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Consider a group of players playing a sequence of games. There are k players, having
arbitrary initial fortunes. Each game consists of each remaining player putting 1 in
a pot, which is then won (with equal probability) by one of them. Players whose
fortunes drop to 0 are eliminated. Let T (i) be the number of games played by i, and
let T = maxi T (i). For the case k = 3, martingale stopping theory can be used to
derive E[T ] and E[T (i)]. When k > 3, we obtain upper bounds on E[T ] and, in the
case in which all players have the same initial fortune, on E[T (i)]. Efficient simulation
methods for estimating E[T ] and E[T (i)] are discussed.

1. INTRODUCTION AND SUMMARY

Consider a group of players playing a sequence of games. Initially there are k players,
with player i starting with Ii, i = 1, . . . , k. Let S = ∑k

i=1 Ii. Each game consists of each
remaining player putting 1 in a pot, which is then won (with equal probability) by one
of them. Players whose fortunes drop to 0 are eliminated. Let T (i) be the number of
games played by i, and let T = maxi T (i) be the number of games needed until one
of the players has all

∑
i Ii units. We are interested in the quantities E[T ] and E[T (i)].

The preceding problem was noted by Engel [3], for which a formula, attributed
to extensive computer simulations, was given for E[T ] when k = 3. The problem was
also noted by Amano, Tromp, Vitangi and Watanabe [1], who gave some experimental
results, and by Bach [2]. Bach [2] noted that a martingale approach that was used to
solve a different gambling problem could also be used to obtain E[T ] when k = 3,
verifying Engel’s result. In this article we adopt the martingale approach of [2] and
show how it can be adapted to obtain E[T (i)] when k = 3, upper bounds on E[T ] when
k > 3, as well as upper bounds on E[T (i)] when k > 3 and all Ii = S/k. In Section 2

© Cambridge University Press 2011 0269-9648/11 $25.00 343

https://doi.org/10.1017/S0269964811000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964811000040


344 S. M. Ross

we present the martingales, and in Section 3 we show how they yield E[T ] and E[T (i)]
when k = 3. A useful bound on E[T ] when k = 3 is also presented in Section 3.
Section 4 presents the upper bounds when k > 3. In Section 5 we consider ways of
efficiently using simulation to estimate E[T ] and E[T (i)].

2. THE MARTINGALES

Let Xi(t) denote players i’s fortune after game i, let Wi(t) be player i’s winnings in
game t; and let N(t) denote the number of players having a positive fortune after game
t. Thus,

Xi(t + 1) = Xi(t) + Wi(t + 1).

Let Ht denote the history of all results concerning the first t games. With I(A) equal
to the indicator for the event A, it follows that, given Ht ,

Wi(t + 1) = I(Xi(t) > 0)

⎧⎪⎪⎨
⎪⎪⎩

N(t) − 1 with probability
1

N(t)

−1 with probability 1 − 1

N(t)
.

Hence,

E[Wi(t + 1)|Ht] = 0,

E[W2
i (t + 1)|Ht] = I(Xi(t) > 0)(N(t) − 1),

E[W3
i (t + 1)|Ht] = I(Xi(t) > 0)(N(t) − 1)(N(t) − 2).

It follows from the preceding that

E[X2
i (t + 1)|Ht] = E[X2

i (t) + 2Xi(t)Wi(t + 1) + W2
i (t + 1)|Ht]

= X2
i (t) + I(Xi(t) > 0)(N(t) − 1). (1)

Consequently,

E

[
k∑

i=1

X2
i (t + 1)|Ht

]
=

k∑
i=1

X2
i (t) + (N(t) − 1)

k∑
i=1

I(Xi(t) > 0)

=
k∑

i=1

X2
i (t) + (N(t) − 1)N(t),

which yields the following proposition.
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Proposition 1:

Z(t) ≡
k∑

i=1

X2
i (t) −

t−1∑
u=0

N(u)(N(u) − 1)

is a martingale with mean
∑k

i=1 I2
i .

In addition, we have that

E[X3
i (t + 1)|Ht] = X3

i (t) + 3Xi(t)E[W2
i (t + 1)|Ht] + E[W3

i (t + 1)|Ht]
= X3

i (t) + 3Xi(t)(N(t) − 1) + I(Xi(t) > 0)(N(t) − 1)(N(t) − 2).

Summing over i gives

E

[
k∑

i=1

X3
i (t + 1)|Ht

]
=

k∑
i=1

X3
i (t) + 3[N(t) − 1]

×
k∑

i=1

Xi(t) + N(t)(N(t) − 1)(N(t) − 2) (2)

=
k∑

i=1

X3
i (t) + 3S(N(t) − 1) + N(t)(N(t) − 1)(N(t) − 2),

(3)

which yields the following proposition.

Proposition 2:

V(t) ≡
k∑

i=1

X3
i (t) −

t−1∑
u=0

[3S(N(u) − 1) + N(u)(N(u) − 1)(N(u) − 2)]

is a martingale with mean
∑k

i=1 I3
i .

Now, let Tj denote the number of games that involve exactly j players, j = 2, . . . , k;
so T = ∑k

j=2 Tj denotes the total number of games played. It follows from the
martingale stopping theorem that

k∑
i=1

I2
i = E[Z(T)] = E

[
k∑

i=1

X2
i (T)

]
− E

[
T−1∑
u=0

N(u)(N(u) − 1)

]
. (4)

Now, at time T , one of the players has a fortune of S and all the others have 0.
Consequently,

∑k
i=1 X2

i (T) = S2. Moreover, as
∑T−1

u=0 N(u)(N(u) − 1) is the sum,
over all rounds, of the number of players multiplied by that number minus 1 that are
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in involved in the round, it follows that any round that has j players contributes j(j − 1)

to that sum. As a result,
∑T−1

u=0 N(u)(N(u) − 1) = ∑k
j=2 j(j − 1)Tj, giving

k∑
i=1

I2
i = S2 −

k∑
j=2

j(j − 1)E[Tj]. (5)

Similarly, applying the stopping theorem to the V(t) martingale gives

k∑
i=1

I3
i = S3 −

k∑
j=2

[3S(j − 1) + j(j − 1)(j − 2)]E[Tj]. (6)

Remark: No apparently useful martingales can be obtained by raising Xi(t + 1) to a
power higher than 3. For instance, if we raised it to the power 4, then on the right-hand
side of the identity

E

[∑
i

X4
i (t + 1)|Ht

]
= E

[∑
i

(Xi(t) + Di(t + 1))4|Ht

]
,

we will have the term
∑

i X2
i (t)E[D2

i (t + 1)|Ht] = (N(t) − 1)
∑

i X2
i (t), which is not

convenient to work with. (The corresponding term when we raise Xi(t + 1) to the
third power is (N(t) − 1)

∑
i Xi(t), which is equal to S(N(t) − 1).)

3. THE CASE k = 3

When k = 3, (5) and (6) give that

3∑
i=1

I2
i = S2 − 2E[T2] − 6E[T3]

and
3∑

i=1

I3
i = S3 − 3SE[T2] − (6S + 6)E[T3].

Solving gives

E[T2] =
∑3

i=1 Ii(Ii − 1)(S − Ii)

S − 2

and

E[T3] = I1I2I3

S − 2
, (7)

which yields the following proposition.
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Proposition 3 (Engel [3] and Bach [2]): When k = 3,

E[T ] = E[T2] + E[T3] =
∑3

i=1 Ii(Ii − 1)(S − Ii) + I1I2I3

S − 2
. (8)

Remark: When I1 = I2 = I3 = S/3,

E[T ] = 7S3 − 18S2

27(S − 2)
.

The following upper bound on E[T ] will prove useful in the next section.

Proposition 4: Assume k = 3. If S ≥ 6 then

E[T ] ≤ U ≡

⎧⎪⎨
⎪⎩

S2/4 if S < 18

7S3 − 18S2

27(S − 2)
if S ≥ 18,

Proof: With x = I1, y = I2, z = I3, and s = S, the expression for (s − 2)E[T ] can be
written as

(s − 2)E[T ] ≡ f (x, y, z) = x2(y + z) + y2(x + z) + z2(x + y) − 2xy − 2xz − 2yz + xyz.

To maximize f over x + y + z = s, we set the partial derivatives of the Lagrangian
expression f (x, y, z) − λ(x + y + z − s) equal to zero to obtain

λ = 2x(y + z) + y2 + z2 − 2y − 2z + yz,

λ = 2y(x + z) + x2 + z2 − 2x − 2z + xz,

λ = 2z(x + y) + x2 + y2 − 2x − 2y + xy,

s = x + y + z.

Combining these equations in pairs show that they are equivalent to

(x − y)(x + y − z − 2) = 0,

(x − z)(x + z − y − 2) = 0,

(y − z)(y + z − x − 2) = 0,

x + y + z = s.

The solutions of the preceding in which all variables are nonzero are

x = y = z = s/3
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and the symmetrical versions of the solutions that have two of the variables equal to
s/2 − 1 and the other equal to 2. Now,

f (s/3, s/3, s/3) = 7s3/27 − 2s2/3

and

f (s/2 − 1, s/2 − 1, 2) = s3/4 − s2/2 − s + 2,

showing that f (s/3, s/3, s/3) ≥ f (s/2 − 1, s/2 − 1, 2) when s ≥ 6. Because

f (s/2, s/2, 0) = (s − 2)s2/4 = s3/4 − s2/2,

it follows that f (s/3, s/3, s/3) ≥ f (s/2, s/2, 0) if and only if s ≥ 18. �

The approach used to prove Proposition 4 was suggested by Bach (personal
communication).

When k = 3, we can also compute the mean number of games played by i. To
begin, note that Xi(t), t ≥ 0, is a martingale with mean Ii, yielding, by the martingale
stopping theorem that

Ii = E[Xi(T)] = SP(Xi(T) = S).

Now, let T (i)
j denote the number of games that i plays that involve exactly j players,

j = 2, 3, and let T (i) = ∑3
j=2 T (i)

j denote the total number of games that i plays. Then,

from (1) we see that X2
i (t) − ∑t−1

u=0 I(Xi(u) > 0)(N(u) − 1), t ≥ 0, is a martingale
with mean I2

i . Hence, by the martingale stopping theorem,

I2
i = E[X2

i (T) −
T−1∑
u=0

I(Xi(u) > 0)(N(u) − 1)]

= E[X2
i (T)] − E

⎡
⎣ 3∑

j=2

(j − 1)T (i)
j

⎤
⎦

= S2P(Xi(T) = S) − E[T (i)
2 ] − 2E[T (i)

3 ]
= SIi − E[T (i)

2 ] − 2E[T3].

Equation (7) now yields the following:

Proposition 5: When k = 3,

E[T (i)] = Ii(S − Ii) − I1I2I3

S − 2
.
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4. UPPER BOUNDS WHEN k ≥ 4

Let

H = S3 −
k∑

i=1

I3
i

From (6),

H =
k∑

j=2

[3S(j − 1) + j(j − 1)(j − 2)]E[Tj]

≥ 3SE[T2] + (6S + 6)E[T3] + (9S + 24)

×
k−1∑
j=4

E[Tj] + [3S(k − 1) + k(k − 1)(k − 2)]E[Tk]

= (9S + 24)

k∑
j=2

E[Tj] − (6S + 24)E[T2] − (3S + 18)E[T3] + cE[Tk], (9)

where

c = 3S(k − 1) + k(k − 1)(k − 2) − 9S − 24.

If, in the first game involving only two players, the player’s fortunes are i and S − i,
then the expected remaining number of games would be i(S − i), showing that

E[T2] ≤ S2

4
.

Moreover, it follows from Proposition 4 that

E[T2] + E[T3] ≤ U.

In addition, clearly E[Tk] ≥ M ≡ mini Ii. Hence, from (9),

(9S + 24)E[T ] ≤ H + (6S + 24)E[T2] + (3S + 18)E[T3] − cE[Tk]
= H + (3S + 6)E[T2] + (3S + 18)(E[T2] + E[T3]) − cE[Tk]

≤ H + (3S + 6)
S2

4
+ (3S + 18)U − cM;

that is,

E[T ] ≤ H + (3S + 6) S2

4 + (3S + 18)U − cM

9S + 24
, (10)

where

U ≡

⎧⎪⎨
⎪⎩

S2/4 if S < 18

7S3 − 18S2

27(S − 2)
if S ≥ 18.
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Remark: If all Ii = I = S/k, the right-hand side of the preceding is roughly

S2 1 − 1/k2 + 3/4 + 7/9

9
≈

(
0.2802 − 1

9k2

)
S2 ≈ 0.2808 S2

when S > 18 and is roughly 0.2778S2 when S ≤ 18.

Another upper bound can be obtained by first subtracting (5) from (6). With

C = S3 −
∑

i

I3
i − S2 +

∑
i

I2
i

and

d = 3S(k − 1) + k(k − 1)(k − 3) − 9S − 12,

this yields

C = (3S − 2)E[T2] + 6SE[T3]

+
k−1∑
j=4

[3S(j − 1) + j(j − 1)(j − 3)]E[Tj] + [d + 9S + 12]E[Tk]

≥ (9S + 12)E[T ] − (3S + 2)E[T2] − (3S + 12)(E[T2] + E[T3]) + dE[Tk]

Hence,

E[T ] ≤ C + (3S + 2) S2

4 + (3S + 12)U − dM

9S + 12
. (11)

Example 1: If k = 4 and Ii ≡ 5, then (10) yields the bound E[T ] ≤ 107.51, whereas
(11) gives E[T ] ≤ 107.45.

Example 2: Suppose there are four players with initial fortunes 3, 2, 2, and 2.
Conditioning on the results of the first two games gives

E[T ] = E[T |1, 1] 1

16
+ E[T |1, 2] 6

16
+ E[T |2, 2] 3

16
+ E[T |2, 3] 6

16

= 2 + 20
6

16
+ 8

3

16
+ E[T(4, 4, 1)] 6

16

= 2 + 144

16
+ 136

7

6

16
= 18.2857.

Inequality (10) gives E[T ] ≤ 21.5, whereas (11) gives E[T ] ≤ 21.4516. (The incorrect
answer 350612/69969 ≈ 5.01 was given in [3].)
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We can also derive an upper bound on E[T (i)], the mean number of games played
by i, when all k initial fortunes are S/k. First note that

E[T (i)
j |Tj] = j

k
Tj,

yielding that

E[T (i)
j ] = j

k
E[Tj].

Therefore,

E[T (i)] = 1

k

k∑
j=2

jE[Tj]. (12)

Hence, from (6),

H =
k∑

j=2

[3S(j − 1) + j(j − 1)(j − 2)]E[Tj]

≥ 3SE[T2] + (6S + 6)E[T3]

+ 9S + 24

4

k−1∑
j=4

jE[Tj] + [3S(k − 1) + k(k − 1)(k − 2)]E[Tk]

= 9S + 24

4

k∑
j=2

jE[Tj] − 3S + 24

2
E[T2] − 3S + 48

4
E[T3] + CE[Tk], (13)

where

C = 3S(k − 1) + k(k − 1)(k − 2) − 9S + 24

4
k.

Hence, when S ≥ 18,

9S + 24

4

k∑
j=2

jE[Tj] ≤ H + 3S

4
E[T2] + 3S + 48

4
(E[T2] + E[T3]) − CE[Tk]

≤ H + 3S3

16
+ (3S + 48)U

4
− CS

k
.

From (12), we obtain

E[T (i)] ≤ 4

k(9S + 24)

[
H + 3S3

16
+ (3S + 48)U

4
− CS

k

]
.

When S is large, the preceding upper bound is roughly 0.6142S2/k.
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Remark: Consider the case where all Ii = I = S/k and suppose that whenever one
of the players has all S units, the money is redistributed, with each player again
receiving I , and play begins anew. Letting A be the average number of players in a
game, it follows from renewal reward process theory that

A = E[∑k
i=1 T (i)]

E[T ] = kE[T (1)]
E[T ] .

When k = 3, results of Section 3 yield

A = 15I3 − 12I2

7I3 − 6I2
≈ 15/7 when I ≥ 2.

Now, suppose we use our upper bounds on E[T ] and E[T (i)] as approximations. This
yields, for k > 3, that

A ≈ 0.6142S2

0.2808S2
= 2.18732.

If we let N be a random variable such that P(N = j) is equal to the proportion of
games that are played with j players, then E[N] = A and the Markov inequality yields

P(N ≥ 3) = P(N − 2 ≥ 1) ≤ E[N] − 2 ≈ 0.18732

suggesting that most games are played with only two players. (The exact proportion
of games that would involve more than two players when k = 3 is I3/(7I3 − 6I2).) As
experimental evidence reported in [1] indicated that E[T ] is about k2I2/4, it appears
that at the moment when only two players remain, each of their respective fortunes
tends, with high probability, to be close to kI/2.

5. EFFICIENT SIMULATION PROCEDURES

Suppose all Ii = I = S/k. To estimate E[T ] and E[T (1)] by simulation, one can start
by stratifying on N , equal to the number of simultaneous games won by the initial
winner; that is, N = j means that the same player wins the first j games, and if j < I ,
that a different player wins game j + 1. With T(j) equal to the number of games when
the k players have initial fortunes I + j(k − 1) − 1, I − j + k − 1, I − j − 1, . . ., and
I − j − 1, this gives

E[T ] =
I−2∑
j=1

E[T |N = j](1/k)j−1(1 − 1/k)

+ E[T |N = I − 1](1/k)I−2(1 − 1/k) + I(1/k)I−1

=
I−2∑
j=1

(j + 1 + E[T(j)]) k − 1

kj
+ [I + k(kI − k)] k − 1

kI−1
+ I

1

kI−1
.
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Simulation can now be used to estimate the quantities E[T(j)], j = 1, . . . , I − 2. In
doing the simulation, we suggest that the determination of which player wins a game be
accomplished as follows. If there are currently r active players, with current fortunes
f1 ≥ f2 ≥ · · · ≥ fr , then a random number U should be generated, and if (i − 1)/r <

U ≤ i/r, then the player whose current fortune is fi is the winner of that game. Because
a small value of U corresponds to a winning game of a player with a larger fortune,
there should be a negative dependence between T and the generated values of the
random numbers. For this reason, using the antithetic versions of the random numbers
used in a run (i.e., if U1, U2, . . . are used in a run, then the next run should use
1 − U1, 1 − U2, . . .) should result in a variance reduction over using an independent
stream of random numbers.

We suggest the same variance reductions be employed when estimating E[T (1)].
However, one should not solely estimate E[T (1)] but should in each run, estimate all of
the quantities E[T (i)], with the estimate of E[T (1)] being the average of the estimates
of the E[T (i)], i = 1, . . . , k. Such an estimator would have a smaller variance than
just using the estimator of E[T (1)] because the former estimator can be regarded
as a conditional expectation estimator that conditions on the order statistics of the
estimators of E[T (i)], i = 1, . . . , k.

References

1. Amano, K., Tromp, J., Vitanyi, P., & Watanabe, O. (2001). Approximation, randomization, and
combinatorial optimization, 5th international workshop on randomized and approximation tech-
niques in computer science, RANDOM 2001. Lecture Notes in Computer Science, Vol. 2129, Berlin;
Springer-Verlag, pp. 181–191.

2. Bach, E. (2007). Bounds for the expected duration of the monopolist game. Information Processing
Letters 101: 86–92.

3. Engel, A. (1993). The computer solves the three tower problem. American Mathematical Monthly
100(1): 62–64.

https://doi.org/10.1017/S0269964811000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964811000040



