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Fano quiver moduli
Hans Franzen, Markus Reineke, and Silvia Sabatini

Abstract. We exhibit a large class of quiver moduli spaces, which are Fano varieties, by studying
line bundles on quiver moduli and their global sections in general, and work out several classes of
examples, comprising moduli spaces of point configurations, Kronecker moduli, and toric quiver
moduli.

1 Introduction

Moduli spaces of stable quiver representations, introduced in [16], form a particularly
tractable class of moduli spaces, since they are easily constructed (as a Geometric
Invariant Theory quotient for a linear representation of a reductive algebraic group),
and since they arise from classification problems for linear algebra data.

In the (numerically characterized) case of fine quiver moduli spaces for acyclic
quivers, which are smooth projective varieties (and rational by [27]), several favorable
geometric properties of cohomological nature are well established.

Their singular cohomology is algebraic [17], they are polynomial-count [23], the
Betti numbers (and the counting polynomial) can be determined explicitly [23], and
their (torus-equivariant) Chow rings are tautologically generated and presented [7, 8].

In the present work, we add to these properties one of algebraic–geometric nature:
under a rather mild genericity assumption, we exhibit for each indivisible dimension
vector for an acyclic quiver a class of stabilities (the canonical chamber) for which
the moduli space is a Fano variety, of known dimension, Picard rank, and index (see
Theorem 4.3).

A similar result was announced in [6] and can also be derived from the methods
of [12]. The second-named author was informed by L. Hille that he derived a similar
result in [13]. In the special case of toric quiver moduli spaces, the Fano property
is established in [1]. The Fano property can also be derived in the context of Mori
Dream Spaces (see Remark 3.6). We prefer here a derivation, which is proprietary to
the quiver setup, with the hope for adaptability to more general cases (for example,
singular quiver moduli spaces).

Our result hopefully allows a fruitful interaction between the theory of Fano
varieties and the theory of quiver moduli: on the one hand, it adds classes of
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arbitrarily high-dimensional, although certainly very special, Fano varieties to the
existing classes of examples. In particular, it seems likely that deep properties of
Fano varieties, for example, the Mukai conjecture and its various generalizations,
can be verified for this class (in the spirit of such a verification for toric vari-
eties [4], horospherical varieties [22], and symmetric varieties [10]). On the other
hand, the particularly rigid properties of Fano varieties and the refined invari-
ants available for them should facilitate the study of the geometry of these quiver
moduli.

After reviewing the construction of quiver moduli spaces and their basic geometric
properties in Section 2, we turn to the study of their line bundles in Section 3:
first, recalling the construction of tautological bundles, we determine (under the
assumption of ample stability) their Picard group and identify one chamber of
their ample cone. This allows us to establish the Fano property in Section 4, by
performing a Chern class computation for the class of the tangent bundle, which
readily leads to the relevance of the canonical stability chamber and to the main
theorem.

The second main focus of the present paper is on illustrating the generality of
our assumptions by establishing several classes of examples in Section 5: we first
identify all fine moduli spaces of ordered point configurations in projective spaces
as Fano varieties, also discussing a subtle example related to the Segre cubic. Then,
we use results of [24] to prove that all fine Kronecker moduli spaces are Fano
(of nontrivial index) and verify the Kobayashi–Ochiai theorem for them purely
numerically. Moreover, we exhibit a class of Fano quiver moduli spaces of arbitrary
Picard rank and index, which can also be interpreted as certain torus quotients of
Grassmannians, for which we verify the Mukai conjecture (see Proposition 5.4). We
finally parameterize all Fano toric quiver moduli arising from our result, which allows
us to exhibit particular examples of two- and three-dimensional Fano quiver moduli
spaces.

2 Recollections on quiver moduli

2.1 Construction of quiver moduli

Let Q be a finite quiver with set of vertices Q0 and arrows written α ∶ i → j. We assume
Q to be acyclic, that is, Q has no oriented cycles. We define the Euler form ⟨_, _⟩Q of
Q on ZQ0 (with natural basis i for i ∈ Q0) defined by

⟨d, e⟩ = ∑
i∈Q0

d i e i − ∑
α∶i→ j

d i e j

for d = ∑i∈Q0 d i i (and similarly for e).
Let d ∈ NQ0 be a dimension vector. Fixing vector spaces Vi of dimension d i for all

i ∈ Q0, let

R d(Q) = ⊕
α∶i→ j

HomC(Vi , Vj)
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be the space of complex representations of Q of dimension vector d, on which the
group

Gd = ∏
i∈Q0

GL(Vi)

naturally acts via base change in all Vi . Note that the diagonally embedded scalar
group C∗ ⊂ Gd acts trivially.

Throughout the paper, we are going to assume that d i > 0 for every i ∈ Q0. This is
no loss of generality as, otherwise, we may pass to the full subquiver consisting of the
vertices for which d i > 0.

We consider the dual group (ZQ0)∗ with its natural basis elements i taking the
ith component of a dimension vector. Let Θ ∈ (ZQ0)∗ be a linear form such that
Θ(d) = 0 and define a point ( fα)α ∈ Rd(Q), considered as a representation V =
((Vi)i , ( fα)α) of Q, to be Θ-semistable (resp. Θ-stable) if Θ(e) ≤ 0 (resp. Θ(e) < 0)
for all dimension vectors e of proper nonzero subrepresentations of V.

Denoting by RΘ−(s)st
d (Q) the Zariski open (semi)stable locus in Rd(Q), we con-

sider the GIT quotient

MΘ−sst
d (Q) = RΘ−sst

d (Q)//Gd

and the geometric quotient

MΘ−st
d (Q) = RΘ−st

d (Q)/Gd .

We briefly review their construction following [16]. Let χ be a character of Gd. A
regular function f ∈ C[Rd(Q)] is called χ-semi-invariant if f (gM) = χ(g) f (M)
for all g ∈ Gd and all M ∈ Rd(Q). We consider the space C[Rd(Q)]Gd , χ of χ-semi-
invariant regular functions on Rd(Q) and the graded ring

C[Rd(Q)]Gd
χ = ⊕

N≥0
C[Rd(Q)]Gd ,N ⋅χ .

To the stability Θ, we associate the character

χΘ((g i)i) = ∏
i∈Q0

det(g i)−Θ(i)

(the sign change resulting from our definition of Θ-semistability in contrast to the
convention of [16]). Then,

MΘ−sst
d (Q) = Proj(C[Rd(Q)]Gd

χΘ
]).

More explicitly, choosing N big enough so that C[Rd(Q)]Gd
χΘ is generated by homo-

geneous elements f0 , . . . , fs in C[Rd(Q)]Gd ,N χΘ , the moduli space MΘ−sst
d (Q) equals

the image of the map

f = ( f0 ∶ . . . ∶ fs) ∶ RΘ−sst
d (Q) → Ps .

Finally, the moduli space MΘ−st
d (Q) equals the (open) image of RΘ−st

d (Q) under the
map f.
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This moduli space, if nonempty, is called the moduli space of Θ-stable represen-
tations of Q of dimension vector d; it is a connected complex algebraic manifold of
complex dimension 1 − ⟨d, d⟩. Its points naturally correspond to isomorphism classes
[V] of Θ-stable representations V of Q of dimension vector d. Furthermore, the
quotient map

RΘ− st
d (Q) → MΘ−st

d (Q)

is a principal bundle for the group PGd = Gd/C∗.
We call the dimension vector d indivisible if gcd(d i ∶ i ∈ Q0) = 1 and Θ-coprime

if Θ(e) ≠ 0 for all nonzero proper e ≤ d. Then, Θ-coprimality implies indivisibility,
and, conversely, an indivisible dimension vector is Θ-coprime for a sufficiently generic
choice of Θ. In case d is Θ-coprime, the Θ-stable and the Θ-semistable locus in Rd(Q)
coincide; thus, MΘ−(s)st

d (Q) is a connected compact complex algebraic manifold.

2.2 Stabilities

We denote by {d, e} = ⟨d, e⟩ − ⟨e, d⟩ the antisymmetrized Euler form of Q and use it
to define the stability {d, _} of Q, which we call the canonical stability for d. We can
reformulate [26, Theorem 6.1] as follows: there exists a {d, _}-stable representation of
dimension vector d if and only if there exists a representation V of dimension vector
d with trivial endomorphism ring EndQ(V) = C.

For an indivisible dimension vector d, we consider the abelian group Stab(d) =
{Θ ∈ (ZQ0)∗ ∶ Θ(d) = 0} of stabilities for d and its associated real vector space
Stab(d)R = Stab(d) ⊗Z R. For every nonzero proper e ≤ d, we consider the hyper-
plane We = {Θ ∶ Θ(e) = 0} ⊂ Stab(d)R, called a wall in Stab(d)R. For a connected
component CR of the complement

Stab0(d)R = Stab(d)R/⋃
e

We ,

its closure CR, resp. the set of integral points CR ∩ Stab(d) in it, is a (convex
polyhedral) cone, called a chamber in Stab(d)R and in Stab(d), respectively.
Then, d is Θ-coprime if and only if Θ belongs to the interior of a chamber. If d is
{d, _}-coprime, we denote by Ccan the chamber whose interior contains {d, _} and
call it the canonical chamber.

Remark 2.1 We note that this decomposition is, in general, slightly finer than the
decomposition into GIT chambers, in that the set of semistable representations might
stay constant even when the stability Θ crosses a wall We. Since this phenomenon is
difficult to control numerically, we prefer to work with the above chamber structure.

For a nonzero stability Θ ∈ Stab(d), we finally define

gcd(Θ) = gcd(Θ i ∣ i ∈ Q0).
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3 Line bundles

3.1 Construction of tautological bundles on quiver moduli

We review the construction of tautological bundles of [16]. Assuming again that d is
Θ-coprime, and thus that d is indivisible, we can choose integers a i for i ∈ Q0 such
that

∑
i

a i d i = 1

and define a ∈ (ZQ0)∗ by a(i) = a i .
We consider the trivial bundle RΘ−st

d (Q) × Vi → RΘ−st
d (Q) and Gd-linearize by

defining the action on Vi by

(g j) j ⋅ v i = ∏
j∈Q0

det(g j)−a j g iv i .

By definition of a, the scalar subgroup C∗ then acts trivially, allowing this bundle to
descend via the quotient map RΘ−st

d (Q) → MΘ−st
d (Q) to a bundle Vi . By slight abuse

of notation, we denote the above trivial bundle with its Gd-linearization just by Vi ;
thus, Vi descends to Vi . The bundles Vi are then tautological in the following sense:

For any arrow α ∶ i → j, there is a natural map Vα ∶ Vi → Vj given by

Vα(( fβ)β , v i)) = (( fβ)β , fα(v i)).

It descends to a map of vector bundlesVα ∶ Vi → V j , thus defining a representation
V of Q in the category of vector bundles on MΘ−st

d (Q), such that the induced quiver
representation

(((Vi)[V])i , ((Vα)[V])α)

in the fiber over a point [V] of MΘ−st
d is isomorphic to V. This, in fact, makes

MΘ−st
d (Q) a fine moduli space, in the sense that any fiberwise Θ-stable representation

of Q in vector bundles of rank vector d arises via pullback from the above tautological
family.

3.2 The Picard group of a fine quiver moduli space

Assume as before that d is indivisible. The exact sequence of groups

1→ C∗ → Gd → PGd → 1

induces an exact sequence

0→ X(PGd) → X(Gd) → X(C∗)

of character groups. The isomorphism

(ZQ0)∗ → X(Gd)
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mapping Θ to the character χΘ as defined above yields a diagram of abelian groups

0 Stab(d) (ZQ0)∗ Z 0

0 X(PGd) X(Gd) X(C∗) 0
≃

d

≃ ≃

with right exact sequences, since the evaluation at d admits a section induced by the
element a ∈ (ZQ0)∗ chosen above.

We have an isomorphism

X(PGd) ≃ PicPGd(Rd(Q))

given by assigning to a character χ the trivial line bundle on Rd(Q) with PGd-
linearization given by χ, denoted L(χ).

We now make the following additional assumption on d:
The dimension vector d is called Θ-amply stable if the codimension of the unstable

locus is at least two, that is,

codimRd(Q)(Rd(Q)/RΘ−st
d (Q)) ≥ 2.

A sufficient numerical condition for this property is stated in [24, Proposition 5.1]: d
is Θ-amply stable if ⟨e, d − e⟩ ≤ −2 for every nonzero proper e ≤ d such that Θ(e) ≥ 0.

In this case, the natural restriction map

PicPGd(Rd(Q)) → PicPGd(RΘ−st
d (Q))

is an isomorphism. But since RΘ−st
d (Q) is a PGd-principal bundle over MΘ−st

d (Q), we
have an isomorphism

PicPGd(RΘ−st
d (Q)) ≃ Pic(MΘ−st

d (Q));

thus, every line bundle L(χ) descends to a line bundle L(χ) on MΘ−st
d (Q). Further-

more, since MΘ−st
d (Q) is smooth, taking the first Chern class gives an isomorphism

Pic(MΘ−st
d (Q)) ≃ A1(MΘ−st

d (Q)).

We conclude:

Proposition 3.1 If d is Θ-coprime and Θ-amply stable, we have a chain of isomor-
phisms of abelian groups

Stab(d) ≃→ X(PGd)
≃→ Pic(MΘ−st

d (Q)) ≃→ A1(MΘ−st
d (Q))

Θ′ ↦ χΘ′ ↦ L(χΘ′) ↦ c1(L(χΘ′)).

We proceed with a stability condition Θ for which d is Θ-coprime and Θ-amply
stable. We want to identify the determinant bundles det(Vi) of the tautological
bundles Vi introduced above under this identification. By the definition of the Gd-
linearization of the bundle Vi on RΘ−st

d (Q), its determinant bundle is linearized by
the character
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χ((g j) j) =∏
j
(det g j)−a j d i ⋅ det(g i).

Denoting by r ∶ (ZQ0)∗ → Stab(d) the retraction induced by the section a, that is,

r(Θ) = Θ −Θ(d) ⋅ a,

we thus have:

Lemma 3.2 For all i ∈ Q0, the following equality holds in Pic(MΘ−st
d (Q)):

det(Vi) = L(χ−r(i)).

3.3 The ample cone

By slight abuse of notation, we denote the total space of a line bundle by the same
symbol. For any χ ∈ X(PGd), we then have a commutative square with the horizontal
maps being PGd-principal bundles and the vertical maps being bundle projections

L(χ) L(χ)

RΘ−st
d (Q) MΘ−st

d (Q).

A global section of L(χ) then corresponds uniquely to a PGd-equivariant section
RΘ−st

d (Q) → L(χ) of L(χ), which determines, and is determined by, a χ-semi-
invariant function on RΘ−st

d (Q). This proves:

Lemma 3.3 If d is Θ-coprime and Θ-amply stable, we have

H0(MΘ−st
d (Q),L(χ)) ≃ C[Rd(Q)]Gd , χ .

Remark 3.4 The above observation can be generalized to vector bundles that come
from finite-dimensional complex representations M of PGd. We consider the trivial
vector bundle V(M) on RΘ−st

d (Q)with fiber M and with the PGd-linearization given
by the action of PGd on M. This descends to a vector bundle V(M) on MΘ−st

d (Q). By
Hartogs’ theorem, global sections then identify with

H0(MΘ−st
d (Q),V(M)) ≃Mor(Rd(Q), M)PGd ,

the space of PGd-invariant morphisms to M. The coordinate ring of M, regarded as
a PGd-variety, is C[M] = S(M∗), the symmetric algebra of the dual representation.
Therefore,

Mor(Rd(Q), M)PGd ≃ Ring(C[M],C[Rd(Q)])PGd

≃ HomC(M∗ ,C[Rd(Q)])PGd

≃ HomPGd(M∗ ,C[Rd(Q)]).
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If M is an irreducible representation, then the latter coincides with the M∗-isotypical
component of C[Rd(Q)]. Note that this tallies with the previous lemma, as the PGd-
action on C[Rd(Q)] is given by (g ⋅ f )(M) = f (g−1M).

Now we turn to the ample come cone of the moduli space MΘ−st
d (Q). In [11],

Halic determines the ample cone and the nef cone of a GIT quotient of the form
V st(G , χ)/G of a vector space by a reductive group under the assumption that stability
and semistability agree and that the unstable locus be of codimension at least 2.
Translated to our situation, this means:

Proposition 3.5 ([11, Proposition 6.2]) Let d be Θ-coprime and Θ-amply stable, and
let Θ′ ∈ Stab(d).
(1) The line bundle L(χΘ′) on MΘ−st

d (Q) is ample if and only if RΘ−sst
d (Q) =

RΘ′−sst
d (Q).

(2) The line bundle L(χΘ′) on MΘ−st
d (Q) is nef if and only if RΘ−sst

d (Q) ⊆
RΘ′−sst

d (Q).
In particular, L(χΘ) is ample.

For the convenience of the reader, let us prove the part of the proposition that
is most relevant for us: we show that L(χΘ′) is ample provided that RΘ−sst

d (Q) =
RΘ′−sst

d (Q). The line bundle L(χΘ′) being ample means that for large enough N,
generators f0 , . . . , fs of

H0(MΘ−st
d (Q),L(χΘ′)⊗N) ≃ C[Rd(Q)]Gd ,N ⋅χΘ′

descend from RΘ−st
d (Q) via the quotient map to a closed embedding

( f0 ∶ . . . ∶ fs) ∶ MΘ−st
d (Q) → Ps .

But, by the construction of quiver moduli, we know that, assuming N to be large
enough to generate C[Rd(Q)]Gd

χΘ′
, the image of this map is precisely MΘ′−st

d (Q).
Ampleness of L(χΘ′) is thus equivalent to such functions inducing a closed immer-
sion

MΘ−st
d (Q) → MΘ′−st

d (Q)

and thus an isomorphism, since both spaces are irreducible and projective. This is
certainly the case if the open sets RΘ−st

d (Q) and RΘ′−st
d (Q) coincide, which, in turn,

is fulfilled if the semistable loci with respect to Θ and Θ′ agree.

Remark 3.6 Under the assumption of the previous proposition, a result of Hu
and Keel [15, Theorem 2.3] shows that MΘ−st

d (Q) is a Mori Dream Space. Note that
Maslovaric shows the Mori Dream Space Property for quiver moduli in [19] even
without the hypothesis of d being amply stable for Θ. Theorem 2.3 of [15] further
identifies Mori chambers with GIT chambers. In order to determine the ample cone of
MΘ−st

d (Q), it hence suffices to find a stability condition Θ′ for whichL(χΘ′) is ample.
The ample cone is then necessarily the GIT chamber that contains Θ′. Therefore, the
argument given in the proof above actually fully proves item (1) of Proposition 3.5.
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4 Fano quiver moduli

4.1 Computation of the (anti)canonical class

We would like to express the class of the determinant bundle detT in Pic(MΘ−st
d (Q)),

resp. in A1(MΘ−st
d (Q)), where T is the tangent bundle. To do this, note that the fiber

of T in a point [V] ∈ MΘ−st
d (Q) is

T[V] ≃ Ext1
Q(V , V).

Let [V] be represented by V = ( fα)α ∈ Rd(Q). There is an exact sequence

0→ EndQ(V , V) → ⊕
i∈Q0

End(Vi)
ϕ�→ ⊕

α∶i→ j
Hom(Vi , Vj) → Ext1

Q(V , V) → 0,

where ϕ((x i)i) = (x j fα − fα x i)α . This sequence is a consequence of the standard
projective resolution of V. Note that the map ϕ is precisely the derivative of the
map Gd → RΘ−st

d (Q), which sends g ↦ gV . The endomorphism ring of a stable
representation reduces to the scalars. By globalizing the above exact sequence, we
obtain an exact sequence of vector bundles

0→ O→ ⊕
i∈Q0

V∗i ⊗Vi → ⊕
α∶i→ j

V∗i ⊗V j → T → 0.

Remark 4.1 The above sequence is a special case of the following sequence (see, e.g.,
[5, Section 4.1]. Let a reductive group G act linearly on a finite-dimensional vector
space V and let χ be a character of G. Suppose that there are no properly semistable
points for χ and that G acts freely on the stable locus V st(G , χ). Then, we obtain a
short exact sequence

0→ g ×G V st(G , χ) → V ×G V st(G , χ) → TV st(G , χ)/G → 0

of vector bundles on the quotient V st(G , χ)/G.

To calculate the anticanonical class, we perform a Chern class calculation in the
Chow group A1(MΘ−st

d (Q)), made possible by the above isomorphism to the Picard
group, using the following properties of first Chern classes:
• c1 is additive on short exact sequences;
• c1(detE) = c1(E);
• c1(O) = 0;
• c1(E∗) = −c1(E);
• c1(E⊗ F) = rk(F) ⋅ c1(E) + rk(E) ⋅ c1(F).
We thus find

c1(⊕
i∈Q0

V∗i ⊗Vi) = ∑
i
(−d i c1(Vi) + d i c1(Vi)) = 0,

c1( ⊕
α∶i→ j

V∗i ⊗V j) = ∑
α∶i→ j
(−d jc1(Vi) + d i c1(V j)),
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and thus, using the above exact sequence,

c1(T) = c1( ⊕
α∶i→ j

V∗i ⊗V j)

= ∑
α∶i→ j
(−d jc1(Vi) + d i c1(V j))

= ∑
i
(⟨i, d⟩ − ⟨d, i⟩)c1(Vi).

Since

c1(Vi) = c1(det(Vi)) = c1(L(χ−r(i))),

we thus find det(T) = L(χΘ′) for

Θ′ = ∑
i
(⟨i, d⟩ − ⟨d, i⟩)(−r(i)) = −r(⟨_, d⟩ − ⟨ d, _⟩) = r({d, _}) = {d, _},

since r acts as the identity on linear forms in Stab(d). We have thus proved:

Proposition 4.2 In Pic(MΘ−st
d )(Q), we have

det(T) = L(χ{d,_}).

Applying the above criterion for ampleness, we can thus derive our main result,
summarizing our findings:

Theorem 4.3 If d is {d, _}-coprime and {d, _}-amply stable, then the moduli space
M{d,_}−st

d (Q) is a smooth irreducible projective Fano variety of dimension 1 − ⟨d, d⟩,
Picard rank ∣Q0∣ − 1, and index gcd({d, _}), which is rational and has only algebraic
cohomology.

5 Classes of examples

5.1 Subspace quivers—moduli of point configurations in projective space

We consider the quiver Sm with vertices i1 , . . . , im , j and arrows ik → j for k =
1, . . . , m, called the m-subspace quiver. For a fixed d ≥ 2, we consider the dimension
vector

d = ∑
k

ik + dj.

We have

Θ = {d, _} = d∑
k

ik −m j;

thus, d is Θ-coprime if m and d are coprime. In this case, the moduli space MΘ−st
d (Sm)

equals the moduli space of stable ordered configurations of m points in Pd−1 modulo,
the natural PGLd(C)-action. Here, (p1 , . . . , pm) is called stable if the linear subspace
spanned by any k of these points has dimension at least dk/m − 1. This moduli space
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is nonempty and not a single point if and only if m − 1 > d, in which case it is of
dimension

(d − 1)(m − d − 1).

We can easily verify that d is {d, _}-amply stable with the numerical sufficient
criterion: suppose that e ≤ d, and thus e = ∑k ik + ej for a subset K ⊂ {1, . . . , m} and
e ≤ d. Then, Θ(e) > 0 if and only if ∣K∣ > me/d. We calculate

⟨e, d − e⟩Sm = (e − ∣K∣)(d − e) < −m − d
d

e(d − e) ≤ 0.

Thus, assuming that ⟨e, d − e⟩ ≥ −1, we find

e = d − 1 and ∣K∣ = e + 1 = d .

By assumption on K, this yields d > m(d − 1)/d or, equivalently,

d2 > m(d − 1) ≥ d2 − 1.

We thus find m = d + 1, contradicting the assumption.

Corollary 5.1 For given coprime m and d such that m − 1 > d ≥ 2, the moduli space
(Pd−1)m

st /PGLd(C) is Fano of dimension (d − 1)(m − d − 1), with Picard rank m and
index one.

To examine these Fano varieties in low dimension, we can additionally assume
m > 2d using the duality [25, Theorem 3.1]. For d = 2 and m = 5, we thus find a del
Pezzo surface of Picard rank 5, which is, therefore, isomorphic to the blowup of the
projective plane in four general points. We will see below how all del Pezzo surfaces of
lower Picard rank (which are already toric) can be realized as quiver moduli. For d = 2
and m = 7, we find a four-dimensional Fano variety with Picard rank 7 and fourth
Betti number b4 = 22. For d = 3 and m = 7, we find a six-dimensional Fano variety
with Picard rank 7, b4 = 29, and b6 = 64, using the Betti number formulas of [25].

An interesting (non)example arises here, too, which shows that the assumption of
our main result cannot be relaxed much: for the moduli space of six points in the
projective line, the dimension vector d is not Θ-coprime for the canonical stability Θ.
The semistable moduli space is isomorphic to the Segre cubic by [14], which is indeed
a singular projective Fano threefold with 10 isolated singularities. Slightly deforming
the stability Θ to a new stability Θ+ as in [9] yields a small desingularization of the
Segre cubic, which cannot be Fano: a Fano threefold of Picard rank 6 is automatically
isomorphic to the product of the projective line and the degree five del Pezzo surface,
thus contains a two-nilpotent element in second cohomology. But in [9], it is shown
that this does not hold for this desingularization, disproving the Fano property.
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5.2 Generalized Kronecker quivers—Kronecker moduli

Let Km be the quiver with vertices i and j and m ≥ 1 arrows from i to j. Let d = di + ej
be a dimension vector, and let

Θ = {d, _} = mei −md j

be the canonical stability. As in the previous example, Θ-coprimality of d is equivalent
to d and e being coprime. If m = 1 or m = 2, the only nonempty moduli spaces K(m)

(d ,e) =
MΘ−st

d (Q) are single points or a projective line (for m = 2 and d = 1 = e); thus, we
assume m ≥ 3. In this case, if nonempty, the moduli space is of dimension

mde − d2 − e2 + 1.

The Θ-ample stability of d is proved in [24, Proposition 6.2]. We thus find:

Corollary 5.2 For given m ≥ 3 and coprime d and e, the Kronecker moduli space
K(m)
(d ,e), if nonempty, is a Fano variety of dimension mde − d2 − e2 + 1, Picard rank 1,

and index m.

A theorem of Kobayashi and Ochiai [18] asserts that a smooth projective Fano
variety X of dimension n and index q satisfies q ≤ n + 1 and equality holds if and
only if X ≃ Pn . This led Mukai [21] to a conjecture on the relation between the rank,
the index, and the dimension of a Fano variety. This conjecture was later refined by
Bonaveroet al. [3]. It states the following. Let X be a smooth projective Fano variety of
dimension n, let r denote the rank of the Picard group of X, and let p be the minimal
positive integer such that −KX ⋅ C = p fors a rational curve C ⊆ X, called the pseudo-
index of X. It is then conjectured that

r ⋅ (p − 1) ≤ n,

and equality is satisfied if and only if X is isomorphic to (Pp−1)r . In the original Mukai
conjecture, the pseduo-index is replaced by the index. Note that q ≤ p ≤ n + 1; for
the right-hand estimate, see Mori [20]. It would be interesting to know if the Mukai
conjecture holds for Fano quiver moduli (see the following section for a first example).
For Kronecker moduli, the rank of the Picard group is 1, so the conjecture is true by
the Kobayashi–Ochiai theorem. We illustrate how to confirm this statement entirely
numerically in this case.

Proposition 5.3 If nonempty, the moduli space K(m)
(d ,e) has at least dimension m − 1

and is isomorphic to Pm−1 if equality holds.

So, assume that K(m)
(d ,e) is nonempty. We will prove that

mde − d2 − e2 + 1 ≥ m − 1,

and that equality holds if and only if d = 1 = e. By standard reductions (see the proof
of [24, Proposition 6.2]), we can assume that d ≤ e ≤ md/2. Writing e = αd for α ∈ Q
with 1 ≤ α ≤ m/2, we thus have to prove that
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(mα − 1 − α2)d2 ≥ m − 2,

and that equality holds if and only if d = 1 = e. The quadratic function

α ↦ mα − 1 − α2

being strictly monotonously increasing in the interval [1, m/2], we have

mα − 1 − α2 ≥ m − 2,

with equality only for α = 1, and thus

(mα − 1 − α2)d2 ≥ (m − 2)d2 ≥ m − 2,

with equality only if d = 1 and α = 1, which implies d = 1 = e by coprimality of d
and e.

5.3 A class of Fano quiver moduli of arbitrary rank and index

For fixed m, k ≥ 1, we consider the quiver S(k)
m with vertices i1 , . . . , im , j and k arrows

from each vertex i l to j, for l = 1, . . . , m (a thickened version of the m-subspace
quiver). For a fixed d ≥ 1, we consider the dimension vector

d = ∑
k

ik + dj.

We have

Θ = {d, _} = k (d∑
l

i l −m j) ;

thus, d is again Θ-coprime if m and d are coprime, which we assume from now on.
A representation of S(k)

m is given by a tuple (v i , j ∣ i = 1, . . . , m, j = 1, . . . , k) of
vectors in Cd , which are considered up to the diagonal action of GLd(C), and up
to the action of an m-torus T acting by

(t i)i ⋅ (v i , j)i , j = (t iv i , j)i , j .

Such a tuple is stable if the v i , j span Cd and, for every nonempty proper subset I of
{1, . . . , m}, the span UI of the v i , j for i ∈ I has dimension strictly bigger than d∣I∣/m.
Assuming d ≤ km, we can choose the vectors v i , j sufficiently independent such that,
for all nonempty proper I, the space UI has dimension k∣I∣ if k∣I∣ ≤ d and equals Cd

otherwise. In both cases, the estimate for stability is trivially fulfilled, proving that
there exists a stable point if d ≤ km.

Arranging the vectors v i , j into a d × km-matrix and noting that the quotient
of the open set of highest rank matrices by the GLd(C)-action is isomorphic to
the Grassmannian Grkm

d , we see that the moduli space MΘ−st
d (S(k)

m ) admits an
interpretation, as the quotient of an open set of stable points in Grd(Ck ⊗Cm) by
the action of the torus T induced from its natural action on Cm .

As special cases, we find the moduli spaces of point configurations from above for
k = 1, Grassmannians Grk

d for m = 1, and powers of projective spaces (Pk−1)m for d = 1
or d = mk − 1.
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In general, the moduli space is of dimension

1 −m − d2 + kmd = (km − 1 − d)(d − 1) + (k − 1)m;

thus, it is not empty and not a single point if d < km, and additionally, 2 ≤ d ≤ m − 1
in the case k = 1 treated before; we assume these estimates for d from now on.

We can then verify Θ-ample stability: suppose given a dimension vector e ≤ d such
that Θ(e) > 0 and ⟨e, d − e⟩ ≥ −1. Then, e = ∑k∈I ik + ej for a subset I of {1, . . . , m}
and an e ≤ d. Denoting n = ∣I∣, the assumptions on e translate to dn > em and
(kn − e)(d − e) ≤ 1. The first inequality dn > em easily implies that both factors in
the second inequality are positive, and thus kn − 1 = e = d − 1. Then, dn > em reads
d ⋅ d/k > (d − 1)m, and thus d2 > (d − 1)mk, which is equivalent to

(d − 1)(mk − 1 − d) ≤ 0.

Both factors being non-negative, we arrive at d = 1 or d = mk − 1. But, we also have
k∣d, and thus k = 1, which is the trivial case we excluded above. We thus find:

Proposition 5.4 For m, k, d ≥ 1 such that d and m are coprime, d ≤ mk − 1, and
d ≠ 1, m − 1 in case k = 1, the moduli space Grd(Ck ⊗Cm)st/T is a Fano variety of
dimension

(km − 1 − d)(d − 1) + (k − 1)m,

Picard rank m, and index k, and it verifies the Mukai conjecture.

It remains to verify the Mukai conjecture: our dimension formula indeed yields
the estimate

m(k − 1) ≤ (km − 1 − d)(d − 1) + (k − 1)m,

and equality holds if d = 1 or d = km − 1, in which case, the moduli space is a power
of projective space.

5.4 Toric quiver moduli

On the variety of representations Rd(Q), there is an action of a torus T1 of rank equal
to the number of arrows in Q by scaling the linear maps,

(tα)α( fα)α = (tα fα)α ,

which commutes with the base change action of Gd, thus inducing an action on
MΘ−st

d (Q). If d = 1 ∶= ∑i∈Q0 i, this endows MΘ−st
1 (Q) with the structure of a toric

variety. We make our conditions for the moduli space being Fano explicit in this case.
Since Q is acyclic, we can assume that Q0 = {i1 , . . . , in} is indexed such that

existence of an arrow α ∶ ik → i l implies k < l . We denote by ak , l the number of arrows
from k to l. For subsets K , L ⊂ [n] = {1, . . . , n}, we abbreviate

aK ,L = ∑
k∈K
∑
l∈L

ak , l .
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The canonical stability Θ = {1, _} is given by

Θ i = a i[n] − a[n]i .

Θ-coprimality then easily translates into the condition aK[n] ≠ a[n]K for all proper
nonempty subsets K, which simplifies to

aKK ≠ aKK

for all proper nonempty K, where K = [n]/K. Finally, the numerical condition for
ample stability reads

max(aKK , aKK) ≥ 2.

We thus find:

Proposition 5.5 Given non-negative integers ak l for 1 ≤ k < l ≤ n such that

aKK ≠ aKK and max(aKK , aKK) ≥ 2

for all proper nonempty subsets K ⊂ [n], the moduli space M{1,_}−st
1 (Q) for the quiver

with vertices i1 , . . . , in and ak l arrows from vertex ik to i l is a smooth projective toric
Fano variety of dimension a[n][n] − n + 1, Picard rank n − 1, and index gcd(ak[n] −
a[n]k ∣ k = 1, . . . , n).

With this result, we can find the del Pezzo surfaces P1 × P1, Bl1P
2, Bl2P

2, and Bl3P
2

by the respective toric quiver moduli

● ● ●
●

● ●

●

● ●

●

●

● ● ●

●

We can also realize the toric Fano threefolds of Picard rank 2 P1 × P2, BlpP
3

(blowup in a point), and BllP
3 (blowup in a line), respectively, by

● ● ●
●

● ●

●

● ●

The two blowups can be distinguished by considering the index; we note that a
fourth class of such Fano varieties, namely P(OP2(2) ⊕OP2), cannot be realized using
quiver moduli.
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