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Abstract
Objective: Economic evaluations such as cost-effectiveness and cost-utility analyses generally fail to
incorporate elements of intangible costs and benefits, such as anxiety and discomfort associated with
the screening test and diagnostic test, as well as the magnitude of utility associated with a reduction in
the risk of dying from cancer. This paper seeks to include all costs and effects incurred by introducing
mammography screening through the application of discrete ranking modeling.
Methods: In the present analysis, 207 women were interviewed and asked to rank, according to priority,
a number of alternative breast cancer screening setups. The alternative programs varied with respect to
number of tests performed, risk reduction obtained, probability of a false-positive outcome, and extent
of copayment. Using discrete ranking modeling, the stated preferences were analyzed and the relative
weighting of the program attributes identified. For a range of hypothetical breast cancer programs,
relative utilities and corresponding willingness-to-pay estimates were derived.
Results: A comparison of cost and willingness to pay for each of the programs suggested that net
benefits are maximized when screening person aged 50–74 years biennially. More intensive screening
produces lower or similar levels of utility at a higher cost.
Conclusion: Discrete ranking modeling can aid decision making by identifying inferior healthcare pro-
grams, i.e., programs that are more costly but less beneficial.

Keywords: Conjoint analysis, Breast cancer screening, Cost-benefit analysis

Various methods of screening for cancer diseases have been introduced in recent decades.
The costliness of these programs varies depending on cost of screening test, cost of diagnostic
test, and sensitivity and specificity of the test as well as the improvement in diagnosis by early
detection. Existing and potential screening programs such as screening for cervical cancer,
breast cancer, and colorectal cancer have been the focus of economic evaluations in order
to determine whether the benefits justify the costs involved (6;7;10;13;15;16;17;25;26).
The economic evaluations have, however, been limited to cost-effectiveness or cost-utility
analyses, and have generally failed to incorporate elements of intangible costs and benefits.
Moreover, the analyses have been limited by the inability of cost-effectiveness analysis to
suggest the optimal program setup (screening interval and target group) among efficient
programs. More knowledge of the nature of public preferences for screening programs and
their attributes may contribute to the evaluation of such healthcare programs.
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This paper seeks to establish a representative utility function for breast cancer screen-
ing programs that incorporates the utility and disutility associated with intangible effects.
The method used is discrete ranking modeling. By establishing a utility function in which
individual attributes are weighted according to their importance, relative utilities can be
derived for hypothetical breast cancer screening programs. A comparison of relative utili-
ties and program-specific costs makes it possible to identify dominated programs. Among
efficient programs, relative cost-effectiveness can be calculated through a comparison of
program-specific costs and willingness-to-pay (WTP) estimates.

METHODS

The Theory

In the context of healthcare services, it is of great significance that the relative importance
of outcome and process attributes are identified such that the optimal healthcare service
may be delivered. More specifically, in the context of cancer screening programs, there
exists a vast number of program setups, the basic trade-off being frequency of screening
versus screening effectiveness. In this context it is important to identify the tangible and
intangible costs and benefits associated with increased frequency. As frequency of screening
programs increases, more lives are saved. However, apart from being costly in monetary
terms, frequent screening entails that healthy women undergo a larger number of tests over
their lifetime, which may be associated with discomfort and anxiety, as well as a higher
risk of receiving a false-positive diagnosis. If the increments in disutilities associated with
the process of being screened overshadow the value of the extra lives being saved, frequent
screening may not be worthwhile.

This paper seeks to establish the relative importance of process and outcome values
through the use of conjoint analysis, in this paper termed discrete ranking modeling. The
evaluation technique was originally developed by mathematical psychologists, but also has
its origin in market research, where it has been employed by companies to establish what
factors influence the demand for different commodities, thereby identifying the relative
importance of the attributes associated with the product. Due to an increased focus on
consumer sovereignty within health care, this technique has recently been applied to the
field of health economics (3;18;19;21).

The strength of discrete ranking modeling is that the focus is on the utility associated
with the attributes that constitute a commodity, rather than merely the utility of the com-
modity as a whole. This is a major strength when a healthcare service such as a cancer
screening program can be offered in a large variety of setups with differing attribute values.
The random utility model describes person i’s utility from choice j out of J choices as:

Uij = V(si, xij )+ εij = Vij + εij

where Vij is the deterministic and observable component of utility associated with parti-
cipation in a screening program described by xij , andεij is the stochastic and unobservable
component to the analyst.

In the usual discrete choice case, we want to determine the probability that Uij exceeds
Uik (k 6= j). With ordinal ranking information, we want to determine the probability of a
particular rank order, sach as Pr[Ui1>Ui2> . . . >UiJ], to exploit the additional information
in rank, rather than only choice data, and hence obtain precise estimates.

Pragmatic considerations limit the number of probability distribution functions we can
choose from for the stochastic component, and we have little choice but to assumeεij to
be independently and identically distributed, each with an extreme value distribution. This

812 INTL. J. OF TECHNOLOGY ASSESSMENT IN HEALTH CARE 16:3, 2000

https://doi.org/10.1017/S0266462300102089 Published online by Cambridge University Press

https://doi.org/10.1017/S0266462300102089


Cost-benefit analysis of mammography screening

leads to the ordered logit model. It has the same limitations, known as the independence
of irrelevant alternatives, in the regular logit models but allows for a relatively simple and
computationally robust likelihood function for estimation purposes, as derived by Beggs
et al. (2, equation 12). We use the Newton-Raphson algorithm in LIMDEP 7.0 to estimate
the parameters of the ordered logit model. The model allows for different Ji (number of
choices) in the sample.

The deterministic part of utility Vij is modeled as a function of characteristics of the
decision maker (si) and of a vector of attributes (xij ) for each choice. Socioeconomic char-
acteristics (si) must be modeled as interaction terms with choice attributes (xij ), including
choice-specific constants.

In this analysis the reference option is the no-screening scenario, which means that
per definition the utility associated with this alternative is zero. The utility associated with
participating in a screening program is a function of the risk reduction obtained by the
program plus a series of other attributes affecting the utility derived from participating. An
additive utility function can be presented in the following manner:

dU= ∂U

∂x1
∗ dx1 + ∂U

∂x2
∗ dx2 · · · + ∂U

∂xn
∗ dxn

where dU denotes the change in utility relative to the null option of no screening, dx1, dx2 . . .

dxn denotes the changes in attributes x1 to xn relative to no screening and∂U/∂x1 to∂U/∂xn

denotes the estimated coefficients for variables x1 to xn. If one chooses to include a cost
variable in the utility function, one has the option of deriving WTP estimates by dividing
the estimated dU by the cost coefficientδU/δCOST.

The Survey

A random sample of the Danish female population (all 50 years of age) was drawn from
the national registry, and subsequently invited by letter and contacted by phone. For those
women who agreed to participate, a meeting was arranged for a personal interview with
a professional interviewer. A total of 255 women were invited to an interview; of these
207 were successfully interviewed, 23 did not wish to participate, 13 individuals were
incapable of responding, and 12 could not be contacted. A participation rate of 81.2% was
achieved.

The objective of the survey was to identify the respondent’s preferences for screening
program attributes. Each respondent was given a description of three alternative screening
setups and the consequences of not entering a screening program. Prior to presentation of the
card, respondents were given descriptions of the screening test (a visit to the mammography
unit) and the diagnostic test in the form of a clinical mammography.

Table 1 illustrates one of a large series of cards, of which each respondent was only
introduced to one. For the breast cancer screening interview, 24 different cards were de-
signed. The initial risk level in a no-screening scenario was held constant at 340 of 10,000,
equivalent to the overall risk of dying from breast cancer between the ages of 50 to 80
years. The individual cards differed only on variable values. Each card was constructed in
a similar manner on the following principles. The respondent is presented with four alter-
natives, of which the first option is no screening. The second option (alternative A) is the
least intensive but also the least effective program. The third option (alternative B) is the
program that uses improved technology; hence, effectiveness increases without increasing
the number of tests or increasing the risk of a false-positive diagnosis. Instead, the partici-
pant is required to pay out of pocket. Finally, the fourth option (alternative C) can attain a
similar effectiveness as alternative B but without an out-of-pocket expense. Here the “cost”
is an increase in the number of screening tests or an increase in the risk of a false-positive

INTL. J. OF TECHNOLOGY ASSESSMENT IN HEALTH CARE 16:3, 2000 813

https://doi.org/10.1017/S0266462300102089 Published online by Cambridge University Press

https://doi.org/10.1017/S0266462300102089


Gyrd-Hansen

Table 1. An Example of a Card Presented to the Interviewee

No participation Program A Program B Program C

Number of 0 17 17 25
mammographies
performed over
the next 25 years

Your risk of dying 340 of 10,000 220 of 10,000 210 of 10,000 210 of 10,000
of breast cancer (3.40%) (2.20%) (2.10%) (2.10%)
over the next
30 years

Your risk of being 0 3,500 of 10,000 3,500 of 10,000 3,500 of 10,000
called in for an (35%) (35%) (35%)
unnecessary clinical
mammography

Your out-of-pocket — DKK 0 DKK 2,000 per test DKK 0
expense In total: DKK 34,000

over 25 years

diagnosis. In order to present the respondents with plausible options, it was not possible
to construct the cards on the basis of a full factorial or a systematic fractional factorial
design.

Realistic parameter values were chosen with respect to number of screening tests
performed over lifetime, risk of a false-positive diagnosis over lifetime, and risk reduction
over lifetime. Realistic risk reductions were estimated using the Day and Walter model (5)
and knowledge of lead time and sensitivity of the screening tests (22). Mortality reductions
were based on experiences from the Swedish two-county randomized trial (12), whereas
false-positive rates were based on specificity levels as observed in a Danish setting. For
the cost attribute, realistic as well as extreme values were chosen such thatmaximumWTP
estimates could be derived.

Individuals were asked to rank the four options presented to them, and subsequently
asked to qualify their choices by checking off a list of possible motivations. Finally, respon-
dents were asked questions regarding their income and education.

RESULTS

The Discrete Ranking Analysis

With four choice attributes as well as a number of personal characteristics, one faces a large
number of parameters, including all possible interaction combinations. We therefore chose
selectively to include characteristics through interaction with attributes and choice specific
constants that seemed plausible or theoretically justifiable. For a more thorough discussion
of included candidate variables and corresponding hypotheses, the reader is referred to a
different paper by the author (11).

Backward (one-) stepwise regression was used to limit the number of parameters.
Table 2 illustrates the results of the restricted model for breast cancer, including only
variables with significant coefficients. The result is an explanatory model that produces
a good fit to the preference data for breast cancer screening. Significant parameters in
the models are COST/ln(Y), PAY, and PAY*Y, which demonstrate that an out-of-pocket
expense produces two forms of disutility: one associated with the degree of out-of-pocket
expense, and one associated with the fact that an out-of-pocket expense is required at all.
That COST/ln(Y) is included in the restricted model signifies that income has a significant
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Table 2. Results of the Discrete Ranking Model

Coefficients,
Variable Variable description restricted model p Value

RED Risk reduction over lifetime 0.01642 .0000
(out of 10,000)

REDNEDU Risk reduction over lifetime*nedu; 0.00692 .0000
nedu= 1 if no professional training

FP*FP Risk of false-positive diagnosis over lifetime −0.000297 .0162
(out of 100)

COST/ln(Y) Out-of-pocket expense over lifetime/ −0.0001989 .0000
ln(monthly net of tax household income)

PAY Pay= 1 if out-of-pocket expense> 0 −1.1386 .0000
PAY*Y Pay*monthly net of tax household income 0.000016183 .0184

impact on the disutility associated with an out-of-pocket expense. The impact of a cost
element is negative, but to a lesser degree when household income net of tax is high.
That PAY has a negative parameter value, while PAY*Y demonstrates a positive impact,
illustrates that an out-of-pocket paymentper sedecreases utility, but to a lesser extent for
higher income groups.

The parameter value of RED is positive and highly significant. The utility derived from a
risk reduction is influenced by level of education. No professional training entails an increase
in the utility associated with a risk reduction (RED*NEDU), implying that uneducated
individuals may be more susceptible to judgment biases. Interpretation of risks are subject
to various forms of biases, such as availability bias, whereby perception of probabilities
are influenced by the degree of media coverage and probability assessment bias, whereby
people tend to overestimate small probabilities. A significant negative coefficient for the
FP*FP parameter was disclosed, which implies that risk of a false-positive diagnosis has an
influence on choice of breast cancer screening program and that the effect is characterized
by increasing marginal disutility as programs are intensified. Number of screening tests
over lifetime had no impact on preferences, signifying that the inconvenience of frequent
screening is perceived as minor.

The utility model presented in Table 1 can also be expressed in the form of an equation:

dU = 0.01642∗ dRED+ 0.00692∗ d(RED∗ NEDU)− 0.000297∗ d(FP∗ FP)

− 0.0001989∗ d(COST/ ln(Y)) − 1.1386∗ dPAY+ 0.000016183∗ d(PAY ∗ Y) (1)

where dRED is the risk reduction obtained by the program (out of 10,000), FP is the
probability of a false-positive diagnosis over lifetime (in percentage), COST is the total
out-of-pocket expense over lifetime, Y is the monthly household income net of tax, and
PAY is a dummy variable that equals one if an out-of-pocket expense is required. The model
is simplified if no out-of-pocket expense is prevalent:

dU= 0.01642∗ dRED+ 0.00692∗ d(RED∗ NEDU)− 0.000297∗ d(FP∗ FP) (2)

In the study, individuals were asked to explain their choices by checking off a list of
motivations. The main motivation for participation was, not surprisingly, to reduce the risk
of dying from cancer. Other frequently observed motivations were to eliminate potential
feelings of regret, gain information, and a tendency to accept what is offered or, in other
words, do what is recommended.

INTL. J. OF TECHNOLOGY ASSESSMENT IN HEALTH CARE 16:3, 2000 815

https://doi.org/10.1017/S0266462300102089 Published online by Cambridge University Press

https://doi.org/10.1017/S0266462300102089


Gyrd-Hansen

Table 3. Calculated Utilities Derived from Participating in a Breast Cancer Screening
Program

Estimated Estimated
Program Number Risk of utility (dU) participation
age group; of tests false-positive Absolute (professional rate (professional
screening performed over diagnosis risk reduction training/ training/
interval lifetime (out of 100) (out of 10,000) no training) no training)

50–64;3 5 9.6 56 0.892/1.279 0.709/0.782
50–64;2 7 13.2 62 0.966/1.394da 0.724/0.801
50–64;11/2 10 18.3 72 1.083/1.570da 0.747/0.829
50–64;1 15 26.2 79 1.093/1.638da 0.749/0.837
450–69;3 7 13.2 79 1.245/1.790 0.777/0.857
50–69;2 10 18.3 91 1.395/2.022da 0.801/0.883
50–69;11/2 14 24.6 100 1.462/2.152da 0.812/0.896
50–69;1 20 33.2 104 1.380/2.098da 0.799/0.891
50–74;3 9 16.6 93 1.445/2.087 0.809/0.890
50–74;2 13 23.1 112 1.681/2.453 0.843/0.921
50–74;11/2 17 29.1 117 1.670/2.477da 0.842/0.922
50–74;1 25 39.7 125 1.584/2.447da 0.830/0.920

ad = dominated alternative.

Calculating the Utility of Screening Programs

The parameter coefficients presented in Table 2, and hence equation 2, can be used to esti-
mate the relative utility of alternative screening setups. Below we have estimated the utility
levels associated with different screening setups for breast cancer. In this analysis false-
positive rates were calculated assuming a specificity of 98% for breast cancer, a value that
is in accordance with Danish experience. Risk reduction estimates were estimated by mod-
eling. The Day and Walter model (5) was used to predict the cancer rate at each screening
round for a given screening interval and age group. Input variables into the model are lead
time, sensitivity, and Danish incidence data. Lead time (3.5 years) and sensitivity (92.8%)
values were based on the experience of the Swedish two-county trial (22). Similarly, excess
survival due to early detection of breast cancer was based on the Swedish experience (23),
producing an excess survival rate of 0.24 for screen-detected cancers (8). The reader should,
however, be reminded that the explicit weighting of attributes provides the opportunity for
estimating relative utilities, based on alternative assumptions regarding specificity and risk
reduction.

Number of tests performed over lifetime, risk of a false-positive diagnosis over lifetime,
and risk reduction over lifetime were calculated and multiplied by the relevant coefficients.
It was assumed that neither of the programs involved an out-of-pocket expense.

In Table 3 the utilities are calculated for a series of possible screening setups. Number
of tests performed over lifetime can be used as a proxy for the costliness of the program.
Screening costs increase almost proportionately to number of screening tests performed,
since in the long term most costs are variable. An increase in the number of tests performed
will increase costs directly, and also indirectly through an increase in risk of a false-positive
diagnosis. Treatment costs are reduced significantly as a result of screening (1). These cost
savings rise proportionately with risk reduction. Hence, inclusion of this derived cost effect
does not influence the conclusion that dominated programs can be identified merely by
focusing on utility estimates and number of screening tests over lifetime.

A “d” symbolizes a dominated alternative, i.e., a program setup for which another
program can be found that produces more utility at a similar or lower level of cost or,
alternatively, the same amount of utility at less cost. Figure 1 illustrates the results listed
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Figure 1. Hypothetical programs plotted according to estimated utility and number of tests
performed over a lifetime. Lines indicate the efficiency curve on which lie the dominating pro-
grams. Squares indicate the utility levels for individuals with professional training. Triangles
indicate utility levels for those without professional training.

in Table 3 in an alternative manner. Here, number of tests over lifetime is indicated on the
x-axis, utility is indicated on the y-axis, and an efficiency curve is drawn by connecting
dominating programs. The curve is an approximation since it is based on the estimates
from 12 hypothetical programs only. In reality, an infinite number of alternative programs
exist, and extending the analysis to encompass a large range of programs would produce
a more precise curve. Nevertheless, Figure 1 illustrates the overall picture well: marginal
utility decreases as programs are intensified. For programs that exceed 13 tests over lifetime,
marginal utility is close to zero.

Participation Rates

The discrete choice model is derived under a specific assumption regarding the distribution
of the unobserved portion of utility (random utility). It is assumed that the random utilities
are independent and identically distributed according to a type I extreme value distribution
in standard form (sometimes also called a Weibull or Gumbell distribution). On the basis of
the characteristics of this distribution, a formula for the probability of participation can be
calculated as follows: p= exp(dU)/(1+ exp(dU)), where dU is the utility estimated when
applying equation 2 (4;24). The model implies that if utility of a program is zero, partici-
pation will be 50%; exp(0)/(1+ exp(0))= 0.5. In the last column of Table 3, participation
rates are calculated for various breast cancer screening programs, ranging from 70.9% to
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84.3% among individuals with professional training. Among the uneducated, estimated
participation rates are higher: 78.2%–92.2%. For a program screening the 50–69-year-olds
every second year, the estimated participation rates are 80.1% and 88.3%, respectively. This
program represents the program that has been initiated in the County of Funen, Denmark,
where a participation rate of approximately 88% was observed. Model estimates of partici-
pation rates cannot be directly compared to actual participation rates due to information
bias, but the results lie within a reasonable range of participation rates observed for mam-
mography screening in Denmark, indicating that the preferences elicited are in line with
observed behavior.

DISCUSSION

Table 3 and Figure 1 demonstrate the importance of including intangibles in economic
evaluations. Although the two latter programs in Table 3 (screening persons aged 50–74
years or every year to 11/2 years) are more effective, as indicated by the risk reduction, the
overall utility of these programs is similar to the utility levels derived from participation
in less intensive programs (e.g., screening 50–74-year-olds every second year). This result
demonstrates the importance of analyses such as the one presented in this paper, if inoptimal
resource allocations are to be avoided. Discrete ranking modeling can be used as a tool in
identifying inferior program options. Based on a specificity of 98% and risk reductions
similar to those observed in the Swedish two-county trial, the model results infer that only
4 of 12 hypothetical programs are viable choices. These are the four programs on the
efficiency curve, i.e., the programs found not to be dominated by other options in Table 3.
Which of these four programs, if any, should be implemented may be determined through
cost-benefit analyses. WTP per program can be determined by exploring the information
that lies in the estimated utility function.

Based on the parameter values presented in Table 2, WTP per statistical life saved can be
estimated by focusing on the marginal rate of substitution between RED and COST/ln(Y).
Assuming a median net of tax household income of 25,000 Danish kroners (DKK), the
WTP for an increase in risk reduction of 1/10,000 can be calculated by the ratio of the
respective parameter values: 0.01642/(0.0001989*(1/ln(25,000)))=DKK 836. With linear
extrapolation (assuming constant marginal rate of substitution), this amounts to an implied
WTP of DKK 8.4 million for a statistical life. Among those with no professional training,
the WTP for a statistical life amounts to DKK 11.9 million. In the literature, estimates of
WTP per statistical life typically lie in the region of DKK 7–30 million (14), implying
that the estimates derived from the model presented in this analysis correspond well with
estimates presented by other researchers.

Recently, a detailed cost study on breast cancer screening of 50–69-year-olds biennially
was performed based on Danish data (1). The study included direct and indirect costs of
screening, hence including the costs of setting up and running a mammography unit as
well as travel and time costs incurred by the women participating. Detailed estimations
on the implications of screening activity relative to no screening on cost of diagnosing
and treating breast cancer were incorporated in the analysis. The results was a net cost
of DKK 208 per screening test performed (including time and travel costs) and a cost of
DKK 128 per test if women’s time and travel costs were excluded. The latter estimate is
relevant in the context of this cost-benefit analysis, since time and travel costs are already
included in the utility function. The cost information provides an opportunity for looking
at the marginal cost per statistical life saved as one moves from one efficient program to
another. Assuming that the net cost per screening test remains approximately constant for
alternative program setups, the cost per statistical life saved can be derived by: (number of
test*cost per test)/risk reduction. For the efficient programs, the direct cost per statistical
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Table 4. Willingness to Pay per Program

Marginal WTP
Estimated utility, WTP (DKK) per extra test

Number of dU (professional (professional performed (DKK)
tests over training/no training/no (professional training/

Program lifetime professional training) professional training) no professional training)

50–64;3 5 0.892/1.279 45,417/65,121
50–69;3 7 1.245/1.790 63,390/91,139 8,987/13,009
50–74;3 9 1.445/2.087 73,573/106,261 5,091/7,561
50–74;2 13 1.681/2.477 85,589/126,118 3,004/4,964

life saved lies in the range of DKK 200,000 and DKK 480,000. The results clearly indicate
that WTP per statistical life exceeds the direct cost per statistical life by a significant
amount.

Indirect costs such as unrelated healthcare costs and costs of general consumption
generated by prolonging of life were not included in the analysis. Production gains were
likewise ignored. Under the conservative assumption that production gains are likely to be
negligible for the age group in question, the net effect of including indirect effects would be
a net present value in the range of DKK 80,000 per life-year gained (9). Assuming that 20
to 25 life-years are gained for every life saved, indirect costs would amount to a maximum
of DKK 2 million per statistical life saved. Clearly the inclusion of indirect costs would not
alter the conclusion that WTP exceeds costs.

That WTP per statistical life exceeds cost per statistical life does not conclusively infer
that the programs in question are net beneficial, since only a subset of intangibles are valued.
In order to estimate WTP for the programs as a whole, the program-specific utility (dU) is
divided byδU/δ(COST/ln(Y)), assuming constant marginal utility of income.

There is, however, a problem involved in determining this value, since it will represent
the mean maximum WTP estimate across all respondents. Participation in a screening
program must be seen as a private good rather than a public good. This allows individuals
to choose not to participate in the program, thereby avoiding negative utility. The WTP
estimate that is elicited from a utility function based on all individuals’ preferences will
contain these negative values and result in an underestimated WTP estimate, albeit the
ranking of programs remains unaffected. If this biased estimate turns out to be higher than
the costs incurred so that benefits exceed costs, it may be ample to conclude that there is a
net benefit of the program. If, however, one wishes to establish the exact value of the net
benefit or if the biased WTP estimate is not great enough to warrant this conclusion, an
adjustment of the WTP estimate must be performed.

In Table 4, total WTP and marginal WTP estimates for each extra test performed are
listed for the four efficient breast cancer programs. When comparing cost per test (DKK
128) and marginal WTP per test, the programs clearly produce marginal net benefits greater
than zero. This conclusion also holds when indirect costs of approximately DKK 2 million
per statistical life saved are included in the cost per test (equivalent to an extra cost of DKK
2,240, DKK 2,300, DKK 1,400, and DKK 950 per test for the four efficient programs). If
the decision rule is to choose the program, among the four mutually exclusive programs,
that produces maximum net benefits, the optimal program involves screening 50–74-year-
olds biennially. However, this decision rule is unlikely to contribute to optimizing resource
allocation if we are operating within a fixed healthcare budget in which prioritization should
be made among alternative healthcare services. In this case a comparison of benefit-cost
ratios across independent programs should determine which of the four programs should
be implemented.
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Apart from the considerations with respect to decision rule, there are other problems
that should be considered before making recommendations based on the above results. Re-
spondents’ motivations for participating have shown that a major benefit of cancer screening
programs is the elimination of regret plus a sense of being part of a group, i.e., doing what
is recommended. However, these elements of benefit are not true benefits of the program,
since the introduction of the program produces potential disutilities (e.g., feelings of regret)
that are merely eliminated through participation. This causes estimated utilities, and hence
WTP estimates, to be overestimated, but unfortunately it is not possible to determine the
extent to which these motivations influence preferences.

It is also important to emphasize that the utilities estimated for the hypothetical pro-
grams are not all statistically different. Confidence intervals were derived for the utility
estimates calculated for the 12 hypothetical programs listed in Table 2. At the 95% level
the four programs in which 50–64-year-olds are invited all produce significantly less util-
ity than those programs that invite 50–74-year-olds. Within these two groups of programs
utility levels are not significantly different, nor are the utilities for the programs involving
50–69-year-olds significantly different from utility levels produced by any other of the 12
listed programs. This weakness does not, however, markedly alter the conclusions of this
analysis. Assuming that those programs in which utilities are not significantly different are
in fact identical, a new list of efficient programs can be identified. The new list includes the
same programs as those indicated in Table 2, with the exception of the program that invites
50–74-year-olds biennially. This program is now dominated by the program that invites
50–74-year-olds every 3 years.

Finally, one should be wary in applying the results of this analysis for policy purposes,
since the analysis is highly exploratory. The practical and theoretical applicability of the
methods applied in this paper have not been fully investigated, as is emphasized by Ryan
(20). In the present analysis, choices were framed to enforce realism, eliminating the pos-
sibility of using a full factorial design or a systematic fractional factorial design. Hence,
statistical design has been compromised somewhat for realism. Whether this produces less
valid results compared to strong statistical designs accompanied by lack of realism is yet
unanswered. A more general problem, which at present remains unsolved, is whether the
utility function extracted by conjoint analyses can be interpreted as having cardinal prop-
erties. If this is not the case, utility levels can only indicate the ranking of alternatives, and
discrete choice analysis will be limited to identifying a list of efficient programs without
subsequent identification of the program that is most net beneficial.

The focus of this paper was to demonstrate the potential usefulness of conjoint analysis
(discrete ranking modeling). In the context of cancer screening programs for which an abun-
dance of alternative screening setups (target group, screening interval, choice of screening
test, etc.) exist, it is important to identify the relative importance of the program attributes
to identify and exclude programs that are more resource-consuming and potentially provide
less utility to the consumers.

POLICY IMPLICATIONS

A cost-benefit analysis of mammography screening was performed, including effects such
as risk reduction of dying from breast cancer, risk of a false-positive diagnosis, and number
of tests performed. The analysis was performed on 12 hypothetical programs, and eight of
these were identified as being dominated by the other four options. Among the four efficient
options, a program that screens 50–74-year-olds every second year produces the highest level
of utility. If screening frequency is increased beyond 13 tests over lifetime, marginal utility
levels off as increments in disutilities associated with the process of screening overshadow
the value of the extra lives being saved. This analysis suggests that discrete ranking modeling
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can contribute to optimal resource allocation, primarily by identifying programs that are
inferior.
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