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SUMMARY

The ngwayir (western ringtail possum Pseudocheirus
occidentalis) is an arboreal species endemic to
south-western Australia. The range and population
of this species have been significantly reduced
through multiple anthropogenic impacts. Classified
as vulnerable, the ngwayir is highly susceptible to
extremes of temperature and reduced water intake.
Ngwayir distribution was determined using three
different species distribution models using ngwayir
presence records related to a set of 19 bioclimatic
variables derived from historical climate data, overlaid
with 2050 climate change scenarios. MaxEnt was used to
identify core habitat and demonstrate how this habitat
may be impacted. A supplementary modelling exercise
was also conducted to ascertain potential impacts on
the tree species that are core habitat for ngwayir. All
models predicted a reduction of up to 60% in the
range of the ngwayir and its habitat, as a result of
global warming towards the south-west of the project
area, with a mean potential distribution of 10.3% of
the total modelled area of 561 059 km2. All three
tree species modelled (jarrah, marri and peppermint)
were predicted to experience similar contractions in
range throughout most of the predicted ngwayir range,
although their distributions differed. Populations of
ngwayir persisting outside core habitat may indicate
potential conservation opportunities.

Keywords: climate change, DIVA-GIS, domain, MaxEnt,
Modeco, species distribution models, western ringtail possum

INTRODUCTION

At the regional scale, most species and ecological communities
exist within a definable bioclimatic niche, where habitat value
is largely controlled by a set of variable climatic parameters
including precipitation and temperature (Hutchinson 1957).
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When there are changes in these variables, the habitat value
for that area will also change (Beaumont et al. 2005).

Climate change presents a major threat to biodiversity
around the world (IPCC [Intergovernmental Panel on Climate
Change] 2007); these impacts are expected to increase in
both magnitude and frequency throughout the 21st century
(Richardson et al. 2011). The task of understanding how
species and communities respond to changes in climate
is made particularly difficult by the non-linear nature of
impacts, which means that not all areas will be affected to the
same degree. Climate impacts may vary dramatically between
landscapes and in response to a species’ or community’s
sensitivity to that change (Perkins et al. 2007; Opdam et al.
2009; Yates et al. 2010a; Richardson et al. 2011).

The Australian continent may be highly vulnerable to
global warming impacts (CSIRO & BOM [Commonwealth
Scientific and Industrial Research Organization & Bureau of
Meteorology] 2007, 2012), with predicted impacts of climate
change on Australian biodiversity ranging from mild to severe,
depending on the ecology of subject species and communities
(Hughes 2003).

South-western Australia (Fig. 1) is recognized as a global
biodiversity hotspot (Myers et al. 2000). Threats such as
land clearing, inappropriate fire regimes, exotic species,
pathogens and demands for expanded infrastructure have
contributed to a decline in the extent and condition of
native vegetation throughout the region (EPA [Environmental
Protection Authority] 2007). South-western Australia has
been nominated as a region vulnerable to climate change
(Klausmeyer & Shaw 2009; Hughes 2011) and has already
been affected by global warming in that there has already
been a generally significant fall in rainfall, changes in the
intensity and frequency of severe weather events and a
trend towards increasing mean temperatures across much of
this region (Burbidge 2010; Indian Ocean Climate Initiative
2012; Prober et al. 2012). Global climate models (GCMs)
predict that by the end of the 21st century, in comparison to
averages prior to the 1980s, global warming will bring about: a
3–4°C increase in mean temperature, a 30–40% decrease in
rainfall, significant changes in seasonality, a rise in sea levels
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Figure 1 The South-west Australian Floristic Region and sub
regions. Ngwayir presence records and modelled area for this
project are overlaid.

and more frequent severe weather events relative to pre-1980s
records (CSIRO & BOM 2007, 2012; IPCC 2007; Hughes
2011). Climate variations of this magnitude are likely to have
significant detrimental impacts on regional biodiversity (Gritti
et al. 2006; Cowled 2009; Hughes 2011; Ziska et al. 2011;
Crossman et al. 2012).

Australian protected areas have nevertheless largely been
selected without consideration of the impacts of climate
change on the reserves themselves or on the needs of species
and communities outside of reserves (Dunlop & Brown 2008).
Consequently, reserve systems urgently require review to
better understand their capacity to withstand the impacts of
climate change and to facilitate biodiversity conservation at
the landscape scale.

The ngwayir (pronounced ‘n-wa-ear’) or western ringtail
possum (Pseudocheirus occidentalis), a small (0.8–1.3kg)
arboreal marsupial, endemic to the forests of south-western
Australia, provides an ideal candidate to model range shifts
in response to the predicted impacts of climate change. This
species is listed as vulnerable (Morris et al. 2008) and, because
of this and its public popularity, is a regional conservation
icon (Jones et al. 2007; de Tores 2008). The ngwayir is a
strict folivore, feeding on a few myrtaceous tree species that
meet nearly all of its food and water requirements, and is
highly susceptible to extremes of temperature, especially when
combined with low moisture levels in leaves (Jones 2004; Yin
2006).

The ngwayir had a pre-European distribution from north of
Perth to east of Albany, extending into the Western Australian
agricultural region, where populations were recorded in
Casuarina spp. woodlands until the 1970s (Jones 2004). Local
extinction has been extensive in the inland and northern
parts of its pre-European range, and the current distribution
both patchy and c. 10% of the original. The ngwayir now
occurs most commonly in coastal or near-coastal forests and
woodlands of the southern Swan Coastal Plain, where the

peppermint tree (Agonis flexuosa) is a major component of
local vegetation (Jones & Howe 1995).

Habitat loss, modification and fragmentation have caused
significant negative impacts on ngwayir populations (Wayne
et al. 2006; Wilson 2009). Much of the coastal area where
ngwayir population densities are at their highest is subject to
large-scale development pressure from the rapidly-growing
human population (EPA 2007; Jones et al. 2007; Molloy et al.
2007).

The ngwayir is vulnerable to high temperatures and
dehydration (Yin 2006), changes in diet, changes in fire
regimes (Wayne et al. 2006), landscape fragmentation (Jones
2004), feral predators (de Tores et al. 2004) and introduced
pathogens (Wayne 2009). These vulnerabilities, combined
with its rarity, specialized habitat preferences, and low
capacity to migrate and disperse, indicate that the ngwayir is
likely to be highly sensitive to the predicted impacts of climate
change (de Tores 2009). For these reasons, the ngwayir is
an ideal candidate to test how effective species distribution
models are at determining impacts of anthropogenic global
warming on vulnerable species.

Species distribution models (SDMs) are effective in
determining current and potential distributions when using
climate data alone (Hijmans & Graham 2006; Beaumont
et al. 2007; Elith et al. 2011) allowing historical distributions
to be modelled against climate records to form high quality
baseline models, which can then be overlaid with GCMs to
demonstrate how predicted changes in climate may affect
species distributions (Green et al. 2008; Yates et al. 2010b;
Adams-Hosking et al. 2011; Fordham et al. 2012; Guerin &
Lowe 2012; Prober et al. 2012). SDMs have become popular in
response to increased availability and quality of relevant data
(Marcial & Hemminger 2010) and corresponding increases
in the availability and complexity of SDMs (Beaumont et al.
2005; Guo & Liu 2010).

We investigated potential range shifts of this sedentary,
specialist endemic, habitat-restricted vertebrate, in response
to the potential impacts of global warming. Our hypothesis
is that the ngwayir will be at high risk from climate change.
Specifically, we predict that, based on climate change models
for south-western Australia, this species will lose much of
its core range, and this will further threaten the viability of
future populations. We also seek to evaluate the idea that a
broader understanding of the impacts of global warming on
target species can be obtained by seeking congruence between
predictions from multiple spatial distribution models each
using multiple climate change scenarios.

METHODS

Model selection

Three SDMs were chosen to examine the impacts of three
IPCC IV GCMs on the potential distribution of ngwayir. We
used multiple models because our aim was to obtain a broader
understanding of the potential impacts of climate change, and
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to identify and investigate misleading results arising from
anomalies in the application of any one particular model.
We selected SDMs that have been shown previously to be
successful in predicting species distributions from presence-
only data, each employing a different methodology to do so
(Guo & Liu 2010; Elith et al. 2011). By comparing such diverse
SDMs, and applying them to the three most accurate GCMs
available, we hoped to gain a more robust understanding of the
potential impacts of global warming on this species. We sought
congruence between predictions from the different models as
evidence for the most likely response of the species to climate
change.

We also performed MaxEnt (Phillips et al. 2006; Elith
et al. 2011) analyses on the three tree species most
commonly associated with ngwayir habitat: jarrah (Eucalyptus
marginata), marri (Corymbia calophylla) and peppermint
(Agonis flexuosa). These tree species provide the bulk of the
ngwayir’s dietary intake and they are keystone species in the
ecological assemblages most commonly recognized as ngwayir
habitat (Jones et al. 1994; Jones 2004; Wayne et al. 2005; Yin
2006; de Tores 2008). We conducted tree analyses using the
same method and bioclimatic variables as those undertaken for
the ngwayir. Because areas identified as being bioclimatically
suitable for the ngwayir may not be suitable for the trees upon
which it depends, we sought insight into the potential impacts
of global warming on ngwayir habitat as distinct from impacts
on the animal itself. We present these analyses in the absence
of more detailed modelling on the impacts of global warming
on the three tree species (Yates et al. 2010b; Fordham et al.
2012).

We used MaxEnt (Phillips et al. 2006) as the principal
SDM. Some drawbacks have been noted with MaxEnt,
notably the tendency for it to underperform where there is
a spatial bias within datasets (see for example Bystriakova
et al. 2012), however it remains a well-supported and popular
application with land managers, and has the capacity to
link fine-scale bioclimatic data to species distributions and
produce probability-based outputs (Hijmans & Graham 2006;
Guo & Liu 2010; Elith et al. 2011; Vasconcelos et al.
2012). MaxEnt has been successfully used in similar species
modelling applications (Green et al. 2008; Yates et al. 2010b;
Adams-Hosking et al. 2011; Guerin & Lowe 2012; Prober
et al. 2012). The two other SDMs we used were Domain
(Carpenter et al. 1993; Hijmans & Graham 2006) and Two
Class Support Vector Machine (SVM-TC) (Vapnik 1995;
Cristianini & Scholkopf 2002), both of which generally lack the
accuracy and probabilistic capacity of MaxEnt. However, we
used these SDMs because the results of the MaxEnt analyses
might be further supported and validated by congruence with
other models.

MaxEnt (application of a machine learning technique called
‘maximum-entropy’) explores the relationships between
presence data and relevant habitat variables, thereby enabling
it to calculate the probability of presence of the target species
within a GIS grid square using habitat values (Phillips et al.
2006; Hijmans & Graham 2006; Elith et al. 2011). MaxEnt

v.3.3.3 for Windows was used in these analyses. Our model
settings were 500 maximum iterations with a convergence
threshold = 0.00001, prevalence = 0.5 (default) and a 10%
training presence. We used a full presence data set for
these analyses. Input data were prepared using Diva-GIS 7.5
(Hijmans et al. 2012) and output display and analysis for all
SDMs were prepared and analysed with ESRI ArcMap 10.1.

SVM-TCs are supervised learning models that analyse data
and recognize patterns, which are then used for classification
and regression analyses. They take a training sample to build
a model used to determine presence or absence in response to
variable parameters (Vapnik 1995). SVM-TCs require both
presence and absence (or assumed absence) species data. In
this study, absence data was not available and assumed absence
data was developed at a rate of five absences for every presence
using ModEco (Guo & Liu 2010). This was the highest
available ratio and was chosen because of the relatively small
number of ngwayir presences in the modelled area. SVM-TC
was part of the ModEco 3.02 software package (UCMERCED
[University of California at Merced] 2011). Our model settings
for the SVM-TC analyses were 10% hold out for testing,
degree = 3, Nu = 0.05 and cost = 1.

Domain assigns a classification value to an unknown site
based on the distance to its closest similar site in environmental
space (Carpenter et al. 1993) using presence-only data
(Tognelli et al. 2009; Hawkes 2010; Monk et al. 2010; Jimenez-
Valverde et al. 2011; Khatchikian et al. 2011; Navarro-Cerrillo
et al. 2011). We used Domain in both ModEco and Diva-GIS
software packages; the outputs we selected for use in this
analysis being those developed using the ModEco software
package. Domain outputs can be highly biased by outliers in
the presence data, whereas both MaxEnt and SVM-TC have
the capacity to recognize and limit the influence of outliers in
species presences. Consequently, outliers had to be removed
manually when using Domain (Hijmans et al. 2012). We
produced a separate species database with outliers removed
using Diva-GIS and used the resultant ‘extract’ database in
the Domain analyses. Our model settings for the Domain
analyses were 10% withheld for testing and 95% similarity
threshold.

We only used bioclimatic variables in the predictive
modelling because we assumed that global warming is the
predominant threat to the ngwayir and that this threat will
foreseeably increase in intensity during the first half of
the twenty-first century and occur throughout its current
and potential distribution. IPCC IV (IPCC 2007) GCMs
were downloaded from the International Centre for Tropical
Agriculture (CCAFS [Climate Change, Agriculture and Food
Security Programme] 2008), and were already downscaled to a
1-km grid spatial resolution using the delta method (Ramirez
& Jarvis 2008). We selected the MIROC-m, CSIRO mk3 and
ECHO-G models from the IPCC IV group of models, as these
three were the most accurate for Australia (Perkins et al. 2007).
Furthermore, each model represents a different methodology,
reflecting the diverse interests, perspectives and objectives
of the organizations that developed them (IPCC 2007). The
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Table 1 Variable use in SDMs showing the contribution of each variable in the MaxEnt and the variables used in the
Domain and SVM-TC SDMs.

Variable Description MaxEnt (%) Domain SVM-TC
BIO1 Annual mean temperature 5.4
BIO2 Mean diurnal range (max temp – min temp) (monthly average) 1.1 1
BIO3 Isothermality (BIO1/BIO7) ∗ 100 0.6 1
BIO4 Temperature seasonality (coefficient of variation) 12 1 1
BIO5 Max temperature of warmest period 0.3 1 1
BIO6 Min temperature of coldest period 0.3
BIO7 Temperature annual range (BIO5-BIO6) 0.3 1 1
BIO8 Mean temperature of wettest quarter 0
BIO9 Mean temperature of driest quarter 0.3
BIO10 Mean temperature of warmest quarter 0.6
BIO11 Mean temperature of coldest quarter 0.9
BIO12 Annual precipitation 67.1 1 1
BIO13 Precipitation of wettest period 1.1 1 1
BIO14 Precipitation of driest period 1
BIO15 Precipitation seasonality (coefficient of variation) 3.9 1
BIO16 Precipitation of wettest quarter 1.6 1 1
BIO17 Precipitation of driest quarter 0.1
BIO18 Precipitation of warmest quarter 0.1
BIO19 Precipitation of coldest quarter 3.4 1 1

model scenario chosen for all GCMs was the A2A scenario,
which was the ‘medium scenario’ for both CO2 emissions
and future energy requirements, on the assumption that
extreme predictions might be avoided. Since CO2 emissions
will, most probably, be higher than predicted in this scenario
(Allison et al. 2009), range contractions indicated in this paper
are consequently likely to be conservative in nature. These
data were also cut and processed into bioclimatic variables
using Diva-GIS, and the same altitude (topographic) data
set used to produce the baseline data. All GCMs were based
on 2050 scenarios. As GCMs are constantly being reviewed
and improved (IPCC 2007), we considered it appropriate that
models for post-2050 scenarios be based on more current
climate change models as they become available.

We modelled a rectangular section of the South-
west Australian Floristic Region (Fig. 1), large enough to
encompass all recorded ngwayir occurrences, but not so large
as to imbue models with an inflated appearance of accuracy
(Elith et al. 2011). We considered natural migration of ngwayir
beyond this area to be highly improbable given the highly
fragmented nature of the Western Australian Wheatbelt
(Smith 2008; Lawes & Dodd 2009). Given the highly variable
nature of the project area (Hopper & Gioia 2004), we decided
that it was appropriate to model data at the highest available
resolution (grid cells of 1-km2 or 30 seconds) (Hijmans et al.
2005).

Data

We obtained presence data for ngwayir, jarrah, marri
and peppermint from the Western Australian Department
of Environment and Conservation’s NatureMap database

V 1.5.0.10 (DEC [Department of Environment and
Conservation] 2007–2013). There were 510 ngwayir presences
recorded in this database, which, after disregarding duplicate
records and those with erroneous coordinates, resulted in
a database of 392 presences. Similarly, 506 presences were
used to model jarrah, 344 marri and 374 peppermint; these
represent the entire range for each species. These corrected
presences were used in both the MaxEnt and SVM-TC
analyses. Further correction was undertaken for the Domain
analyses. As this data is sourced heavily from extensive surveys
across many reserves and remnants, we assumed that sampling
bias (such as favouring roadsides or particular regions) was
minimal.

Baseline climate data were sourced from the WorldClim
1.4 (release 3) database (WorldClim 2012) of Hijmans
et al. (2005), developed as interpolated climate surfaces
for global land areas other than Antarctica at a 1-km grid
cell spatial resolution using 1950–2000 climate data. The
WorldClim data were provided in the form of average monthly
precipitation, maximum temperature, minimum temperature,
mean temperature and topography data that were then cut to
the size of the project area and converted into 19 bioclimatic
variables (Table 1) using Diva-GIS.

Variable selection

As each SDM uses different algorithms and species inputs,
they also require the use of differing sets of variables in their
respective analyses (Guo & Liu 2010; Fordham et al. 2012).
To obtain optimum efficiency, minimize multicollinearity
and prevent overfitting (Beaumont et al. 2005; Elith et al.
2011; Hijmans et al. 2012), we first tested the variables
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Figure 2 MaxEnt predictions of
ngwayir distribution from baseline
averages and 2050 GCM scenarios
for CSIRO Mk3, MIROC-m and
Echo-G IPCC IV models. (a, b, c,
d) Modelled probability of
presence for each scenario. (e, f, g,
h) Core habitat areas derived by
applying a cut-off training value,
which shows only those bioclimatic
values containing 90% of
presences. (i) Overlay of core
habitat areas. The core area count
reflects the number of times each
pixel appears as core habitat.

to establish the most appropriate set for inclusion in each
SDM analysis. All 19 bioclimatic variables were used in
the MaxEnt analyses, as this SDM calculated and implicitly
incorporated the percentage contribution of each variable to
the final solution (Table 1; Elith et al. 2011). Because the
contribution of many variables was negligible and tested sub-
sets did not improve on and, in some cases, produced highly
unlikely results, we decided that, for the sake of accuracy and
consistency, all 19 variables be applied to all MaxEnt models
(Phillips & Dudík 2008).

For the SVM-TC and Domain models, the proportionate
contribution of variables was not an option. In these situations,
variables were either included or rejected based on the
results of a kappa analysis, which determined variable
contribution. We undertook kappa analyses using Modeco
(Appendix 1, Table S1, see supplementary material at
Journals.cambridge.org/ENC). For both SDMs, the cut-
off for inclusion (Appendix 1, Table S1, see supplementary
material at Journals.cambridge.org/ENC) was 0.2, which
delivered the best results based on trial and error.

We applied landscape metrics, such as vegetation
association, patch size and isolation, in early SDM trials;
however these did not improve on the use of bioclimatic
variables alone, and modelling results became erratic in
a manner symptomatic of overfitting (Welsh et al. 2013).
Consequently, their use was abandoned.

Core areas were used to display results (maps). We
determined core areas by applying the 10% training presence
threshold (0.387); only those areas with bioclimatic parameters
within which 90% of presences were recorded were designated
as habitat. Those areas where we assigned a lesser value
were considered marginal habitat, and thus disregarded. This
enables conservation managers to focus on those areas that

are likely to more important for the conservation of the target
species or community (Phillips et al. 2006; Hijmans et al.
2012).

RESULTS

The MaxEnt modelling of ngwayir distribution using baseline
WorldClim 1950–2000 averages (Hijmans et al. 2005) and
2050 model scenarios (for CSIRO Mk3, MIROC-m and Echo-
G IPCC IV models; (IPCC 2007) demonstrated a marked and
similar contraction of ngwayir distribution towards the south-
west, as compared to the total baseline bioclimatic envelope
for this species (Fig. 2).

For habitat parameters within which 90% of presences
occurred, the contraction in the potential core distribution
became much more pronounced for all three GCMs. Potential
distribution predictions were remarkably similar for all
GCMs, indicating that the modelled GCM scenarios were
robust. The area under curve (AUC) goodness of fit value
for the MaxEnt model was 0.973, indicating a good model
in terms of predictive ability (Phillips et al. 2006), further
supported by a high 10% training presence value of 0.387.

Each of the SDMs predicted broadly similar baseline
patterns of ngwayir distribution and resulted in similar
predicted distributions for all three climate change scenarios
for 2050 (Appendix 1, Fig. S1, see supplementary material at
Journals.cambridge.org/ENC). These predictions show only
predicted presences, in that pixels with a probability value of
< 5% are not displayed. All models gave a marked and similar
contraction in ngwayir potential distribution towards the
south-west. Overall, MaxEnt appeared to have a marginally
greater sensitivity to topographic variation, selecting low-
lying areas in the northern Darling Range and parts of the
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Table 2 Areas (km2) selected as habitat for projections (Appendix 1, Figure S1, see supplementary material at Journals.cambridge.
org/ENC). Total modelled area = 561 059 km2.

Model MaxEnt
area

% Total area Domain
area

% Total area SVM-TC
area

% Totalarea Mean area % Total
area

Worldclim (baseline) 59 341 10.58 61 133 10.90 55 106 9.82 58 527 10.43
CSIRO Mk III 44 278 7.89 39 797 7.09 39 007 6.95 41 027 7.31
ECHO-G 35 870 6.39 27 024 4.82 29 948 5.34 30 947 5.52
MIROC-m 44 375 7.91 33 934 6.05 38 780 6.91 39 029 6.96
Mean 2050 41 508 7.40 33 585 5.99 35 912 6.40 37 001 6.59
Mean area reduction 17 833 3.18 27 548 4.91 19 194 3.42 21 526 3.84

lower Blackwood River Basin that were not highlighted in
the Domain and SVM-TC models. MaxEnt predicted larger
areas of potential distribution (that is, MaxEnt predicted the
smallest reduction in core distributions). Domain predicted
the greatest reduction in area, although the difference
between the mean areas was <2% (Table 2). The AUC and
kappa values for both the Domain and SVM-TC analyses
indicate that these models are strong (Appendix 1, Table
S2, see supplementary material at Journals.cambridge.org/
ENC).

The contraction in the potential distribution of ngwayir
to the south-west became significantly more severe when the
10% training presence was applied to demonstrate core habitat
(Fig. 2e–h). When these projections were overlaid (Fig. 2i),
the similarities between them were clear and indicated
potentially important landscapes for the conservation of the
ngwayir.

Most 2050 projections in this exercise identified highly
complementary potential distributions for the ngwayir, with
the majority of grid cells identified as potential distribution
being the same in all projections. There was a mean baseline
area of potential distribution of 10.3% of the total modelled
area of 561059 km2, with a maximum area of 10.9% and a
minimum of 9.8% (Table 2). All projections showed
a significant contraction in area by 2050, to an average
6.6% of total modelled area ranging from a high of 7.8%
(MaxEnt/CSIRO) to a low of 4.8% (Domain/ECHO). For
all SDMs, the ECHO GCM showed the greatest impact
on the ngwayir, with an average 2050 distribution of 5.5%;
the MIROC-m and CSIRO models were very similar, with
averages of 7.0% and 7.3%, respectively. Of the SDMs,
MaxEnt was the most optimistic, with a mean 2050 area of
7.4% compared to an area of 6.4% for SVM-TC and 6.0%
for Domain. The similarities between all modelled scenarios,
both baseline and predicted, for all three SDMs across all
GCMs indicated strongly that the MaxEnt modelling exercise
produced a highly plausible scenario.

MaxEnt modelling of the three tree species showed
the potential distribution of all three species contracted
strongly towards the south-west (Fig. 3). For all species,
but particularly for jarrah and marri, there was a tendency
for distribution to be split into northern and southern

populations, with the southern populations appearing to be
more robust. The CSIRO/Marri projection, and, to a lesser
extent, the ECHO/Marri projection, indicated large inland
areas becoming suitable for marri; although the reasons for
this are not currently understood, these areas were outside the
ngwayir dispersal range.

When we compared predicted ngwayir core habitat with
that of the three tree species (Fig. 4) and with conservation and
forestry land tenure (Appendix 1, Fig. S2, see supplementary
material at Journals.cambridge.org/ENC), extensive stands
of either jarrah/marri and/or peppermint stands persisted
alongside all projected potential model distributions of
ngwayir, with much of these vegetation types continuing
to occur on conservation/forestry land. It is expected that
relictual populations of all of these species will persist beyond
2050, outside of these parameters (Appendix 1, Table S3,
see supplementary material at Journals.cambridge.org/ENC).
Statistical tests show that all models in these analyses are
good, although models for each species differed markedly
in the variable contributions used (Appendix 1, Table
S4, see supplementary material at Journals.cambridge.
org/ENC).

DISCUSSION

In modelling the potential distribution of ngwayir, all three
SDMs, although differing in type and sets of predictor
variables, predicted similar binary distributions for the
species, both for their current distributions and in the
projections for 2050. Although there were some differences
between the three climate change scenarios for 2050, all nine
predictions demonstrated strong support for a significantly
reduced ngwayir distribution, with a strong contraction
towards the south-west. MaxEnt modelling showed that
areas of core habitat within predicted potential distribution
areas may suffer greater contractions than the binary outputs
indicate. The contraction to the higher rainfall coastal areas of
the south-west is consistent with other predictions of species-
level climate change impacts within the region (Yates et al.
2010a, b).

Although climatic envelope modelling predictions of
species contractions due to climate change are now relatively
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Figure 3 MaxEnt models
comparing baseline distribution of
jarrah, marri and peppermint with
the three IPCC IV 2050 climate
scenarios.

common, it is widely recognized that modellers need
to consider habitat preference or quality and potential
interactions with other species to more accurately predict
future climate change impacts (Williams et al. 2008). In this
study, we used predicted contractions in the preferred tree
species (for feeding and nesting) to further explore potential
impacts of climate change on the ngwayir. MaxEnt modelling
shows that, although the preferred tree species of ngwayir will
also be strongly impacted by climate change, at least one of the
core tree species will persist through much of the ngwayir’s
future predicted distribution. Such severe tree species range
contractions are supported by many studies on the observed
and predicted impacts of anthropogenic global warming on
woodland and forest species throughout the world (Allen
et al. 2010; Littell et al. 2010; Chaturvedi et al. 2011; Milad
et al. 2011; Prober et al. 2012). Of the three tree species
modelled, the contraction in core peppermint habitat appears
to be the most significant and is of most concern, as ngwayir

is most common in the dense vegetation dominated by this
species (Jones & Howe 1995; Jones 2004). For two climate
change scenarios in particular, core peppermint habitat is
predicted to contract to the extreme south-west corner of
the landscape. This prediction has important conservation
implications, as many reserves with peppermint that currently
support healthy populations of ngwayir may not be within
the predicted future range of peppermint, highlighting the
problems associated with maintaining a static reserve system
in the face of climate-induced shifts in species distributions
(Williams et al. 2008). Although the bioclimatic modelling of
the preferred tree species is preliminary, it helps improve
understanding of the vulnerability of ngwayir to climate
change. In similar fashion, Bateman et al. (2012) improved
predictions and understandings of climate change impacts on
northern bettong in the tropical rainforests of Queensland by
combining this with bioclimatic modelling of its major food
species.
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Figure 4 Core area count (the number of times each pixel appears
as core habitat) for tree species, overlaid by ngwayir core area count
(see Fig. 2).

Unless anthropogenic greenhouse gas emissions decline
dramatically, the question becomes one of how to manage
a vulnerable species in the face of an almost certain reduction
in habitat quantity and quality. This will require further
recognition of what landscape parameters actually define
habitat for this species at more local scales (Pearson & Dawson
2003; Guisan & Thuiller 2005).

Other factors potentially contributing to the habitat of
ngwayir at finer scales, are the feed quality of foliage
(which is influenced by the nutrient status of trees) and the
quantity and type of volatile oils. As a cecum ruminant, it
is probable that ngwayir’s habitat choice is influenced by
the secondary metabolite content of the plants upon which
it feeds (Wallis et al. 2002; Moore et al. 2004; Scrivener
et al. 2004; Foley et al. 2008). Secondary metabolite levels
vary significantly in response to genotypic and phenotypic
factors even within plants of the same species, and habitat
for many cecum ruminants is often defined by the density
of plants, with similarly low levels of secondary metabolites
(DeGabriel et al. 2008). Areas of suitable foliage can be readily
identified through remote sensing techniques, which can also
quantify other relevant habitat parameters such as nutrient
and moisture levels (Ebbers et al. 2002; Malenovský et al.
2009). Thus it is possible to remotely identify areas of prime
habitat and, by applying bioclimatic modelling techniques, it
is possible to obtain a strong indication as to which of these
habitats will persist into the foreseeable future. Such areas
should be given a high priority for conservation acquisition
and management.

It is important to recognize that neither ngwayir movement
nor metapopulation requirements have been modelled in
this study. This is because no literature defining ngwayir
metapopulation requirements exists, and because those areas
identified as future potential distribution for the ngwayir are
generally contiguous, enabling good landscape permeability.
Outside of these contiguous landscapes, there are areas
recognized as potential future habitat that are not currently
occupied by ngwayir, and to which they cannot naturally
migrate. This presents a potential opportunity for ngwayir
populations to be established through translocation. However,
before doing so, a great many factors would need to
be investigated, and any potential translocations should
be evaluated on a case-by-case basis using an adaptive
management approach (Williams et al. 2008).

Our prediction of a significant reduction in the range of
the ngwayir and its supporting vegetation as a result of
anthropogenic global warming concurs with much research
on the adverse impacts of changing climate on forest and
woodland ecosystems around the world. The frequency and
intensity of such negative effects will increase if greenhouse
gas emissions are not reduced (IPCC 2007).
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