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PARRONDO EFFECT BE?
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Abstract

Parrondo’s coin-tossing games were introduced as a toy model of the flashing Brownian
ratchet in statistical physics but have emerged as a paradigm for a much broader phe-
nomenon that occurs if there is a reversal in direction in some system parameter when
two similar dynamics are combined. Our focus here, however, is on the original Parrondo
games, usually labeled A and B. We show that if the parameters of the games are allowed
to be arbitrary, subject to a fairness constraint, and if the two (fair) games A and B are
played in an arbitrary periodic sequence, then the rate of profit can not only be positive
(the so-called Parrondo effect), but can also be arbitrarily close to 1 (i.e. 100%).
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1. Introduction

The flashing Brownian ratchet of Ajdari and Prost (1992) is a time-inhomogeneous diffu-
sion process that alternates between two regimes, a one-dimensional Brownian motion and a
Brownian ratchet, the latter being a one-dimensional diffusion process that drifts towards a
minimum of a periodic asymmetric sawtooth potential. It models the motion of a particle in
a diffusive medium subject to a potential that is ‘flashed’ on and off, on and off, periodically.
The result is directed motion (see, e.g., Ethier and Lee (2018)).

To better understand this phenomenon, J. M. R. Parrondo proposed in 1996 a toy model
of the flashing Brownian ratchet involving two coin-tossing games, game A, corresponding
to Brownian motion, and game B, corresponding to the Brownian ratchet. Each of the games,
A and B, is individually fair or losing, while the periodic sequence of games ABB ABB ABB . . .,
corresponding to the flashing Brownian ratchet, is winning. As explained by Marzuoli (2009)
in a different context,

Toy models in theoretical physics are invented to make simpler the modelling of com-
plex physical systems while preserving at least a few key features of the originals.
Sometimes toy models get a life of their own and have the chance of emerging as
paradigms.
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How strong can the Parrondo effect be? 1199

FIGURE 1. Parrondo dice. The games defined above (1) in terms of biased coins can be played with dice.
Game A uses the black die (3 +, 3 –), while game B uses the white dice, namely (1 +, 9 –) when capital
is congruent to 0 (mod 3) and (9 +, 3 –) otherwise. The player wins one unit with a plus sign and loses

one unit with a minus sign.

That is exactly what has happened with Parrondo’s games. They have emerged as a
paradigm for a much broader phenomenon. The Parrondo effect (or Parrondo’s paradox) can
be said to occur if there is a reversal in direction in some system parameter when two similar
dynamics are combined. There are a variety of examples in the physical and biological sciences
where the Parrondo effect, in the wide sense, has been observed. Some of these examples are
discussed in the review papers of Harmer and Abbott (2002), Abbott (2010), and Cheong et al.
(2019).

The literature on the Parrondo effect now comprises hundreds of papers, but its intersection
with the probability literature is relatively small. Included in that intersection are a number of
studies of the asymptotic behavior of Parrondo’s games, namely Harmer et al. (2000a), Percus
and Percus (2002), Pyke (2003), Behrends (2004), Costa et al. (2005), Key et al. (2006), Ethier
and Lee (2009), and Rémillard and Vaillancourt (2019). Also included are several applied
probability papers in areas such as information theory (Harmer et al. (2000b)), reliability theory
(Di Crescenzo (2007)), gambling (Ethier and Lee (2010)), quantum random walks (Machida
and Grünbaum (2018)), and renewal reward theory (Miles et al. (2018)).

Our focus in this paper will be on Parrondo’s capital-dependent coin-tossing games,
A and B (Harmer and Abbott (1999)). For simplicity we omit the bias parameter, so that both
games are fair. The Parrondo effect appears when games A and B, played in a random or peri-
odic sequence, form a winning game. Let us define a p-coin to be a coin with probability p of
heads. In Parrondo’s original games, game A uses a fair coin, while game B uses two biased
coins, a p0-coin if the capital is congruent to 0 (mod 3) and a p1-coin otherwise, where

p0 = 1

10
and p1 = 3

4
. (1)

The player wins one unit with heads and loses one unit with tails. (These coins can be
physically realized with dice; see Figure 1 for an alternative, but equivalent, description of
the games.) Both games are fair, but the random mixture, denoted by 1

2 A + 1
2 B and interpreted

as the game in which the toss of a fair coin determines whether game A or game B is played,
has the long-term cumulative profit per game played (hereafter, rate of profit)

μ
( 1

2 A + 1
2 B

) = 18

709
≈ 0.025 3879,

and the pattern ABB, repeated ad infinitum, has rate of profit

μ(ABB) = 2416

35 601
≈ 0.067 8633. (2)

https://doi.org/10.1017/jpr.2019.68 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.68


1200 S. N. ETHIER AND J. LEE

Dinis (2008) found that the pattern ABABB has the highest rate of profit, namely

μ(ABABB) = 3 613 392

47 747 645
≈ 0.075 6769. (3)

These rates of profit are rather modest. Can we modify the games to make the rates of profit
more substantial? To put it more precisely, how large can the rate of profit be if we vary the
parameters of the games, subject to a fairness constraint? We will focus on periodic sequences,
where the rates of profit tend to be larger than with random sequences.

Game A is always the same fair-coin-tossing game. With r ≥ 3 an integer, game B is a mod r
capital-dependent game that uses two biased coins, a p0-coin (p0 < 1/2) if capital is congruent
to 0 (mod r), and a p1-coin (p1 > 1/2) otherwise. The probabilities p0 and p1 must be such that
game B is fair, which requires the constraint

(1 − p0)(1 − p1)r−1 = p0 pr−1
1 ,

or equivalently,

p0 = ρr−1

1 + ρr−1
and p1 = 1

1 + ρ
(4)

for some ρ ∈ (0, 1). The special case of r = 3 and ρ = 1/3 gives (1). The games are played in
some pattern �(A, B), repeated ad infinitum. We denote the rate of profit by μ(r, ρ, �(A, B)),
so that the rates of profit in (2) and (3) in this notation become μ(3, 1/3, ABB) and
μ(3, 1/3, ABABB).

How large can μ(r, ρ, �(A, B)) be? The answer, perhaps surprisingly, is that it can be
arbitrarily close to 1 (i.e. 100%).

Theorem 1.
sup

r≥3, ρ∈(0,1), �(A,B) arbitrary
μ(r, ρ, �(A, B)) = 1. (5)

The proof is deferred to Section 4. Incidentally, the supremum in (5) is not achieved.
We can compute μ(r, ρ, �(A, B)) for r ≥ 3 (the modulo number in game B) and pattern

�(A, B) as a function of ρ (the parameter in (4)). Indeed, the method of Ethier and Lee (2009)
applies if r is odd, and generalizations of it apply if r is even; see Section 2 for details. For
example,

μ(3, ρ, ABB) = (1 − ρ)3(1 + ρ)(1 + 2ρ + ρ2 + 2ρ3 + ρ4)

3 + 12ρ + 20ρ2 + 28ρ3 + 36ρ4 + 28ρ5 + 20ρ6 + 12ρ7 + 3ρ8
. (6)

This and other examples suggest that typically μ(r, ρ, �(A, B)) is decreasing in ρ, hence max-
imized at ρ = 0. (There are exceptions, which include, when r ≥ 3 is odd, ABs with s ≥ 3 odd.)
We excluded the case ρ = 0 in (4), but now we want to include it. We find that

μ(3, 0, ABB) = 1

3
(7)

(by (6)) and

μ(3, 0, ABABB) = 9

25
. (8)

This is already a substantial improvement over (2) and (3). Thus, we take ρ = 0 in what follows.
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For a given r ≥ 3, we expect that we can maximize the rate of profit μ(r, 0, �(A, B)) with a
pattern of the form

�(A, B) = (AB)sBr−2 (9)

for some positive integer s. Notice that this is ABB if (r, s) = (3, 1) and ABABB if (r, s) = (3, 2).
Let us explain the intuition behind (9). Only the s plays of game A are random. Game B is

deterministic and very simple: If capital is congruent to 0 (mod r), we lose one unit, otherwise
we win one unit. Notice that cumulative profit remains bounded by r when game B is played
repeatedly, hence cumulative profit per game played tends to 0 as the number of games played
tends to infinity, and game B is (asymptotically) fair.

Clearly, the optimal strategy, if it were legal, would be to play game A when capital
is congruent to 0 (mod r) and to play game B otherwise. With initial capital congruent to
0 (mod r), this strategy could be described as playing the pattern (AB)SBr−2, where S is the
geometric random variable equal to the number of plays of game A needed to achieve a win at
that game. Of course, random patterns are not ordinarily considered, so (9) seems a reasonable
nonrandom approximation for some positive integer s.

First, assume that r is odd and the initial capital is congruent to 0 (mod r). If all s plays of
game A result in losses, the cumulative profit is −1 after one play of (9); otherwise it is r. If
initial capital is congruent to r − 1 (mod r), then after one play of (9), the cumulative profit is
1 with probability 1.

Second, assume that r is even, and again the initial capital is congruent to 0 (mod r). If
the number of wins in the s plays of game A is 0, the cumulative profit is 0 after one play of
(9); if the number of wins is between 1 and r/2, inclusive, the cumulative profit is r; if the
number of wins is between r/2 + 1 and r, inclusive, the cumulative profit is 2r; if the number
of wins is between r + 1 and 3r/2, inclusive, the cumulative profit is 3r; and so on. If the initial
capital is congruent to r − 1 (mod r), then after one play of (9), the cumulative profit is 0 with
probability 1.

The probabilistic structure of capital growth after multiple plays of (9) can be analyzed pre-
cisely from these observations, and we can evaluate the exact rate of profit with the help of one
additional step. The additional step, addressed in Section 3, is to evaluate the mean of a distri-
bution that is similar to, but stochastically less than, the binomial distribution with parameters
n and p. Although we need this mean only for p = 1 − 2−s, where s is a positive integer, we
treat the case of general p, anticipating that this distribution may have other applications.

Theorem 2. Let r ≥ 3 be an odd integer and s be a positive integer. Then

μ(r, 0, (AB)sBr−2) = r

2s + r − 2

2s − 1

2s + 1
, (10)

regardless of the initial capital.
Let r ≥ 4 be an even integer and s be a positive integer. Then

μ(r, 0, (AB)sBr−2) =

⎧⎪⎪⎨
⎪⎪⎩

r

2s + r − 2

s∑
k=0

⌈
2k

r

⌉(
s

k

)
1

2s
if initial capital is even,

0 if initial capital is odd.

(11)

The formula in (10) is consistent with (7) and (8). The sum in (11) is equal to (2s − 1)/2s

if s ≤ r/2 and bounded below by (2s − 1)/2s in general. Theorem 2 implies Theorem 1, as we
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TABLE 1. The rate of profit μ(r, 0, (AB)sBr−2). Here, for a given odd r, we choose s to maximize s′ �→
μ(r, 0, (AB)s′Br−2). The results are rounded to six significant digits

r s μ(r, 0, (AB)sBr−2) r s μ(r, 0, (AB)sBr−2)

3 2 9/25 = 0.360 000 25 5 0.711 662
5 3 35/81 ≈ 0.432 099 125 7 0.898 263
7 3 49/99 ≈ 0.494 949 625 9 0.971 238
9 3 7/13 ≈ 0.538 462 3125 11 0.992 671

TABLE 2. The rate of profit μ(r, 0, γ A + (1 − γ )B). Here, for a given odd r, we choose γ to maximize
γ ′ �→ μ(r, 0, γ ′A + (1 − γ ′)B). The results are rounded to six significant digits

r γ μ(r, 0, γ A + (1 − γ )B) r γ μ(r, 0, γ A + (1 − γ )B)

3 0.407 641 0.133 369 25 0.277 926 0.482 769
5 0.420 756 0.229 111 125 0.150 722 0.709 914
7 0.399 201 0.279 864 625 0.073 9646 0.854 806
9 0.376 138 0.318 393 3125 0.034 5306 0.931 535

will confirm later. The proof of Theorem 2 is deferred to Section 4. Table 1 illustrates (10) with
several examples.

We do not consider random mixtures γ A + (1 − γ )B of games A and B. Although we expect
that the rate of profit, which we denote by μ(r, ρ, γ A + (1 − γ )B), can be made arbitrarily
close to 1 by suitable choice of the modulo number r in game B, the parameter ρ in (4), and
the probability γ with which game A is played, we cannot prove it. However, see Table 2 for
several examples.

2. Strong law of large numbers for periodic sequences of games

Ethier and Lee (2009) proved a strong law of large numbers (SLLN) and a central limit
theorem for periodic sequences of Parrondo games of the form ArBs, repeated ad infinitum,
where r and s are positive integers. Below we state a generalization of the SLLN to arbitrary
patterns. Later we will weaken the hypotheses as needed.

First, it should be mentioned that several other authors have studied periodic sequences
of Parrondo games. Pyke (2003) discussed one example, AABB, which he regarded as the
alternation of AA and BB. His method is sound but his stated ‘asymptotic average gain’ for
that example is inaccurate (indeed, μ(3, 1/3, AABB) = 4/163 ≈ 0.0245 399), and the source
of the error is unknown. Kay and Johnson (2003) studied patterns of the form ArBs in the
context of history-dependent Parrondo games, and gave an expression for the rate of profit
that is consistent with (12) below. Key et al. (2006), as well as Rémillard and Vaillancourt
(2019), took a different approach, analyzing periodic sequences of Parrondo games in terms of
transience to ±∞ and recurrence instead of in terms of the rate of profit.

Theorem 3. Let PA and PB be transition matrices for Markov chains in a finite state space
�. Let C1C2 · · · Ct, where each Ci is A or B, be a pattern of As and Bs of length t. Assume
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that P := PC1 PC2 · · · PCt is irreducible and aperiodic, and let the row vector π be the unique
stationary distribution of P. Given a real-valued function w on � × �, define the payoff matrix
W := (w(i, j))i,j∈� . Define ṖA := PA ◦ W and ṖB := PB ◦ W, where ◦ denotes the Hadamard
(entrywise) product, and put

μ := t−1π (ṖC1 + PC1 ṖC2 + · · · + PC1 PC2 · · · PCt−1 ṖCt )1, (12)

where 1 denotes a column vector of 1s with entries indexed by �. Let {Xn}n≥0 be a nonhomoge-
neous Markov chain in � with transition matrices PC1 , PC2 , . . ., PCt , PC1 , PC2 , . . ., PCt , PC1 ,
and so on, and let the initial distribution be arbitrary. For each n ≥ 1, define ξn := w(Xn−1, Xn)
and Sn := ξ1 + · · · + ξn. Then limn→∞ n−1Sn = μ almost surely (a.s.).

Remark 1. Fix positive integers r and s, put t = r + s, and let C1 = · · · = Cr = A and
Cr+1 = · · · = Cr+s = B. Then this theorem is precisely the strong law of large numbers of
Ethier and Lee (2009). Actually, a few unnecessary hypotheses have been omitted in the
formulation above, as explained below.

Proof of Theorem 3. The proof is identical to the proof of (Ethier and Lee 2009, Theorem 6).
However, here we have assumed fewer hypotheses and should explain why. First, it is unnec-
essary to assume that PA and PB are irreducible and aperiodic because that assumption is not
needed. It is also unnecessary to assume that all cyclic permutations of P := PC1 PC2 · · · PCt

are irreducible and aperiodic because that assumption is redundant; it suffices that P itself be
irreducible and aperiodic. Finally, we assumed in the original theorem that the Markov chain

(X0, X1, . . . , Xt), (Xt, Xt+1, . . . , X2t), (X2t, X2t+1, . . . , X3t), . . . (13)

is irreducible and aperiodic, and we claim that this assumption is also redundant. The state
space �∗ of (13) is the set of (x0, x1, . . . , xt) ∈ �t+1 such that

π (x0)PC1 (x0, x1)PC2 (x1, x2) · · · PCt (xt−1, xt) > 0,

and its transition matrix Q is given by

Q((x0, x1, . . . , xt), (xt, xt+1, . . . , x2t))

= PC1 (xt, xt+1)PC2 (xt+1, xt+2) · · · PCt (x2t−1, x2t).

We use the fact that a necessary and sufficient condition for a finite Markov chain to be irre-
ducible and aperiodic is that some power of its transition matrix has all entries positive. It is
straightforward to show that Qn has all entries positive if Pn−1 does. Indeed,

Qn((x0, x1, . . . , xt), (y0, y1, . . . , yt))

= Pn−1(xt, y0)PC1 (y0, y1)PC2 (y1, y2) · · · PCt (yt−1, yt). (14)

Because P is irreducible and aperiodic, so too is Q. �
As an illustration, we can use (12) to confirm (2) and (3), in which case � = {0, 1, 2},

PA =
⎛
⎝ 0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

⎞
⎠ , PB =

⎛
⎝ 0 1/10 9/10

1/4 0 3/4
3/4 1/4 0

⎞
⎠ ,
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and the payoff matrix is

W =
⎛
⎝ 0 1 −1

−1 0 1
1 −1 0

⎞
⎠ .

More generally, we wish to apply Theorem 3 with

� = {0, 1, . . . , r − 1} (15)

(r is the modulo number in game B), the r × r transition matrices

PA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1/2 0 · · · 0 0 1/2

1/2 0 1/2 · · · 0 0 0

0 1/2 0 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 0 1/2 0

0 0 0 · · · 1/2 0 1/2

1/2 0 0 · · · 0 1/2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

PB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 p0 0 · · · 0 0 1 − p0

1 − p1 0 p1 · · · 0 0 0

0 1 − p1 0 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 0 p1 0

0 0 0 · · · 1 − p1 0 p1

p1 0 0 · · · 0 1 − p1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (17)

where p0 and p1 are given by (4), and the r × r payoff matrix

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0 −1
−1 0 1 · · · 0 0 0
0 −1 0 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 0 1 0
0 0 0 · · · −1 0 1
1 0 0 · · · 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

There are five cases that we want to consider.

1. Let the pattern C1C2 · · · Ct of Theorem 3 be arbitrary. If ρ > 0 and r is odd (≥ 3), then
P := PC1PC2 · · · PCt is irreducible and aperiodic.

2. Let the pattern C1C2 · · · Ct be arbitrary. If ρ > 0, r is even (≥ 4), and t is odd, then P is
irreducible and periodic with period 2.

3. Let the pattern C1C2 · · · Ct be arbitrary. If ρ > 0, r is even (≥ 4), and t is even, then P is
reducible with two aperiodic recurrent classes, each of size r/2.
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4. Let the pattern C1C2 · · · Ct have the form (AB)sBr−2 for a positive integer s. If ρ = 0
and r is odd (≥ 3), then P := (PAPB)s(PB)r−2 is reducible with one aperiodic recurrent
class of size 2 and r − 2 transient states.

5. Let the pattern C1C2 · · · Ct have the form (AB)sBr−2 for a positive integer s. If ρ = 0
and r is even (≥ 4), then P is reducible with two absorbing states and r − 2 transient
states.

Theorem 3 applies directly only to Case 1. Nevertheless, the theorem can be extended so as
to apply first to Cases 1 and 4 (Theorem 4), then to Cases 3 and 5 (Theorem 5), and finally to
Case 2 (Theorem 6). We begin by generalizing Theorem 3 so as to apply to Cases 1 and 4.

Theorem 4. Theorem 3 holds with ‘is irreducible and aperiodic’ replaced by ‘has only one
recurrent class, which is aperiodic’.

Proof. Assume that P has only one recurrent class, which is aperiodic. Let �0 ⊂ � be the
unique recurrent class. The stationary distribution π of P is unique and satisfies π (x) > 0 if
x ∈ �0 and π (x) = 0 otherwise. For some n ≥ 2, Pn−1(xt, y0) > 0 for all xt, y0 ∈ �0. With the
help of (14) we find that Qn has all entries positive, hence Q is irreducible and aperiodic.

An example may help to clarify this argument. Consider the special case of
(15)–(18) (with (4)) in which ρ = 0 and r = 3, and let t = 3, C1 = A, and C2 = C3 = B. Then
π = (2/3, 0, 1/3), and the state space for the Markov chain (X0, X1, X2, X3), (X3, X4, X5, X6),
. . . is �∗ = {(0, 1, 2, 0), (0, 2, 0, 2), (2, 0, 2, 0), (2, 1, 2, 0)} with corresponding transition
matrix

Q =

⎛
⎜⎜⎜⎝

1/2 1/2 0 0

0 0 1/2 1/2

1/2 1/2 0 0

1/2 1/2 0 0

⎞
⎟⎟⎟⎠ ,

which is irreducible and aperiodic.
The remainder of the proof follows that of (Ethier and Lee 2009, Theorem 6). �
We turn to Cases 3 and 5, which require a new formulation of Theorem 3, the difficulty

being that the limit in the SLLN depends on the initial distribution of the underlying Markov
chain.

Theorem 5. Let PA and PB be transition matrices for Markov chains in a finite state space
�. Let C1C2 · · · Ct, where each Ci is A or B, be a pattern of As and Bs of length t. Assume
that P := PC1 PC2 · · · PCt is reducible with two recurrent classes R1 and R2, both of which are
aperiodic, and possibly some transient states, and let the row vectors π1 and π2 be the unique
stationary distributions of P concentrated on R1 and R2, respectively. Given a real-valued
function w on � × �, define the payoff matrix W := (w(i, j))i,j∈� . Define ṖA := PA ◦ W and
ṖB := PB ◦ W, where ◦ denotes the Hadamard (entrywise) product, and put

μj := t−1π j(ṖC1 + PC1 ṖC2 + · · · + PC1 PC2 · · · PCt−1 ṖCt )1

for j = 1, 2, where 1 denotes a column vector of 1s with entries indexed by �. Let {Xn}n≥0
be a nonhomogeneous Markov chain in � with transition matrices PC1 , PC2 , . . ., PCt ,
PC1 , PC2 , . . ., PCt , PC1 , and so on, and let its initial state be i0 ∈ �. Let α := P(Xnt ∈
R1 for n sufficiently large). For each n ≥ 1, define ξn := w(Xn−1, Xn) and Sn := ξ1 + · · · + ξn.
Then limn→∞ n−1Sn = αμ1 + (1 − α)μ2 a.s.
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Proof. The argument used to prove the conclusion of Theorem 3 when π is the initial
distribution applies here, allowing us to prove that limn→∞ n−1Sn = μj a.s. if π j is the ini-
tial distribution, then if the initial state i0 belongs to Rj, for j = 1, 2. Let N := min{nt : Xnt ∈
R1 ∪ R2}. Then P(XN ∈ R1) = α, and the stated conclusion readily follows. �

We conclude this section by addressing Case 2.

Theorem 6. Theorem 3 holds with ‘is irreducible and aperiodic’ replaced by ‘is irreducible
and periodic with period 2’.

Proof. The idea is to apply Theorem 5 with the pattern C1C2 · · · Ct replaced by the pattern
C1C2 · · · CtC1C2 · · · Ct, which has the same limit in the SLLN. In particular, P is replaced by
P2. The assumption that P is irreducible with period 2 means that � is the disjoint union of R1
and R2, and transitions under P take R1 to R2 and R2 to R1. This means that P2 is reducible with
two recurrent classes, R1 and R2, and no transient states. Let the row vectors π1 and π2 be the
unique stationary distributions of P2 concentrated on R1 and R2, respectively. Then π1P = π2
and π2P = π1. Consequently, the limit μ1 starting in R1 is, according to Theorem 5,

(2t)−1π1
[
ṖC1 + PC1 ṖC2 + · · · + PC1 PC2 · · · PCt−1 ṖCt

+ P(ṖC1 + PC1 ṖC2 + · · · + PC1 PC2 · · · PCt−1 ṖCt )
]
1

= t−1π (ṖC1 + PC1 ṖC2 + · · · + PC1PC2 · · · PCt−1 ṖCt )1,

where π := (π1 + π2)/2 is the unique stationary distribution of P, and this is (12). The limit
μ2 starting in R2 is the same but with π1 and π2 interchanged, and again this is (12). �

For example, we find that

μ(4, ρ, ABB) = (1 − ρ)3

3(1 + ρ3)

as a consequence of Theorem 6, and

μ(4, ρ, ABBB) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − ρ)(2 − 3ρ + 2ρ2)

4(1 + ρ)(1 − ρ + ρ2)
if initial capital is even

−ρ2(1 − ρ)(5 − 6ρ + 5ρ2)

4(1 + ρ)3(1 − ρ + ρ2)2
if initial capital is odd

(19)

as a consequence of Theorem 5. Recalling the five cases below (15)–(18), these two examples
correspond to Cases 2 and 3, respectively, whereas (6) corresponds to Case 1. Equations (6)
and (19) with ρ = 0 correspond to Cases 4 and 5, respectively.

Zhu et al. (2011) effectively evaluated μ(4, ρ, AB), recognizing its dependence on the parity
of the initial capital, and Wang et al. (2011) extended that work to even r ≥ 4. Rémillard and
Vaillancourt (2019) addressed some of the same issues that we encountered in this section,
namely reducibility, periodicity, and more than one recurrent class, albeit by different methods.

3. Mean of a binomial-like distribution

Here we want to find the mean of a discrete distribution that depends, like the binomial, on
two parameters, a positive integer n and p ∈ (0, 1). The distribution does not appear to have a
name. The formula for the probability mass function depends on whether n is even or odd, so
we treat the two cases separately. We use the convention that q := 1 − p.
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FIGURE 2. The solid dots determine the boundary characterizing Z6, whereas the open dots determine
the boundary characterizing Z8.

In the case n = 2m with m a positive integer, consider a particle that starts at (0, 0). At each
time step, it moves one unit to the right with probability p or one unit up with probability q,
stopping at the first time it reaches the boundary (k, m − �k/2�), k = 0, 1, . . . , 2m. Let Z2m

denote the x-coordinate of its final position. Then

P(Z2m = k) =
(

m + �k/2�
k

)
pkqm−�k/2�, k = 0, 1, . . . , 2m. (20)

Each lattice path ending at (k, m − �k/2�) has probability pkqm−�k/2�, and the binomial coeffi-
cient counts the number of paths that end at (k, m − k/2) if k is even, and at (k, m − (k − 1)/2)
if k is odd, because in the latter case the path must first reach (k, m − (k + 1)/2). See Figure 2.

In the case n = 2m − 1 with m a positive integer, again consider a particle that starts at (0, 0).
At each time step, it moves one unit to the right with probability p or one unit up with probabil-
ity q, stopping at the first time it reaches the boundary (k, m − �k/2�), k = 0, 1, . . . , 2m − 1.
Let Z2m−1 denote the x-coordinate of its final position. Then

P(Z2m−1 = k) =
(

m − 1 + �k/2�
k

)
pkqm−�k/2�, k = 0, 1, . . . , 2m − 1. (21)

Each lattice path ending at (k, m − �k/2�) has probability pkqm−�k/2�, and the binomial coeffi-
cient counts the number of paths that end at (k, m − (k + 1)/2) if k is odd, and at (k, m − k/2)
if k is even, because in the latter case the path must first reach (k, m − 1 − k/2). See Figure 3.

One observation follows immediately. Notice that, in the definitions, if the boundary were
replaced by (k, n − k), k = 0, 1, . . . , n, then Zn would have the binomial(n, p) distribution. But
the actual boundary, as defined above, lies on or below this one, so we conclude that Zn, as
defined above, is stochastically less than a binomial(n, p) random variable. This suggests a
potential name for our unnamed distribution: the sub-binomial distribution. Visual support for
this name is provided by Figure 4 below.

Lemma 1.

P(Zn is even) =
{

(1 + qn+1)/(1 + q) if n is even,

(q + qn+1)/(1 + q) if n is odd.
(22)

Equivalently,

P(Zn is odd) =
{

(q − qn+1)/(1 + q) if n is even,

(1 − qn+1)/(1 + q) if n is odd.
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FIGURE 3. The solid dots determine the boundary characterizing Z5, whereas the open dots determine
the boundary characterizing Z7.

Proof. It suffices to give separate proofs for n even and n odd, both by induction. To ini-
tialize, in the n = 1 case the probability mass function is q at 0 and p at 1, so (22) holds. In the
n = 2 case, the probability mass function is q at 0, pq at 1, and p2 at 2, so again (22) holds.

Now assume that (22) holds for n = 2m. We must show that it holds for n = 2m + 2. By the
interpretation of the distribution (see Figure 2),

P(Z2m+2 is even | Z2m is even) = q + p2 = 1 − q + q2,

P(Z2m+2 is even | Z2m is odd) = p = 1 − q.

We conclude that

P(Z2m+2 is even) = P(Z2m is even)P(Z2m+2 is even | Z2m is even)

+ P(Z2m is odd)P(Z2m+2 is even | Z2m is odd)

= 1 + q2m+1

1 + q
(1 − q + q2) + q − q2m+1

1 + q
(1 − q)

= 1 + q2m+3

1 + q
,

proving the lemma when n is even.
The proof when n is odd is similar, using Figure 3 in place of Figure 2, and is left to the

reader. �
Lemma 2.

E[Zn] = n
p

2 − p
+ [1 − ( − 1)n(1 − p)n]

p(1 − p)

(2 − p)2
.

Equivalently,

E[Zn] = n
1 − q

1 + q
+ [1 − ( − 1)nqn]

q(1 − q)

(1 + q)2
. (23)

Proof. As with Lemma 1, it suffices to give separate proofs for n even and n odd, both by
induction. To initialize, in the n = 1 case the probability mass function is q at 0 and p at 1, so
the mean is p = 1 − q and (23) holds. In the n = 2 case, the probability mass function is q at 0,
pq at 1, and p2 at 2, so the mean is pq + 2p2 = (1 − q)(2 − q) and again (23) holds.
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FIGURE 4. Plot of fn(p) := E[Zn]/n as a function of p for n = 1 (blue curve), n = 2 (orange curve), n = 5
(green curve), and n = 100 (red curve). Alternatively, 1

2 = f1( 1
2 ) > f2( 1

2 ) > f5( 1
2 ) > f100( 1

2 ) > 1
3 if color is

unavailable.

Now assume that (23) holds for n = 2m. We must show that it holds for n = 2m + 2. By the
interpretation of the distribution (see Figure 2),

E[Z2m+2 − Z2m | Z2m is even] = pq + 2p2 = (1 − q)(2 − q),

E[Z2m+2 − Z2m | Z2m is odd] = p = 1 − q.

We conclude from the induction hypothesis and Lemma 1 that

E[Z2m+2] = E[Z2m] + P(Z2m is even)E[Z2m+2 − Z2m | Z2m is even]

+ P(Z2m is odd)E[Z2m+2 − Z2m | Z2m is odd]

= 2m
1 − q

1 + q
+ (1 − q2m)

q(1 − q)

(1 + q)2

+ 1 + q2m+1

1 + q
(1 − q)(2 − q) + q − q2m+1

1 + q
(1 − q)

= (2m + 2)
1 − q

1 + q
+ (1 − q2m+2)

q(1 − q)

(1 + q)2
,

proving the lemma when n is even.
Again, the proof when n is odd is similar, using Figure 3 in place of Figure 2, and is left to

the reader. �
We conclude this section with alternative interpretations of the distribution of Zn, given by

(20) if n = 2m and by (21) if n = 2m − 1, that do not require separate formulations for n even
and n odd.

• Consider a particle that starts at (0, 0). At each time step, it moves one unit to the right
with probability p or one unit up with probability q, stopping at the first time it reaches
or crosses the boundary (k, (n − k)/2), k = 0, 1, . . . , n. Let Zn denote the x-coordinate
of its final position.

• Consider a particle that starts at (0, 0). At each time step, it moves one unit to the right
with probability p or two units up with probability q, stopping at the first time it reaches

https://doi.org/10.1017/jpr.2019.68 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.68


1210 S. N. ETHIER AND J. LEE

or crosses the boundary (k, n − k), k = 0, 1, . . . , n. Let Zn denote the x-coordinate of its
final position.

• Consider a particle that starts at (0, 0). At each time step, it moves one unit to the
right with probability p or one unit up with probability q followed by another unit
up with probability 1, stopping at the first time it reaches the boundary (k, n − k),
k = 0, 1, . . . , n. Let Zn denote the x-coordinate of its final position.

The last of these interpretations is the context in which the distribution arises in Section 4
below.

4. Proofs of Theorems 1 and 2

Proof of Theorem 1. The result is immediate from Theorem 2 provided we can show that
f (ρ) := μ(r, ρ, (AB)sBr−2) is continuous at 0. We use Theorem 3, 5, or 6 to evaluate f (ρ),
which is a rational function of ρ. The only potential singularities are those of the stationary
distribution π (or π1 or π2). But the existence and uniqueness of π (or π1 or π2) for 0 ≤ ρ < 1
(see also Theorem 4) ensures that f (ρ) is real analytic there, hence continuous. �

We give two proofs of Theorem 2, the first one direct (depending solely on Theorems
4 and 5) but complicated, and the second one more easily understood but depending on
Theorems 4 and 5 and Lemmas 1 and 2.

First proof of Theorem 2. First, assume that r ≥ 3 is odd. Since ṖA1 = 0, Theorem 4 tells
us that the rate of profit, regardless of the initial capital, can be expressed as

μ(r, 0, (AB)sBr−2)

= (2s + r − 2)−1π

[ s−1∑
j=0

(PAPB) jPAṖB +
r−3∑
i=0

(PAPB)s(PB)iṖB

]
1, (24)

where π is the stationary distribution of P := (PAPB)s(PB)r−2. Since ρ = 0 and r is odd, P is
reducible with one recurrent class {0, r − 1} and r − 2 transient states. From the observations
about the pattern (AB)sBr−2 in Section 1 it follows that P(0, 0) = 1 − P(0, r − 1) = 1 − 2−s and
P(r − 1, 0) = 1, so that the stationary distribution π is given by π = (π0, 0, 0, . . . , 0, πr−1),
where

π0 = 1 − πr−1 = 2s

2s + 1
.

Except for the factor (2s + r − 2)−1, all of the terms in (24) have the form π�ṖB1 for a
transition matrix � = (λi,j)i,j=0,1,...,r−1. Therefore, using ṖB1 = ( − 1, 1, 1, . . . , 1)�, we have

π�ṖB1 = 1 − 2(π0λ0,0 + πr−1λr−1,0), (25)

showing that we need only determine two of the entries of � to evaluate (25).
We first consider the transition matrix � = (PAPB) jPA for 0 ≤ j ≤ s − 1. When

j < (r − 1)/2, we have λ0,0 = 0. When j ≥ (r − 1)/2, from state 0 we can reach state r − 1
after j plays of AB if there are at least (r − 1)/2 wins from the j plays of game A, after which
we can move to state 0 with an additional win from game A. Thus, we have

λ0,0 =
j∑

k=(r−1)/2

(
j

k

)
1

2 j+1
.
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For all j, we have λr−1,0 = 1/2. Using (25), for j < (r − 1)/2,

π(PAPB) jPAṖB1 = 1 − 2πr−1
1

2
= π0 = 2s

2s + 1
,

and for j ≥ (r − 1)/2,

π (PAPB) jPAṖB1 = 1 − 2

[
π0

j∑
k=(r−1)/2

(
j

k

)
1

2 j+1
+ πr−1

1

2

]

= 2s

2s + 1

[
1 −

j∑
k=(r−1)/2

(
j

k

)
1

2 j

]
.

Summing these s terms, we have

s−1∑
j=0

π(PAPB) jPAṖB1 = 2s

2s + 1

[
s −

s−1∑
j=(r−1)/2

j∑
k=(r−1)/2

(
j

k

)
1

2 j

]
. (26)

Next we consider the transition matrix � = (PAPB)s(PB)i for 0 ≤ i ≤ r − 3. For even i, we
have λ0,0 = 2−s and λr−1,0 = 0, from which we obtain, via (25),

π (PAPB)s(PB)iṖB1 = 1 − 2π0 2−s = 2s − 1

2s + 1
.

Now let i be odd. Assume we start from state 0. With at least (r − i)/2 wins from s plays of
game A, we can reach state r − i or an even state to its right after s plays of game AB, and then
move to state 0 after i additional plays of game B. Thus, we have

λ0,0 =
s∑

k=(r−i)/2

(
s

k

)
1

2s
.

Moreover, λr−1,0 = 1. Thus, for odd i we obtain, via (25),

π (PAPB)s(PB)iṖB1 = 1 − 2

[
π0

s∑
k=(r−i)/2

(
s

k

)
1

2s
+ πr−1

]

= 2s − 1

2s + 1
− 2

2s + 1

s∑
k=(r−i)/2

(
s

k

)
.

Summing over i, we have

r−3∑
i=0

π (PAPB)s(PB)iṖB1 = (r − 2)
2s − 1

2s + 1
− 2

2s + 1

(r−3)/2∑
i=1

s∑
k=(r−2i+1)/2

(
s

k

)
. (27)

For the double sum in (27), a change of variables gives

(r−3)/2∑
i=1

s∑
k=(r−2i+1)/2

(
s

k

)
=

(r−1)/2∑
j=2

s∑
k=j

(
s

k

)
.
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There are two cases. If (r − 1)/2 ≥ s, which also makes the double sum in (26) zero, then this
becomes

s∑
j=2

s∑
k=j

(
s

k

)
=

s∑
k=2

k∑
j=2

(
s

k

)
=

s∑
k=2

(k − 1)

(
s

k

)
=

s∑
k=0

(k − 1)

(
s

k

)
+ 1

= s2s−1 − 2s + 1 = s2s − 2(2s − 1)

2
, (28)

and (24) becomes

μ(r, 0, (AB)sBr−2) = 1

2s + r − 2

[
s2s

2s + 1
+ (r − 2)

2s − 1

2s + 1
− s2s − 2(2s − 1)

2s + 1

]

= r

2s + r − 2

2s − 1

2s + 1
.

If (r − 1)/2 < s, it suffices to verify the following identity:

s−1∑
j=(r−1)/2

j∑
k=(r−1)/2

(
j

k

)
2s−j + 2

(r−1)/2∑
j=2

s∑
k=j

(
s

k

)
= s2s − 2(2s − 1).

For 1 ≤ s0 < s,

s−1∑
j=s0

j∑
k=s0

(
j

k

)
2s−j + 2

s0∑
j=2

s∑
k=j

(
s

k

)
− [s2s − 2(2s − 1)]

=
s−1∑
j=s0

j∑
k=s0

(
j

k

)
2s−j − 2

s∑
j=s0+1

s∑
k=j

(
s

k

)

=
s−1∑
k=s0

s−1∑
j=k

(
j

k

)
2s−j − 2

s∑
k=s0+1

s∑
j=k

(
s

j

)

=
s∑

k=s0+1

2s+1
[ s−1∑

j=k−1

(
j

k − 1

)
1

2 j+1
−

s∑
j=k

(
s

j

)
1

2s

]

= 0,

where the first equality uses (28) and the last equality uses the relationship between the bino-
mial and negative binomial distributions. (The first sum within brackets is the probability that,
in a sequence of independent Bernoulli trials with success probability 1/2, at most s trials are
needed for the kth success, and the second sum is the probability that at least k successes occur
in s trials.)

Next, assume that r ≥ 4 is even. Theorem 5 tells us that the rate of profit can be
expressed as

μ(r, 0, (AB)sBr−2)

= (2s + r − 2)−1π0

[ s−1∑
j=0

(PAPB) jPAṖB +
r−3∑
i=0

(PAPB)s(PB)iṖB

]
1, (29)
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where π0 := (1, 0, 0, . . . , 0) if the initial capital is even and π0 := (0, 0, . . . , 0, 1) if the initial
capital is odd.

Except for the factor (2s + r − 2)−1, all of the terms in (29) have the form π0�ṖB1 for a
transition matrix � = (λi,j)i,j=0,1,...,r−1, and

π0�ṖB1 =
{

1 − 2λ0,0 if initial capital is even,

1 − 2λr−1,0 if initial capital is odd.

For � = (PAPB) jPA with 0 ≤ j ≤ s − 1, λ0,0 = 0 and λr−1,0 = 1/2. For � = (PAPB)s(PB)i

with 0 ≤ i ≤ r − 3, λ0,0 = 0 if i is odd and

λ0,0 =
[(

s

0

)
+

�2s/r�∑
m=1

mr/2∑
k=(mr−i)/2

(
s

k

)]
1

2s

if i is even. Finally, λr−1,0 = 1 if i is odd and λr−1,0 = 0 if i is even.
Therefore, if the initial capital is odd,

μ(r, 0, (AB)sBr−2) = 1

2s + r − 2

[
s

(
1 − 2 · 1

2

)
+ r − 2

2
(1 − 1)

]
= 0,

and if the initial capital is even,

μ(r, 0, (AB)sBr−2)

= 1

2s + r − 2

{
s + r − 2 − 2

r/2−2∑
i=0

[(
s

0

)
+

�2s/r�∑
m=1

mr/2∑
k=mr/2−i

(
s

k

)]
1

2s

}
.

It remains to check that this last expression coincides with the formula in (11). The quantity
within braces is equal to

s + r − 2 − 2

(
r

2
− 1

)
1

2s
− 2

�2s/r�∑
m=1

mr/2∑
j=(m−1)r/2+2

mr/2∑
k=j

(
s

k

)
1

2s

= s + (r − 2)

(
1 − 1

2s

)
− 2

�2s/r�∑
m=1

mr/2∑
k=(m−1)r/2+2

(k − 1 − (m − 1)r/2)

(
s

k

)
1

2s

= s + (r − 2)

(
1 − 1

2s

)
− 2

�2s/r�∑
m=1

mr/2∑
k=(m−1)r/2+1

(k − 1 − (m − 1)r/2)

(
s

k

)
1

2s

= s + (r − 2)

(
1 − 1

2s

)
− 2

s∑
k=0

(k − 1)

(
s

k

)
1

2s
− 2

2s

+ r
�2s/r�∑
m=1

(m − 1)
mr/2∑

k=(m−1)r/2+1

(
s

k

)
1

2s
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= s + (r − 2)

(
1 − 1

2s

)
− 2

(
s

2
− 1

)
− 2

2s

− r

(
1 − 1

2s

)
+ r

�2s/r�∑
m=1

m
mr/2∑

k=(m−1)r/2+1

(
s

k

)
1

2s

= r
�2s/r�∑
m=1

m
mr/2∑

k=(m−1)r/2+1

(
s

k

)
1

2s
= r

s∑
k=0

⌈
2k

r

⌉(
s

k

)
1

2s
,

and the proof is complete. �
Second proof of Theorem 2. First, fix an odd integer r ≥ 3 and a positive integer s. We

apply Theorem 4 assuming (15)–(18) with ρ = 0 in (4) and C1C2 · · · Ct = (AB)sBr−2 with
t := 2s + r − 2, to conclude that

μ(r, 0, (AB)sBr−2) = lim
n→∞ (nt)−1E[Snt]. (30)

(The theorem tells us that the rate of profit does not depend on the initial capital, so for con-
venience we take the initial capital congruent to 0 (mod r).) Here, S1, S2, . . . is the player’s
sequence of cumulative profits. We can evaluate E[Snt].

With Zn having the probability mass function in (20) if n = 2m and in (21) if n = 2m − 1,
we claim that

P(Snt = kr − mod(n − k, 2)) = P(Zn = k), k = 0, 1, . . . , n,

if p = 1 − 2−s. The result follows by using the third of the alternative interpretations of the
distribution in (20) and (21) at the end of Section 3.

We can now evaluate, with the help of Lemmas 1 and 2, the mean cumulative profit after nt
games:

E[Snt] =
n∑

k=0

(kr − mod(n − k, 2))P(Zn = k)

= rE[Zn] − P(n − Zn is odd)

= r

(
n

1 − q

1 + q
+ [1 − ( − 1)nqn]

q(1 − q)

(1 + q)2

)
− q − ( − 1)nqn+1

1 + q
.

We divide by nt = n(2s + r − 2) and let n → ∞ to obtain

lim
n→∞ (nt)−1E[Snt] = r

2s + r − 2

1 − q

1 + q
= r

2s + r − 2

2s − 1

2s + 1
,

so (10) follows from this and (30).
Second, fix an even integer r ≥ 4 and a positive integer s. We apply Theorem 5 assuming

(15)–(18) with ρ = 0 in (4) and C1C2 · · · Ct = (AB)sBr−2 with t := 2s + r − 2, to conclude that
(30) holds. (The theorem tells us that the rate of profit depends on the initial capital only
through its parity, so for convenience we take the initial capital congruent to 0 (mod r) if the
initial capital is even, or congruent to r − 1 (mod r) if odd.) Recalling from Section 1 that, with
initial capital congruent to 0 (mod r), each play of (AB)sBr−2 results in a mean profit of

E[St] =
�2s/r�∑
m=1

mr
mr/2∑

k=(m−1)r/2+1

(
s

k

)
1

2s
= r

s∑
k=0

⌈
2k

r

⌉(
s

k

)
1

2s
,
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we find that

lim
n→∞ (nt)−1E[Snt] = r

2s + r − 2

s∑
k=0

⌈
2k

r

⌉(
s

k

)
1

2s
.

With initial capital congruent to r − 1 (mod r), P(Snt = 0) = 1, so

lim
n→∞ (nt)−1E[Snt] = 0,

and (11) follows from the last two limits and (30). �
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