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SUMMARY
This paper documents autonomous multi-floor stairwell ascent by a legged robot. This is made
possible through empirically deployed sequential composition of several reactive controllers, with
perceptually triggered transitions. This composition relies on simplified assumptions regarding the
robot’s sensory capabilities, its level of mobility, and the environment it operates in. The discrepan-
cies between these assumptions and the physical reality are capably handled by the intrinsic motor
competence of the robot. This behavior is implemented on the legged RHex platform and experiments
spanning 10 different stairwells with various challenges are conducted.
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1. Introduction
This paper reports on a task-level autonomy application where a legged robotic platform per-
forms autonomous ascent over various multi-floor stairwells representing a diverse set of challenges
(Fig. 1). Combined with the initial implementation presented in ref. [1], this work offers the first
documented account of fully autonomous ascent over diverse stairwells composed of multiple flights
of stairs with varying landing configurations. Similar to ref. [2], this is accomplished via simplified
models regarding the environment the robot operates in, the sensors it is equipped with, and the level
of autonomy it is capable of, abstracting away all the complexities handled by the robot’s mechanical
preflexes.3, 4 With the help of these assumptions, the task at hand is broken into a set of reactive con-
trollers called by perceptually driven event triggers in a manner that empirically suggests (although
is not yet formally shown to exhibit) a sequential composition of attractor basins.5

Experiments presented in this work span 10 stairwells in 4 different buildings, logging a legged
robot autonomously ascending over 67 flights of well over 700 diversely proportioned stairs and
landings. The platform used for these experiments is X-RHex,6, 7 a re-engineered version of RHex.8

Its high power density, flexible sensor interface, and software Application Programming Interface
(API) enabled this implementation of the commanded behavior in a very straightforward way. Taking
advantage of its modular payload architecture, a light detection and ranging (LIDAR) sensor and an
inertial measurement unit (IMU) are attached to the payload rails spanning the robot’s top side and
utilized for all the sensing needs for successful execution. These experimentation efforts are reported
in Section 4, where the robot performance and reported failure modes are discussed in detail.

1.1. Motivation
The single flight stair climbing gait for RHex was first introduced in ref. [9], and as discussed in detail
in ref. [1], this gait works reliably over a wide variety of typical human-scale staircases. Versatile
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160 Autonomous stairwell ascent

Fig. 1. The X-RHex robot climbing a stairwell.

robots capable of autonomous mobility in both indoor and outdoor settings have long been sought for
remote operators executing urban search and rescue (USAR) and intelligence, surveillance, recon-
naissance (ISR) operations.10 Autonomous negotiation of multi-flight stairwells in indoor settings
has specifically been long established as a very important yet challenging task for many existing
man-portable mobile robots;11 yet as discussed below in a comparative account of the more recent
literature, surprisingly few advances targeting this capability have been reported. Such a capability
can be especially useful when integrated into a multi-layer task navigation framework as discussed
in ref. [2], enabling a deliberative task planner or a remote operator to focus only on high-level plan-
ning of a mission and delegate the task of traveling from one floor of a building to another to the
lower level control authority presented in this work, facilitating its use in environments with little to
no communication between the robot and the operator.12

1.2. Contributions and related work
Combined with ref. [1], the central contribution of this work is a complete account of autonomous
ascent of general multi-floor stairwells. Its success over a variety of building interior styles is depicted
in the data tables of Section 4. This is achieved via several modifications to ref. [1]. First of all, a more
detailed descriptions of all the sensors utilized for implementing the resulting behavior are provided.
Moreover, some of these sensor implementations are modified. Specifically, the pitch wiggle self-
manipulation routine in Section 2.4.3 is updated to improve the quality and span of the pitch-up scan
utilized for stair detection.

Similarly, drastic modifications are performed on the methodology for detecting stairs in
Section 2.4.5, where the output of the pitch scan sensor is now treated as a depth image, and sim-
ple geometric processing is performed to detect a set of stairs. Furthermore, some refinements in
the landing exploration behavior implementation in Section 3.2 are made. All these modifications
resulted in improved performance: on a set of stairwells partially overlapping with their counterparts
from ref. [1], only 12 behavioral problems over 731 stairs are reported, compared to 23 behavioral
problems over 671 stairs.

Prior work on the problem of autonomous stair ascent can be grouped into three categories: ascent
behavior over a single flight of stairs, algorithms for stair detection, and transitions between stairwells
and landings.
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The first group of prior work focuses on the stair ascent behavior over a single flight of
stairs.13–23 Many are limited to a very few steps,15, 17–20, 22, 23 or a very specific stair or landing
geometry.14, 16, 17, 22, 23 In addition, most lack comprehensive experimentation to report on reliabil-
ity.13–17, 19–23 This work on the other hand builds upon the stair ascent behavior from ref. [9] that
reliably works on a variety of flights of stairwells and, combined with ref. [1], expands it to multiple
flights of stairs.

The second group focuses on the detection of the stairs themselves.13, 14, 16, 21, 24–30 The choice
of sensor in this work—a LIDAR as opposed to a camera,13, 14, 24 or a depth sensor16, 21, 25–30—
differentiates how the sensory information about the stairs is generated and how this information
is processed to accomplish the detection from these approaches.

The last group deals with autonomous transitions between flat surface walking and stair ascent
under the control of an operator.15, 17, 27, 31 The transition approach presented in this work follows,31

as discussed in Section 3.1.
The only reports found documenting empirical work on autonomy over multiple flights of stairs

other than ref. [1] mention a few anecdotal successes13 or assume a very specific, simple landing
geometry.14 This work intentionally targets a great diversity and reports in Section 4 on failure rates
and causes in a detailed manner.

2. Robot and Task
This section presents simple models for the environment in which the robot is deployed, its degree
of mobility therein, and the sensors with which it is equipped. The world model of the stair ascent
task is complicated by the intermittent disappearance of the gradient beacon field (on flat landings)
and the need to find specifically marked obstacles (flights of stairs) whereon a distinctly different gait
yields robust ascent. The stair ascent behavior is accordingly complicated, and formal statements of
correctness would have a stochastic character governed by the statistical properties of real stairwells.
Although a formal demonstration of correctness lies beyond the scope of this paper, this section aims
to present a precise enough account of all the modeling decisions to enable future analysis (when
coupled with the description in the following section of the behavior that relies upon them).

2.1. World model
This section follows the steps of refs. [1] and [2], and introduces a very simple model of the terrain
the robot is operating on and thus abstracts away many of the issues that may arise from operating on
a complex engineered environment such as stairwells. This model relies on two assumptions. First,
there are no obstacles present over the stairs1, and the robot’s stair climbing gait9 can reliably traverse
various stair designs. In addition, the landings are composed of simple polygonal floor plans with
walls and, most of the time, the only openings are sets of stairs, up to two of them, one connecting to
the lower floor and/or another connecting to the upper floor. This simplification of the world model is
appropriate for a platform like RHex since small obstacles such as debris or uneven surfaces do not
pose any problems for the robot’s standard walking gait. In addition, the violations to the polygonal
landing assumption will not necessarily pose any threat to robot operation as there is no reason for
nonzero curvatures to pose any problems for the behavior introduced in Section 3.

A stairwell, S , is defined to be a piecewise constant terrain where the terrain, defined in ref.
[2], is represented by some unknown height function, h :R2 →R≥0. A constant component, Ui, over
this stairwell is called a landing. A landing is surrounded by obstacles such as walls and cliffs, and
potentially another component, Vi, called stairs (as described in Section 2.4.5) that connect it to
the next (higher level) landing. Note that, in this definition, a cliff can be either the previous set of
stairs, Vi−1, connecting the landing to a lower level, or missing walls, banisters, so on, that represent
hazardous conditions for safety of the platform.

2.2. Robot model
This work utilizes two different models depending which stairwell component the robot is currently
operating.

1Note that the robot is capable of steering over a flight of stairs. An obstacle avoidance scheme similar to ref. [2] could
be employed for obstacle-strewn stairwells.
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For the operations over a landing, the robot’s standard gait (alternating tripod8) is assumed to
reduce to the target dynamics (or template32) of a horizontal plane kinematic unicycle,2

q̇ = B(θ)uku; B(θ) :=
[

n(θ)eT
1

eT
2

]
, (1)

with I = [
e1 e2

] :=
[

1 0
0 1

]
. The robot state, q := (p, θ) ∈ SE(2) contains its position on the plane,

p ∈R
2 and its heading, θ ∈ S

1. n(θ) denotes the unit vector representing the robot’s heading,
whereas the control input uku ∈R

2 is composed of translational and rotational velocity components,
respectively.

Over the stairs, the stair climbing gait9 is represented as a scalar point particle tracking the single-
dimensional gradient defined by the slope of the stairs.

2.3. Task model
The task of autonomous stairwell ascent requires that the robot locomotes from any initial position
and orientation over a stairwell to some landing with no stair boundaries.

2.4. Sensor models
This section provides a list of abstract sensor models used for implementing the autonomous stairwell
ascent behavior. These sensors are a succession of exteroceptive sensors that can be realized through
the use of an IMU and a LIDAR hardware unit mounted on a legged robot.

2.4.1. Depth sensor. The depth sensor is an abstract map,

σE : SE(2) × B × P → R (2)

that returns from each position and heading in the plane, (p, θ) ∈ SE(2), bearing angle, β ∈ B :=
[−βu, βu], body pitch, φ ∈ P := [φl, φu], and a distance, ρ ∈ R := [0, ρu].

For the implementation, the output from a fixed LIDAR2 unit is utilized to realize this depth map.
The arc extends roughly ±120◦ off center. The distance profile corresponds to the first depth at which
the LIDAR unit records a return. The LIDAR unit cannot detect beyond a distance of ρu := 4m, to
which the infinite reading of its maximum depth scale is calibrated.

2.4.2. Gap sensor. The gap sensor is an abstract map,

σG : SE(2) → B (3)

that returns for each position and orientation at which the robot is pointing, the center, σG(x, y, θ) = ξ

of an arc segment [ξ − S, ξ + S] ⊂ B, and a window within which the interval depth is maximum

ξ := argmax
βl+S≤τ≤βu−S

I[τ, S], (4)

with,

I[τ, S] := min
τ−S≤β≤τ+S

σE(x, y, θ, 0, β)

(1 − K) cos6(β − τ) + K
, (5)

where the power term over the cosine function introduces the bias toward lower bearing differences
to emulate the search for a rectangular opening on the robot’s path.

2.4.3. Pitch scan sensor. The pitch scan sensor, σP : SE(2) × B × P → R × B × P, is defined as

σP(p, θ, φl, φu) := {
(σE(x, y, θ, φ, β), β, φ) : β ∈ B, φ ∈ [φl, φu] ⊂ P

}
(6)

and is implemented by running the depth sensor at each bearing angle within the field of view and
pitch angle achieved via a coordinated motion of the legs—a pitch wiggle self-manipulation.1, 33, 34

2Hokuyo URG-04LX-F01, http://www.hokuyo-aut.jp/
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Fig. 2. The pitch wiggle behavior for up and down scans, with inactive legs removed for clarity.

The pitch wiggle is a sensorimotor routine utilizing the planar LIDAR to generate a depth image.
For a horizontally placed LIDAR unit, even for several scans combined, there is no perceived differ-
ences between a stairwell and a wall. To generate a depth image, instead of attaching the LIDAR unit
to a motor to tilt it, RHex morphology enables manipulation of its body pitch to a range of angles,
where an IMU3 unit is utilized to measure these angles. As discussed in refs. [1, 34], this routine, as
depicted in Fig. 2, produces a large variation in body pitch (either up or down) with no internal forces
or toe slip.

2.4.4. Cliff sensor. The cliff sensor, σC : SE(2) × B × P → {0, 1}, is the composition σCD ◦ σP. The
pitch scan sensor, σP, is pitched through a downward interval (φl < φu < 0) to scan a mid distance
rectangular region on robot’s path. The cliff detection sensor

σCD : R × B × P → {0, 1} (7)

compares the results from σP with predicted range values from current pitch and bearing angles and
returns a binary value based on the persistence of segments with extreme negative error. It contains
two stages. In the first stage, ground range prediction error

σGE(ρ, β, φ) := μ(β, φ) − ρ (8)

is computed for every (ρ, β, φ) ∈ σP through the ground range prediction function μ : B × P → R as

μ(β, φ) := 0.5 l tan(−φ) + hs

tan(−φ)
· 1

cos β
, (9)

where, assuming that LIDAR is located at the geometric center, l is the length of robot’s body and
hs is the total height of the LIDAR and robot body. After a unidirectional threshold, a binary value
based on the persistence of segments with extreme negative error is returned.

2.4.5. Stair sensor. The stair sensor, σS : SE(2) × B × P → R × B × S
1 × {0, 1}, is the composition

σSD ◦ σP. The pitch scan sensor, σP, is pitched through an upward interval (0 < φl < φu).
The stair detection sensor σSD : R × B × P → R × B × S

1 × {0, 1} returns the range ρS, bearing
βS and normal angle θS of the stairwell and a binary variable cS indicating if the sensor is confident

3Microstrain 3DM-GX2, http://www.microstrain.com/
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about this detection. It outputs zero if it cannot detect stairs. It is implemented in three stages. To
detect and extract output parameters, a stairwell is modeled as a set of vertical plane segments with
increasing horizontal offset where offset difference between successive plane segments is within a
predefined interval [dl, du] ⊂ R. At the first stage, a line segment extractor σLS(σP) := {

pi
L
}

finds and
parameterizes line segments,

Li := {(ρ, β, φ) ∈ σP : ρ cos(β) = ρ sin(β)ai + bi, φ = φi}, (10)

on the LIDAR scanning plane for every pitch angle. A line segment is represented with five parame-
ters: pitch angle φi, bearing interval boundaries β i

l , β i
u, normal angle ni = atan(−ai), and horizontal

offset di = bi cos φi, where

pi
L := (

φi, β i
l , β i

u, ni, di
)
. (11)

Once all the line segments are extracted and parameterized, vertical plane segment extractor
σPS(σLS) := {

p j
P
}

groups these line segments into vertical plane segments

P j := {
pk
L ∈ σLS : [βk

l , βk
u

] ∩ [
βk+1

l , βk+1
u

] 
= ∅, nk = n j, dk = dj
}

(12)

by comparing individual bearing angle intervals, normal angles, and horizontal offsets, and performs
a parameterization. A plane segment is represented by six parameters: pitch interval boundaries
φ

j
l ,φ j

u , total bearing interval boundaries β
j
l = min

k
βk

l , β
j
l = max

k
βk

u , normal angle nj, and horizontal

offset dj, where

p j
P := (

φ
j
l, φ j

u, β
j
l , β j

u, nj, dj
)
. (13)

Finally, the stair extractor σSE(σPS) := pS returns the range, bearing and heading angles of the
stairwell and a binary confidence variable if detected. It outputs zero otherwise. It first extracts a stair
candidate

S := {
pk
P ∈ σPS : nk = nS, dk=0 = ρS, dl ≤ dk+1 − dk ≤ du,

[φk
l , φk

u] ∩ [φk+1
l , φk+1

u ] = ∅, [βk
l , βk

u] ∩ [βk+1
l , βk+1

u ] 
= ∅} (14)

by comparing pitch and bearing intervals, normal angles, and horizontal offsets. A stairwell is repre-
sented by four parameters: stair distance ρS, stair central bearing angle βS, stair heading θS = nS + θ ,
and a binary confidence indicator cS that is nonzero if minimum pitch angle φk=0

l and absolute bearing
angle |βS| are both within some confidence intervals

pS := (ρs, βS, θS, cS). (15)

Figure. 3, composed of six images, depicts the actual implementation, where the first stage of the
filter contains two preprocessing steps. Upper left represents the raw scan acquired from the depth
sensor via an upward pitch scan, whereas upper right shows the result of a filtering process, where
beginning from the lowest pitch angle, any infinite reading for a specific bearing is replaced by the
reading for the same bearing from the lower pitch angle scan. Middle left is the output of a 1D edge
detector employed to segment individual pitch angle scans into intervals. The horizontal line fitting
as the first stage and vertical grouping of line segments for vertical plane fitting are all applied on this
output. Middle right shows the output of the second stage, where individual vertical plane segments
extracted through this process are represented with their average range value. Lower left and lower
right both represent the output of the last stage, where a stairwell candidate is detected.

3. Autonomous Stairwell Ascent
Unlike the task of autonomous hill ascent2 which is implemented as a single control law, the task of
autonomous multi-flight stairwell ascent requires a hybrid system composed of several reactive con-
trollers required by increased complexity in the sensorimotor loops the robot uses to detect stairwells,
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Fig. 3. Implementation details of the stair sensor. For all the graphs, the vertical axis denotes the body pitch and
the horizontal axis denotes relative bearing angle in degrees. The top two graphs contain the raw readings and
the output of a simple filter.

boundaries, and other hazards. Not all of these closed loop dynamics admit well-defined attractors
and basins necessary for a formal implementation of sequential composition.5 Instead, the task is
implemented through systematic pre-image backchaining35 and an implementation following the
formal framework of ref. [5] is left for future work.

The overall task is implemented via two main behaviors, stair climbing and landing exploration.
As summarized in Fig. 4, the robot executes a series of controllers backchained in a roughly cyclic
pattern until it reaches the top of the final flight of stairs. The two behaviors and accompanying
control routines are presented as follows.

3.1. The stair climbing behavior
As explained in detail by ref. [1], once RHex is fully engaged on a single flight of a stairwell, the
overall open loop climbing gait reliably works as if the platform is guided by a steepest ascent
controller, as devised in ref. [2]. Though, for a successful climb, when the robot detects a set of
stairs, it first needs to enter the domain of the stair climbing controller. This implementation utilizes
a transition routine previously presented in ref. [31] with some modifications from ref. [36]. Ref.
[31] shows that this routine is empirically reliable. The robot detects the end of a flight of stairs via
robot body pitch and executes the final transition to landing exploration, consisting of a couple steps
forward.
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Fig. 4. Flow chart describing autonomous stair climbing.

3.2. Landing exploration behavior
Once the robot climbs through a flight of stairs and reaches a new landing, a sequence of controllers
(as summarized in Fig. 4) is activated to drive it out of the prior goal set (i.e., the sensed zero-grade
event that triggered the stair exit controller) and into the basin of the next as follows.

3.2.1. Stair detector.

• Stair detector
This controller first calls the stair sensor, σS, and returns (ρS, βS, nS, cS) (Section 2.4.5). For
nonzero output, this controller performs an open loop move to the relative pose (ρS, βS, θS − θ).
If cS = 1, the robot transitions into stair climbing behavior. Otherwise, it transitions back to σS for
further investigation.
If σS returns 0, the robot switches to the open detector controller.

• Open detector
By calling the gap sensor σG (Section 2.4.2), this controller picks the most open bearing angle. At
the beginning of each landing, the sign of this bearing angle is declared as the preferred direction
to be used in case of future conflicts.

If no suitably open bearing angle is available (if σE ◦ σG(x, y, θ) < 1m, i.e., the robot is in a
corner), the robot simply rotates by 90◦ through the preferred direction and transitions back to
the stair detector. In the presence of a suitably open bearing, the robot rotates to this angle and
switches to the cliff detector controller.

• Cliff detector
This controller first runs the cliff detector sensor σC (Section 2.4.4) to ensure it will not fall by
pursuing this new heading. If this controller returns 0, robot walks for up to 1 m; otherwise it
rotates back through the preferred direction and transitions back to the stair detector controller.

The behavior presented in section is not designed to be particularly efficient. On the contrary,
this behavior relies on simple sensorimotor routines combining limited sensing capabilities with the
robot’s mechanical competence. Thus, it seems unreasonable to expect any deterministic guarantees
that the robot can reach the basin of the next stairwell ascent controller (i.e., the first steps of the
next upward stairs) through this sequence of controllers. Empirically, though, the data show that this
behavior finds the subsequent stairwell with very high probability as landings are generally metrically
small and topologically simple.
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4. Experimental results
The autonomous multi-flight stairwell ascent implementation is tested over 10 different stairwells
in 4 buildings of the School of Engineering and Applied Science in the University of Pennsylvania.
These results are summarized in Table I. This summary lists some characteristics of these stairwells,
such as average rise and run lengths for the stairs, number of stairs, number of flights, landing styles,
and sizes. It reports the total time it took for the robot to finish the stairwells, number of scans it
performed, and any faults recorded. Following ref. [1], this summary makes a distinction between
behavior faults ( caused by shortcomings in the algorithm or the sensorimotor capabilities) and robot
faults (mechanical, electrical, and communication failures). Out of the 10 stairwells the experiments
were conducted on, only 2 met the world model requirements, with all solid walls and no openings
other than stairwells. Even though the rest of these stairwells violated the assumptions in differ-
ent ways, the robot successfully climbed through them. The implication of this performance is that
the simplified model for the stairwells presented in this work successfully captures some general
characteristics for a surprisingly wide variety of structures.

The control routines, sensory capabilities, and triggers forming the task-level autonomy devel-
oped for these experiments have been all implemented in Python4 on a remote operator computer.
While all these behaviors could be implemented directly on the robot, the use of this network
abstraction layer has greatly sped up behavior development. However, occasional network glitches
introduced experimental errors, as documented below, and could be mitigated in future versions of
these behaviors.

Overall there were 12 behavior faults. The robot had only two false positives on stair detection
throughout 67 flights of stairs. In particular, one of these two failures occurred because the specific
landing had a window whose frame combined with the wall fit the stairwell model described in
Section 2.4.5. The other failure could be avoided by cropping out small pitch angles as they managed
to create enough features to mislead the plane segment extractor. Similarly, there were only two
wall collision-based failures and both happened on stairwell number 5 where the laser scanner could
see through the mesh walls and detect open space even though the mesh is actually an obstacle to
the robot, leading to collisions that in turn precipitated faults requiring operator intervention. Cliff
detection thresholds were rather conservative during the experiments to avoid any false positives
which resulted in two possible cliff falls avoided by operator intervention. The remaining six behavior
failures occurred during initial stair transitions. These could be avoided by more extensive sensor
integration which is out of the scope of this work.

In addition, there were 21 robot faults. The majority of these arose from a leg failing to respond
(8 times) and from network communication issues (9 times). The former issue was caused by known
power distribution issues. It was partially addressed in the midst of experimentation and it is expected
to be fully resolved in very near future. Additionally, there were three LIDAR failures each of which
happened due to overheating. These failures resulted in low-quality readings which were addressable
via power cycling the LIDAR. In the future, these failures can be fully avoided through simple heat
dissipation solutions. Lastly, there was a single IMU failure due to a loose USB cable preventing the
robot from detecting the end of the stairs.

To summarize, the autonomous multi-floor ascent behavior resulted in the robot climbing a total
of 731 stairs in 67 flights. Over 5 h of testing, it encountered only 12 behavioral faults. Moreover, the
mechanical competency of the legged platform overcame several incidents on almost all stairwells,
such as legs hitting a wall or the robot engaging the stairwell at a bad angle. These incidents could
otherwise be considered faults as they would require human intervention.

5. Conclusion
This paper presents an autonomous behavior, autonomous multi-flight stairwell ascent, composed
of several sensorimotor and control loops stitched together via perceptually triggered transitions,
loosely following the formal notion of sequential composition.5 This behavior is not designed to be
efficient or optimal but rather to exploit limited sensory availability in combination with the mechan-
ical competence of the underlying platform. Extensive experimentation demonstrates its empirical
robustness, which relies on the underlying mechanical competency of the physical platform.

4Python Programming Language, http://www.python.org/
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Table I. Ten indoor stairwell climbing behavior trials covering 731 stairs in 67 flights with a total of 12 behavioral problems. World model violations are briefly described. Rise,
Run, and Landing size dimensions are given in centimeters (cm). Scans column contains two numbers; Stair Scans and Cliff Scans. Behavior faults are categorized as (S)tair

Detection, (C)liff Detection, Stair (T)ransition, and (W)all Collision. Robot faults fall into four categories; (N)etwork Communication, (L)eg Failures, (L)I(D)AR Failures, and
(I)MU Failures.

Rise Run Landing size Time # Scans
# Violation (cm) (cm) Landing (cm × cm) # Flights # Stairs (h:min:s) ( stair, cliff) Behavior Robot

1 - 15.3 28.0 Straight 189 × 150 2 11 0:01:51 2, 0 - -
2 - 15.3 28.0 Straight 327 × 150 2 11 0:03:01 3, 1 - -
3 Glass 17.4 29.6 Straight 192 × 143 2 27 0:02:27 2, 0 - -
4 Glass 16.7 26.9 Mixed 256 × 277 3 25 0:07:20 7, 4 - -
5 Various 17.5 31.4 U-left 768 × 653 6 81 0:50:05 47, 36 1S 1N, 2L
6 Window 18.2 26.3 U-left 486 × 222 7 60 0:25:25 33, 22 1S, 1T 2N, 2L
7 Glass 16.2 28.5 U-left 471 × 252 10 111 1:03:25 51, 36 1C 3N, 3L
8 Glass 17.3 27.2 U-left 349 × 156 10 112 0:54:40 55, 39 2T, 1C 1N, 1LD, 1L
9 Mesh 17.3 27.2 Mixed 293 × 137 11 112 0:44:54 44, 26 1T, 2W 2N, 1LD
10 Heater 17.5 26.0 U-left 228 × 122 14 181 1:00:59 49, 27 2T 1LD, 1I
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Similar to ref. [2], this behavior can become a part of a multi-layer navigation system, where the
high-level authority can start this as a reactive layer behavior that can take the robot autonomously
from floor A to floor B, without the need of a global planner carefully devising policies every step of
the way. To better facilitate this vision, there are several modest improvements that could be pursued
as the next step. The stair climbing behavior can be endowed with descent capability (as in ref. [37]
via ref. [38]), as well more deliberative obstacle avoidance (as in ref. [39]). Lastly, this approach to
task encoding and execution can be combined with the perceptual capabilities developed in ref. [27]
for faster landing exploration.
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