u2〉 − 〈v2〉)dU

dx
, (2.15)

where
〈q2〉 = 〈u2〉 + 2〈v2〉. (2.16)

Substituting (2.15) into (2.13) and multiplying by a factor of −2 gives[
U

νQ(x)
d〈q2〉

dx
`2

]
+
[

2
dU
dx
(〈u2〉 − 〈v2〉)
νQ(x)

`2

]
= constant. (2.17)

Subtracting (2.12) from (2.11) yields[
2

dU
dx

M(x)− R(x)
νQ(x)

`2

]
= constant. (2.18)

If (2.10) is added to (2.18), then[
U

νQ(x)
dQ(x)

dx
`2

]
+
[

2
dU
dx

M(x)− R(x)
νQ(x)

`2

]
= constant. (2.19)

Comparing (2.19) with (2.17), it follows that Q(x) ∼ 〈q2〉 and M(x) − R(x) ∼ 〈u2〉 −
〈v2〉. Here, M(x) and R(x) may be related to the velocity fluctuations 〈u2〉 and 〈v2〉,
respectively.

Integration of (2.9) yields

`2 = a
C
ν(x− x0)

2, (2.20)

which indicates that the characteristic length scales linearly with (x− x0). Using (2.14)
and the fact that Q(x)∼ 〈q2〉, (2.10) can be written as[

C`2

ν(x− x0)

d〈q2〉
〈q2〉

1
dx

]
= b. (2.21)

Upon substituting (2.20) into (2.21) and performing some simplifications, it emerges
that

d〈q2〉
〈q2〉 =

b
a

dx
(x− x0)

. (2.22)
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Transport equation similarity on centreline of a turbulent round jet 745

The solution of (2.22) takes the form

〈q2〉 = A(x− x0)
m, (2.23)

where m = b/a. This equation indicates that the characteristic velocity scale should
follow a power law along the jet centreline. Comparing (2.11) and (2.12) suggests
that

M(x)
R(x)

= 〈u
2〉
〈v2〉 (2.24)

remains constant. Therefore, by considering (2.16) and (2.23), it follows that

〈u2〉 = A1(x− x0)
m, (2.25)

〈v2〉 = A2(x− x0)
m (2.26)

and A= A1 + 2A2. Substituting (2.14), (2.23), (2.25) and (2.26) into (2.15) gives

〈ε〉 =C
[−(A1 + 2A2)m

2
+ (A1 − A2)

]
(x− x0)

m−2. (2.27)

From (2.27) it immediately follows that the dissipation 〈ε〉 decays with an exponent
of m− 2 along the centreline. Substituting (2.23) and (2.27) into the general equation
for the Taylor microscale (Antonia et al. 2003), viz.

λ2 = 5ν
〈q2〉
〈ε〉 , (2.28)

gives

λ2 = 5ν
2(A1 + 2A2)

−C(A1 + 2A2)m+ 2C(A1 − A2)
(x− x0)

2. (2.29)

Comparing (2.20) and (2.29) confirms that λ is the relevant characteristic length scale
(i.e. `= λ). With `= λ and Q(x)∼ 〈q2〉, (2.8) implies that

T(x)∼ ν 〈q
2〉
λ
, (2.30)

or
T(x)∼ Re−1

λ 〈q2〉3/2, (2.31)

where the corresponding turbulence Reynolds number is defined here as (cf. Antonia
et al. 2003)

Reλ = 〈q
2〉1/2λ

31/2 ν
. (2.32)

By considering Q(x) ≡ 〈q2〉 and T(x) ≡ 3−1/2Re−1
λ 〈q2〉3/2 and performing some

manipulations, (2.5) can be written as

g+ 2
df
dr̃
+ 10(c1 + 2c2)

Γ1

r̃2
− 10m(c1 + 2c2)

Γ2

r̃2
+ 20c1

Γ3

r̃2
− 20c2

Γ4

r̃2
= 20

3
r̃, (2.33)

where

c1 = A1

−(A1 + 2A2)m+ 2(A1 − A2)
, c2 = A2

−(A1 + 2A2)m+ 2(A1 − A2)
. (2.34a,b)
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The normalised form of the third-order structure function g can be determined when
the normalised second-order structure function f , the power-law exponent m of 〈q2〉
and the decay rate constants A1 and A2 are known. A particularly useful feature of
this self-similar equation is that it avoids the difficulties involved in calculating the
∂/∂x terms (production and decay terms) in (1.2).

For simplicity, (2.33) can be rewritten as

A+ B+D+ P=C, (2.35)

where A is the turbulent advection term (the generalised third-order structure function
or the first term on the left-hand side of (2.33)), B is the diffusion term (second
term on the left-hand side of (2.33)), D is the inhomogeneous decay term along the
streamwise direction x (the sum of the third and fourth terms on the left-hand side of
(2.33)), P is the production term (the sum of the fifth and sixth terms on the left-hand
side of (2.33)) and C is the dissipation term and the balance of all the other terms
(the right-hand side term in (2.33)).

3. Experimental details
Experimental measurements were performed to test the similarity solutions obtained

in the previous section. An air jet was generated using a fan mounted on antivibration
pads. The air then exits a settling chamber via a round duct to the inlet of a
smoothly contracting axisymmetric nozzle. The experiments were carried out at the
exit Reynolds number of ReD = 50 000, where ReD is calculated based on the jet
exit mean velocity (Uj = 10.65 m s−1) and the nozzle exit diameter D = 0.0736 m.
The jet has a top-hat velocity profile at the exit. The axial turbulence intensity in the
potential core of the flow near the jet exit was less than 0.7 % (see Sadeghi & Pollard
2012 and Sadeghi, Lavoie & Pollard 2014 for further details about the exit conditions
of the jet). The measurements were performed for 10 6 x/D 6 25. Measurements
of the turbulence statistics were obtained using a stationary cross-wire probe. The
wires were made of 2.5 µm diameter tungsten wire with a 0.5 mm sensing length.
The hot-wires were calibrated in the jet core before and after each experiment.
Similar to the scheme described in Burattini & Antonia (2005), the cross-wire was
calibrated using a look-up table, with calibration angles within the range ±40◦, in
intervals of 10◦. The signals were low-pass filtered at a cutoff frequency fc, which
was selected based on the onset of electronic noise and close to the Kolmogorov
frequency, fk ≡ U/2πη, where η ≡ ν3/4/〈ε〉1/4. The measurements were taken with a
sampling frequency of fs > 2fc. The sampling time was selected to ensure that enough
data would be taken to achieve statistical convergence of 〈q2〉 (at least within ±2 %)
and in the peak value of the generalised normalised third-order structure function
〈(δu)2(δq)〉 (at least within ±4 %, which typically required 10 min of sampling time).
In the present work, the modified Taylor hypothesis based on the models developed
by Lumley (1965) was used to convert time into a spatial series. In addition, data
were corrected for the effect of high-frequency noise and finite spatial resolution
(Hearst et al. 2012; Xu et al. 2013; Sadeghi et al. 2014).

Characterisation of the small-scale motions in turbulent flows has been a challenging
problem in turbulence research, especially in turbulent shear flows. One of the primary
experimental concerns has been the determination of the mean-square gradients of
the fluctuating velocity field to estimate the rate of dissipation of turbulence kinetic
energy, viz.

〈ε〉 = 1
2
ν

〈(
∂ui

∂xj
+ ∂uj

∂xi

)2
〉
. (3.1)
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Twelve separate derivative correlations must be determined before the dissipation can
be truly calculated. Since it is difficult to calculate all velocity derivatives accurately
from experimental measurements, it has been common to use alternative assumptions
to estimate the dissipation rate. The most well-known assumption is local isotropy.
The dissipation for isotropic turbulence reduces to

〈ε〉iso = 15ν

〈(
∂u
∂x

)2
〉
. (3.2)

This is the simplest definition of the dissipation, which has been extensively used
to estimate the dissipation rate in experimental studies, even when the flow was
not exactly locally isotropic. The failure of local isotropy in turbulent jet flows has
long been documented in the literature (e.g. Wygnanski & Fiedler 1969; Champagne
1978; Burattini & Antonia 2005; Burattini et al. 2005b). Using homogeneity and
incompressibility, another estimate for the dissipation can be obtained as (see e.g.
Hinze 1975; George & Hussein 1991)

〈ε〉hom = ν
〈(

∂ui

∂xj

)2
〉
. (3.3)

By assuming axisymmetry, a relatively crude approximation for this equation can be
obtained as (e.g. Danaila et al. 2002; Burattini et al. 2005a,b)

〈ε〉hom = 3ν

[〈(
∂u
∂x

)2
〉
+ 2

〈(
∂v

∂x

)2
〉]

. (3.4)

The components for estimating the dissipation from (3.4) can be obtained with a cross-
wire. Following previous studies in jet flows (e.g. Burattini et al. 2005a,b), 〈ε〉hom is
used here as the dissipation since the assumptions employed for its estimate are less
restrictive than the alternative assumption of local isotropy along the jet centreline.

Table 1 provides estimates of several parameters measured downstream of the
current jet, including the dissipation estimated with the aforementioned techniques.
Using the dissipation and longitudinal integral scale (Lu), the non-dimensional energy
dissipation rate, Cε , along the centreline of the jet is also listed in table 1. Here, Cε

is defined as
Cε ≡ Lu〈ε〉〈u2〉−3/2, (3.5)

where
Lu = 1

〈u2〉
∫ r0

0
Bu,u(r) dr, (3.6)

with Bu,u being the correlation of 〈α(x+ r)α(x)〉.
The dissipation (or the mean-square gradients of the fluctuating velocity field) can

be used to estimate other important turbulent length scales (i.e. the Taylor microscale,
λ, and the Kolmogorov length scale, η). The Taylor microscale and the Taylor
Reynolds number have been extensively estimated in the literature using the isotropic
relations of

λiso = 〈u2〉1/2〈(
∂u
∂x

)2
〉1/2 (3.7)
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x/D 10 15 20 25

〈ε〉iso 37 13.01 5.63 3 (m2 s−3)

〈ε〉hom 33.86 9.30 3.39 1.68 (m2 s−3)

λiso 3.45 4.21 4.98 5.81 mm
λhom 3.16 4.36 5.64 6.73 mm
Reλiso 302 265 245 243
Reλhom 242 242 243 244
ηiso 0.101 0.131 0.162 0.189 mm
ηhom 0.103 0.143 0.184 0.219 mm
Lu 40 54 70 86 mm
Cεhom 0.53 0.52 0.52 0.51

TABLE 1. Turbulent flow properties at four downstream locations along the jet centreline.

and

Reλiso =
〈u2〉1/2λiso

ν
, (3.8)

respectively. However, in the current work, more general definitions of Taylor
microscale, (2.28), and Taylor microscale Reynolds number, (2.32), which avoid the
directional ambiguity of the turbulence statistics, are used (Corrsin 1963; Fulachier
& Antonia 1983; Antonia et al. 2003). In table 1, λhom and Reλhom are estimated by
using 〈ε〉hom in (2.28) and (2.32). The Kolmogorov length scale of ηhom is obtained
by substituting 〈ε〉hom into

η≡ ν3/4/〈ε〉1/4. (3.9)

The values for λiso, Reλiso and ηiso are also provided for reference as they are the most
common parameters cited in many other works.

4. Presentation and discussion of the experimental results

The similarity of the mean momentum equations is investigated over the present
range of measurements. For this purpose, the radial profiles of the mean velocity and
Reynolds shear stress are presented for four locations (x/D = 10, 15, 20 and 25) in
figure 1. The profiles are normalised by the jet half-velocity radius (y0.5) and the mean
centreline velocity (Uc), which are the relevant scales for the self-similarity of mean
momentum equations in jet flows (see e.g. Pope 2000; Burattini et al. 2005b). The
profiles of the mean velocity and Reynolds shear stress exhibit satisfactory collapse
over the present range of measurements.

The axial mean velocity along the jet centreline is displayed in figure 2. As
expected, it decays almost linearly with axial distance. For a self-similar jet, the
centreline velocity variation can be written as

Uj

Uc
= 1

B

(
x− x0

D

)
, (4.1)

which is the inverted normalised form of (2.14). A least-squares fit to the data gives
a mean velocity decay constant of B = 6.6 (or C = B ∗ D ∗ Uj = 5.17) and a virtual
origin of x0 =−1.68D. Here, B is very similar to the values obtained by Weisgraber
& Liepman (1998) and Ferdman, Otugen & Kim (2000) (B ∼ 6.7) and is in good
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FIGURE 1. (Colour online) Radial profiles of (a) mean velocity and (b) Reynolds shear
stress at four axial locations:E, x/D= 10;@, x/D= 15; C, x/D= 20; ×, x/D= 25.

1.5

2.0

2.5

3.0

3.5

4.0

4.5

10.0 12.5 15.0 17.5 20.0 22.5 25.0

FIGURE 2. Axial decay of the mean velocity along the centreline; the solid line is the
least-squares fit to the data.

agreement with the results of Panchapakesan & Lumley (1993) and Burattini et al.
(2005b) (B ∼ 6.1). It is generally accepted that there will be some variability in
the mean velocity decay constant and virtual origin (see e.g. table 1 in Fellouah
et al. 2009) for different experiments, which is typically related to differences in
the measurement region, exit Reynolds number, experimental technique and initial
conditions (Malmstrom et al. 1997; Xu & Antonia 2002; Pollard & Uddin 2007).

The streamwise variations of 〈q2〉, 〈u2〉 and 〈v2〉, measured along the jet centreline
and normalised by U2

j , are shown in figure 3(a). A curve fit was applied to the data
using the virtual origin of x0 =−1.68D. It was found that 〈q2〉, 〈u2〉 and 〈v2〉 follow
closely a power law with exponent m=−1.83, in agreement with (2.23)–(2.26). The
decay rate constants for 〈q2〉, 〈u2〉 and 〈v2〉 are estimated to be A= 3.29, A1 = 1.43
and A2 = 0.93, respectively. In order to investigate the validity of the solution over
an extended streamwise range, we have tested the equilibrium similarity solution
using three previously published experimental datasets, where data have been taken
over a longer streamwise distance. The evolution of 〈q2〉 (≡ 〈u2〉 + 2〈v2〉) along
the centreline of axisymmetric turbulent jets from previous studies is illustrated in
figure 3(b). The experimental conditions for these studies are summarised in table 2.
Curve fits were applied to the data using the corresponding virtual origins listed in
table 2. It was found that in the aforementioned experiments, 〈q2〉 follows a power
law with −1.89 6 m 6−1.78, consistent with the present data. As both downstream
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0.005
0

–0.005

0.010
0.015
0.020
0.025
0.030
0.035
0.040

0.005
0

–0.005

0.010
0.015
0.020
0.025
0.030
0.035 Present work

Bur et al.
Pan and Lum
Quinn

0.040

10.0 12.5 15.0 17.5 20.0 22.5 25.0 3010 20 40 50 60 70 80 900

(a) (b)

FIGURE 3. (Colour online) (a) Streamwise variation of normalised 〈q2〉 (@), 〈u2〉 (E) and
〈v2〉 (A) along the centreline of the current jet. (b) Streamwise variation of normalised
〈q2〉 along the centreline of round jets:C, from Panchapakesan & Lumley (1993);E, from
Burattini et al. (2005b);A, from Quinn (2006);@, from the current work. The solid lines
represent least-squares fits to the data.

Authors D (mm) Uj (m s−1) ReD x0/D x/D m

Panchapakesan & Lumley (1993) 6.1 27 11 000 0 30–80 −1.89
Burattini et al. (2005b) 55 35.1 140 000 4.40 30–90 −1.84
Quinn (2006) 45.3 61 184 000 3.65 20–60 −1.78

TABLE 2. Experimental conditions on the jet centreline for different round jets.

distance and Reynolds number are finite in previous experiments as well as in the
current work, it is not unexpected to observe that the exponent for 〈q2〉 (or 〈u2〉)
is not the traditional value of −2 but rather a slightly greater value. In addition,
the influence on m of measurement uncertainties and slight differences in initial
conditions cannot be ignored. Assuming 〈u2〉∼ (x− x0)

m and Uc∼ (x− x0)
−1, we have

that 〈u2〉/(Uc)
2∼ (x− x0)

m+2. Therefore, if m is slightly greater than −2, 〈u2〉/(Uc)
2 (or

(〈u2〉0.5/Uc)) should grow slowly. For example, the streamwise variation of 〈u2〉0.5/Uc

for the present experiment is shown in figure 4. A power-law fit was applied to the
data using x0 = −1.68D, which gives a power-law exponent of 0.085 ((m+ 2)/2).
This case can be observed in previous experimental data, although the reason has
never been discussed in detail (perhaps due to a very slow growth). Apart from the
experiments specified herein, this slow growth in turbulence intensities (〈u2〉0.5/Uc)

along the jet axis has been noted by other authors, such as Ruffin et al. (1994),
Tong & Warhaft (1994), Amielh et al. (1996), Abdel-Rahman, Chakroun & Al-Fahed
(1997), Xu & Antonia (2002), Fellouah et al. (2009), Mi, Xu & Zhou (2013) and
Taub et al. (2013). It should be pointed out that in the aforementioned experiments
(similar to the present work), the streamwise extent is limited.

The axial profile of the ratio 〈u2〉/〈v2〉 is plotted as a function of x/D in figure 5.
This ratio is approximately constant as a function of x/D with a value of 1.53. The
fact that this ratio must be constant in the self-similar region was suggested previously
in § 2. It is interesting to note that 〈u2〉/〈v2〉 ≈ 1.56 was obtained by Hussein, Capp
& George (1994) and Burattini et al. (2005b) in the self-similar region along the
centreline of round jets at ReD = 95 500 and 140 000, respectively. This may suggest
that the ratio 〈u2〉/〈v2〉 (and equivalently 〈q2〉/〈u2〉 and 〈q2〉/〈v2〉) is not affected by
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10.0 12.5 15.0 17.5 20.0 22.5 25.0
0.15

0.20

0.25

0.30

FIGURE 4. Evolution of the turbulence intensity along the centreline; the solid line is the
least-squares fit to the data.

10.0 12.5 15.0 17.5 20.0 22.5 25.0
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1.8

1.2

1.3

1.4

FIGURE 5. Axial profile of the ratio 〈u2〉/〈v2〉 along the axis; the solid line is the
average of the data.

the jet exit Reynolds number, at least for ReD &20 000, which corresponds to the onset
of the mixing transition in round jets (Dimotakis 2000; Fellouah & Pollard 2010).

As discussed in § 2, the turbulent kinetic energy 〈q2〉 and the Taylor microscale λ
were shown to be the relevant scales for the similarity of all scales of flow along the
jet centreline. Therefore, (2.1) and (2.4) can be rewritten as

f (r/λ)= 〈(δq)2〉/〈q2〉 (4.2)

and
g(r/λ)=−〈(δu)(δq)2〉/(3−1/2Re−1

λ 〈q2〉3/2), (4.3)

respectively. In addition, it was suggested that 〈u2〉 and 〈v2〉, together with λ, are
relevant scales for 〈(δu)2〉 and 〈(δv)2〉, viz.

e(r/λ)= 〈(δu)2〉/〈u2〉, (4.4)
h(r/λ)= 〈(δv)2〉/〈v2〉. (4.5)

Distributions of f (r/λ) measured at the four locations considered here (x/D = 10,
15, 20 and 25) are shown in figure 6. The second-order structure functions of q are
found to collapse approximately at each streamwise location, which suggests that the
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FIGURE 6. (Colour online) Distributions of f , e and h as functions of r/λhom at four axial
locations x/D= 10, 15, 20 and 25. The structure functions have been shifted successively
with respect to the lower one; each horizontal dashed line represents an offset of 2.
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FIGURE 7. (Colour online) Distributions of g(r/λhom) at four axial locations x/D =
10, 15, 20 and 25.

similarity parameters found in the analysis are justified. The distributions of e(r/λ)
and h(r/λ) are also shown in figure 6. The second-order structure functions of u
and v are also found to collapse approximately using the normalisation parameters.
Therefore, it can be confirmed that the suggestion that 〈u2〉 and 〈v2〉 are the relevant
velocity scales for self-similarity of 〈(δu)2〉 and 〈(δv)2〉, respectively, is accurate.

The normalised third-order structure function, g(r/λ), at locations x/D= 10, 15, 20
and 25 is plotted in figure 7. The collapse of g(r/λ) is reasonable, with departures
from similarity isolated to r/λ& 8.

We now turn our attention to (2.33), which was derived as the similarity form of
(1.2). The scale-by-scale budget measured at x/D= 15 in terms of r/λ is plotted in
figure 8. The Taylor microscale λ was used to normalise r, as it was theoretically
obtained to be the relevant turbulence length scale for self-preservation at all scales
(§ 2). This figure demonstrates that (2.33) is adequately satisfied by the experimental
data (i.e. A + B + D + P ≈ C). Similar to Burattini et al. (2005a), at small r/λ the
diffusion term B dominates, while at large r/λ the decay term D and the production
term P are the dominant terms. A very good balance of all terms at very large scales
confirms that the similarity forms of the production term P and inhomogeneous decay
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FIGURE 8. (Colour online) The terms in (2.35) at x/D = 15: q, the advection term A;
@, the diffusion term B; C, the decay term D; s, the production term P; E, the sum
A+ B+D+ P. The solid black line is the dissipation term C.

term D are measured accurately. The advection term A goes to zero at both small
and large separations, while its maximum is located at r ' 0.8λ, similar to previous
observations from grid turbulence experiments and along the jet centreline (Burattini
et al. 2005a). The peak value of the advection term A occurs at a value of r/λ in the
vicinity of B=D. The production term P becomes important for r/λ& 8, where the
value of the diffusion term B begins to decrease at a higher rate with increasing r/λ.
This point is very close to the value of r/λ where A=D.

5. Conclusion

Using an equilibrium similarity analysis, the similarity form of the transport
equation of the second-order structure function was obtained along the centreline
of a turbulent round jet. An important consequence of the current analysis is the
derivation of forms for the decay law directly from the governing equations, rather
than from classical empirical observations. It is shown that the self-similar form of the
equations yields a solution such that the turbulent kinetic energy and the mean kinetic
energy dissipation rate decay following power laws of the form 〈q2〉 ∝ (x− x0)

m and
〈ε〉 ∝ (x − x0)

m−2, respectively, along the centreline. In addition, the characteristic
length scale, which was shown to be the Taylor microscale, grows as (x − x0). It
is also suggested that the normalised third-order structure function can be estimated
from the normalised second-order structure functions, the power-law exponent m and
the decay rate constants of 〈u2〉 and 〈v2〉.

Experimental measurements were conducted at ReD = 50 000 over the range
10 6 x/D 6 25 along the centreline of a round jet to validate the theoretical analysis.
It was found that a power-law decay region does exist over the present range of
measurements for 〈q2〉 with m=−1.83. The accuracy of this solution was confirmed
using previously published data for round jets at 11 000 6 ReD 6 184 000 over the
range 20 6 x/D 6 90 (−1.89 6 m 6 −1.78). Finally, the balance of all terms in
(2.33), derived as a new self-similar equation for round jets, was investigated. The
experimental data satisfied the relation to a very close approximation.
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