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Consider a group of players playing a sequence of games. There are k players, having
arbitrary initial fortunes. Each game consists of each remaining player putting 1 in
a pot, which is then won (with equal probability) by one of them. Players whose
fortunes drop to 0 are eliminated. Let 7 be the number of games played by i, and
let T = max; T®. For the case k = 3, martingale stopping theory can be used to
derive E[T] and E [T(i)]. When k > 3, we obtain upper bounds on E[T] and, in the
case in which all players have the same initial fortune, on E[T?]. Efficient simulation
methods for estimating £[T] and E [TD] are discussed.

1. INTRODUCTION AND SUMMARY

Consider a group of players playing a sequence of games. Initially there are k players,
with player i starting with [;,i = 1, ..., k.LetS = Zf;l I;. Each game consists of each
remaining player putting 1 in a pot, which is then won (with equal probability) by one
of them. Players whose fortunes drop to 0 are eliminated. Let 7’ be the number of
games played by i, and let T = max; T” be the number of games needed until one
of the players has all }_, /; units. We are interested in the quantities E[7] and E[T?].

The preceding problem was noted by Engel [3], for which a formula, attributed
to extensive computer simulations, was given for E[T] when k = 3. The problem was
also noted by Amano, Tromp, Vitangi and Watanabe [1], who gave some experimental
results, and by Bach [2]. Bach [2] noted that a martingale approach that was used to
solve a different gambling problem could also be used to obtain E[T] when k = 3,
verifying Engel’s result. In this article we adopt the martingale approach of [2] and
show how it can be adapted to obtain E[T?] when k = 3, upper bounds on E[T] when
k > 3, as well as upper bounds on E[T®] whenk > 3 and all [; = S/k. In Section 2
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we present the martingales, and in Section 3 we show how they yield E[T] and E[T?]
when k = 3. A useful bound on E[T] when k = 3 is also presented in Section 3.
Section 4 presents the upper bounds when k£ > 3. In Section 5 we consider ways of
efficiently using simulation to estimate E[7] and E [TD].

2. THE MARTINGALES

Let X;(¢) denote players i’s fortune after game i, let W;(¢) be player i’s winnings in
game t; and let N (¢) denote the number of players having a positive fortune after game
t. Thus,

Xi(t 4+ 1) = Xi(t) + Wit + D).

Let H, denote the history of all results concerning the first + games. With 1(A) equal
to the indicator for the event A, it follows that, given H,,

1
N(t) — 1 with probability N
Wit + 1) = [(Xi(r) > 0) ®

. . 1
-1 with probability 1 — m
Hence,
E[Wi(t + D|H,] =0,
E[W2(t + DIH,] = I[(Xi(t) > O)(N(t) — 1),
E[W; (t + DIH,] = I(X;() > O)(N (1) — DN (1) — 2).

It follows from the preceding that
EIX?(t + V|H,] = EIX(1) + 2Xi()Wi(t + 1) + W2(t + 1)|H,]
=X} (0 +1X(1) > OWN(@) — D). a)
Consequently,

k k k
E [Zxﬁo + 1)|H,} =) X0+ WO~ 1) Y 1K) > 0)

i=1 i=1 i=1

k
= fo(t) + (N(®) — DN(1),

i=1

which yields the following proposition.
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PROPOSITION 1:
t—1

k
Z0) =Y X} = > N@Nw —1)

i=1 u=0
is a martingale with mean Zle 2.
In addition, we have that

ELX] (t + DIH,] = X () + 3X(DE[W} (t + D)|H,] + E[W} (t + 1) |H,]
=X (1) + 3N @) — 1) + 1Xi(1) > O(N@) — (N (@) —2).

Summing over i gives

k k
E [Zxﬁ(r + 1>|H,} =3 X0+ 3N - 1]

i=1 i=1

k
X in(t) +N@ONN (@) — DIN@) —2) (2)

i=1

k
=Y "X} +3S(N@) — 1) + NN (@) — DIN() - 2),
i=1
3
which yields the following proposition.

PROPOSITION 2:

k t—1
Vi =Y X0~ Y BSNW — 1) + NN @) — DN @) — 2)]
i=1 u=0

. . . k
is a martingale with mean Y ;_, I?.

Now, let T; denote the number of games thatinvolve exactly j players,j = 2, ..., k;

so T = Zjl;z T; denotes the total number of games played. It follows from the
martingale stopping theorem that

k k T—1
Zl} = E[Z(T)|=E |:ZXI.2(T):| - E [Z N(u)(N(u) — 1)}. @)
i=1 i=1 u=0

Now, at time T, one of the players has a fortune of S and all the others have O.
Consequently, Y% | X*(T) = $%. Moreover, as Y _o N(u)(N(u) — 1) is the sum,
over all rounds, of the number of players multiplied by that number minus 1 that are
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in involved in the round, it follows that any round that has j players contributes j(j — 1)
to that sum. As a result, ZZ;(} NwWNw) —1) = Zj’;zj(j — 1)T;, giving

k k
Y P =5"-%"j(- DEIT;]. ®)
i=1 j=2
Similarly, applying the stopping theorem to the V' (¢) martingale gives
k k
Y =8 -3 "135G-1)+jG — DG — DIEIT;]. (6)
i=1 j=2

Remark: No apparently useful martingales can be obtained by raising X;(r + 1) to a
power higher than 3. For instance, if we raised it to the power 4, then on the right-hand
side of the identity

E [Zx;‘a - 1)|H,} =E [Z(x,-a) + Dt + 1)>4|H,},

we will have the term Y, X?()E[D?(t + 1)|H,] = (N(t) — 1) Y_, X*(¢), which is not
convenient to work with. (The corresponding term when we raise X;(¢ 4+ 1) to the
third power is (N(f) — 1) ), X;(r), which is equal to S(N () — 1).)

3. THECASELk =3
When k£ = 3, (5) and (6) give that
3
Zl} = §? — 2E[T>] — 6E[T5]
i=1

and

3
Z I? = §° — 3SE[T,] — (6S + 6)E[T3].
i=1

Solving gives

SO LU= 1D)(S — 1)

E|T>] =
[T>] )
and
LI
E[T;] = s 7
(T3] S_2 @)

which yields the following proposition.
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PropOSITION 3 (Engel [3] and Bach [2]): When k =3,

SO LU= 1)(S = L) + L,

E[T] = E[T>] + E[T3] = )

®)

Remark: Whenl, =1, =1, =5/3,

783 — 1852

The following upper bound on E[T] will prove useful in the next section.

PROPOSITION 4: Assume k = 3. If S > 6 then

52/4 ifS <18

E[T|<U= 783 — 1852
- ifS>18,
27(S —2)

PrOOF: Withx =1,y = L,,z = I3, and s = S, the expression for (s — 2)E[T] can be
written as

(s —2)E[T]=f(x,y,2) =x>(y+2) + Y (x +2) + 22 (x + y) — 2xy — 2x7 — 2yz + xyz.

To maximize f over x +y + z = s, we set the partial derivatives of the Lagrangian
expression f (x,y,z) — A(x +y + z — 5) equal to zero to obtain

A=2x(y+2)+y +75 =2y — 2z +yz,
A =2y(x+2) +x*+2% —2x — 27+ xz,
A =2z(x +y) + x>+ y* — 2x — 2y + xy,
s=x+y+z
Combining these equations in pairs show that they are equivalent to
=N +y-2-2)=0,
x—2)x+z-y—-2)=0,
O0-@+z-x-2)=0,
x+y+z=s.

The solutions of the preceding in which all variables are nonzero are

x=y=z=s/3
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and the symmetrical versions of the solutions that have two of the variables equal to
s/2 — 1 and the other equal to 2. Now,

f(s/3,5/3,5/3) =153 /27 — 25%/3
and
f(s/2—1,5/2—-1,2) =s/4—s*/2 —s+2,
showing that f(s/3,s/3,s/3) > f(s/2 — 1,5/2 — 1,2) when s > 6. Because

f(s/2,5/2,0) = (s — 2)s* /4 = 5° /4 — 5°/2,
it follows that f(s/3,s/3,5/3) > f(s/2,5/2,0) if and only if s > 18. [ |

The approach used to prove Proposition 4 was suggested by Bach (personal
communication).

When k = 3, we can also compute the mean number of games played by i. To
begin, note that X;(¢),t > 0, is a martingale with mean /;, yielding, by the martingale
stopping theorem that

I; = E[Xi{(T)] = SP(Xi(T) = S).

Now, let Tj(i) denote the number of games that i plays that involve exactly j players,
j=23,andletT® = Z; ) Tj(D denote the total number of games that i plays. Then,

from (1) we see that Xiz(t) — Z;;IOI(X[(M) > 0)(N(u) — 1),¢t > 0, is a martingale
with mean /7. Hence, by the martingale stopping theorem,

T-1

I = EX)(T) = Y 1Xiw) > O(N @) — )]
u=0

3
= E[XX(T)] —E Z(j —n1?
j=2
= S’P(X{(T) = S) — E[T}"] — 2E[T}"]
= SI; — E[T"] — 2E[T3].
Equation (7) now yields the following:

PROPOSITION 5: When k = 3,

VEIE
S—2

E[TN =1L - 1) —
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4. UPPER BOUNDS WHEN £ > 4

Let
k
H=8-3"F
i=1

From (6),

k
H =7 "[35G—1)+j(— DG —DIEIT}]

j=2
> 3SE[T7] + (65 + 6)E[T5] + (9S + 24)
k—1
X ZE[Tj] +[3S(k — 1) + k(k — 1)(k — 2)]E[T}]
j=4

k
= (95 +24) ZE[Tj] — (68 + 24)E[T>] — BS + 18)E[T3] + cE[Ty), (9)
=2

where
c=3Stk—1) +ktk—1)(k—2)—95 —24.

If, in the first game involving only two players, the player’s fortunes are i and S — i,
then the expected remaining number of games would be i(S — i), showing that

SZ
E[T,] = T

Moreover, it follows from Proposition 4 that
E[T>)] + E[T5] < U.
In addition, clearly E[T};] > M = min, [;. Hence, from (9),
(9S +24)E[T] < H 4 (6S + 24)E[T>] + (BS + 18)E[T3] — cE[T]

=H + 35S + 6)E[T2] + (3S + 18)(E[T2] + E[T3]) — cE[T]
2
<H+ @3S+ 6)SZ + @3S+ 18)U — cM;

that is,
H+(3BS+6)S +(3S+18)U — M
gy < THO5 O £ WM (10)
98 + 24
where
S2/4 if S < 18
U=17s°-1852 |
2" ifs > 18.
27(S —2)

https://doi.org/10.1017/50269964811000040 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964811000040

350 S. M. Ross

Remark: If all I; = I = S/k, the right-hand side of the preceding is roughly

1—1/k2+3/4+7/9 1
s? / +9/ +7/ m(o.zsoz—@ﬁzmo.zsossz

when S > 18 and is roughly 0.27785% when S < 18.

Another upper bound can be obtained by first subtracting (5) from (6). With
C=$->Y"F-s2+>1

and
d=35k—-1)+kk—1)(k-—-3)—95 —12,

this yields

C = (3S — 2)E[T>] + 6SE[T5]
k—1

+ ) BSG — 1)+ — DG — 3)IEIT}] + [d + 95 + 12]E[T;]
j=4

> (95 + 12)E[T] — (3S + 2)E[T2] — (3S + 12)(E[T2] + E[T3]) + dE[T]

Hence,
C+BS+2)S +(BS+12)U —aM
98 + 12 '

E[T] < an

Example I: If k = 4 and I; = 5, then (10) yields the bound E[T] < 107.51, whereas
(11) gives E[T] < 107.45.

Example 2: Suppose there are four players with initial fortunes 3,2,2, and 2.
Conditioning on the results of the first two games gives

1 6 3 6
E[T] = E[T|1,11— + E[T|1,2]— + E[T|2,2]— + E[T|2,3]—
[T1=EIT|1, 17 + EITIL 21 o + EIT12, 211 + EIT12, 314

6 3 6
=2+207 + 85 +EIT(4,4, Dl

16 16
—2+144+1366 = 18.2857
o 16 7 16 ’

Inequality (10) gives E[T] < 21.5, whereas (11) gives E[T] < 21.4516. (The incorrect
answer 350612/69969 & 5.01 was given in [3].)
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We can also derive an upper bound on E[T?], the mean number of games played
by i, when all £ initial fortunes are S/k. First note that

J

)
T\ =T
yielding that
iy _ J
EIT;"] = L EIT}].
Therefore,
1 k
E[T0) = D JEIT;] (12)
j=2

Hence, from (6),

k
H =Y [35G—1)+j(— DG —DIEIT]

j=2
> 3SE[T3] + (6 + 6)E[T5]

95 + 24 <
o DJEIT] + 3G = 1) + k(k — ) (k = 2)IE[Ti]
j=4
98 +24 & 35424 38 + 48
== D_JEIT]- E[Ty] - E[T3]+ CE[T].  (13)
j=2
where
C=35tk—1) +ktk—1)(k—-2) — 9S+24k.

Hence, when S > 18,

k

9§ + 24 . 38 35 4+48
ZJE[T;] <H+ ZE[Tz] + (E[T2] + E[T3]) — CE[T]
j=2
383 (3S+48)U CS
<H+ 477" ==
=H 16 + 4 k

From (12), we obtain

E[T?] <

380 GS+a8U Cs
= k(9S +24) ‘

16 4 k

When S is large, the preceding upper bound is roughly 0.614252 /k.
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Remark: Consider the case where all I; = I = S/k and suppose that whenever one
of the players has all S units, the money is redistributed, with each player again
receiving I, and play begins anew. Letting A be the average number of players in a
game, it follows from renewal reward process theory that

E[YE, TP]  KE[T"]

A= -
E[T] E[T]

When k = 3, results of Section 3 yield

150° — 121

Now, suppose we use our upper bounds on E[T] and E[T®] as approximations. This
yields, for k > 3, that
N 0.614282
~ 0.280852
If we let N be a random variable such that P(N = j) is equal to the proportion of
games that are played with j players, then E[N] = A and the Markov inequality yields

= 2.18732.

P(N>3)=P(N—-2>1) <E[N]—-2=0.18732

suggesting that most games are played with only two players. (The exact proportion
of games that would involve more than two players when k = 3is I3 /(7I° — 61%).) As
experimental evidence reported in [1] indicated that E[T] is about k*I? /4, it appears
that at the moment when only two players remain, each of their respective fortunes
tends, with high probability, to be close to kI /2.

5. EFFICIENT SIMULATION PROCEDURES

Suppose all I; = I = §/k. To estimate E[T] and E[T"] by simulation, one can start
by stratifying on N, equal to the number of simultaneous games won by the initial
winner; that is, N = j means that the same player wins the first j games, and if j < 1,
that a different player wins game j + 1. With T'(j) equal to the number of games when
the k players have initial fortunes / +j(k — 1) — 1,/ —j+k—1,I —j—1,..., and
I —j — 1, this gives

1-2
E[T] =Y EITIN =jl(1/ky~" (1 = 1/k)
j=1

E[TIN =1—1]11/k)"7*(1 — 1/k) + I(1/k)"™!
-2

1
~1
E G+1 +E[T(1)]) —— + [ + k(kl —
j=1

1 1
k-1
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Simulation can now be used to estimate the quantities E[T(j)], j=1,...,I —2.In
doing the simulation, we suggest that the determination of which player wins a game be
accomplished as follows. If there are currently r active players, with current fortunes
fi=f, =--->f., then arandom number U should be generated, and if (i — 1)/r <
U < i/r,then the player whose current fortune is f; is the winner of that game. Because
a small value of U corresponds to a winning game of a player with a larger fortune,
there should be a negative dependence between 7 and the generated values of the
random numbers. For this reason, using the antithetic versions of the random numbers
used in a run (i.e., if Uy, Us,... are used in a run, then the next run should use
1 —U,1— U,,...)should result in a variance reduction over using an independent
stream of random numbers.

We suggest the same variance reductions be employed when estimating E[T"].
However, one should not solely estimate E[T "] but should in each run, estimate all of
the quantities E[T”], with the estimate of E[T"] being the average of the estimates
of the E[T®],i = 1,...,k. Such an estimator would have a smaller variance than
just using the estimator of E[T"] because the former estimator can be regarded
as a conditional expectation estimator that conditions on the order statistics of the
estimators of E[T?W],i = 1,... k.
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