
J. Fluid Mech. (2003), vol. 492, pp. 91–100. c© 2003 Cambridge University Press

DOI: 10.1017/S0022112003005597 Printed in the United Kingdom

91

Maximum drag reduction in a turbulent channel
flow by polymer additives

By TAEGEE MIN1, HAECHEON CHOI1,2

AND JUNG YUL YOO2

1Center for Turbulence and Flow Control Research, Institute of Advanced Machinery and Design,
Seoul National University, Seoul 151-744, Korea

2School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea

(Received 19 April 2003 and in revised form 21 June 2003)

Maximum drag reduction (MDR) in a turbulent channel flow by polymer additives is
studied using direct numerical simulation. An Oldroyd-B model is adopted to express
the polymer stress because MDR is closely related to the elasticity of the polymer
solution. The Reynolds number considered is 4000, based on the bulk velocity and
the channel height, and the amount of MDR from the present study is 44%, which
is in good agreement with Virk’s asymptote at this Reynolds number. For ‘large drag
reduction’, the variations of turbulence statistics such as the mean streamwise velocity
and r.m.s. velocity fluctuations are quite different from those of ‘small drag reduction’.
For example, for small drag reduction, the r.m.s. streamwise velocity fluctuations
decrease in the sublayer but increase in the buffer and log layers with increasing
Weissenberg number, but they decrease in the whole channel for large drag reduction.
As the flow approaches the MDR limit, the significant decrease in the production of
turbulent kinetic energy is compensated by the increase in energy transfer from the
polymer elastic energy to the turbulent kinetic energy. This is why turbulence inside
the channel does not disappear but survives in the MDR state.

1. Introduction
Since Toms (1949) reported turbulent drag reduction by polymer additives, there

have been many studies on this phenomenon using theoretical, experimental and
numerical approaches. The two important findings from experimental studies by Virk
et al. (1967) and Virk (1971) are the onset of drag reduction and the existence of
maximum drag reduction (MDR), indicating that drag reduction does not come from
a purely viscous effect of a dilute polymer solution (de Gennes 1990; Sreenivasan &
White 2000). The onset of polymer drag reduction means that drag reduction occurs
only if the concentration exceeds a threshold value. After the onset, the drag decreases
more for larger amount of polymer additives. However, it does not decrease below a
certain limit, which is called the MDR asymptote or MDR limit.

In general, MDR is obtained when turbulence disappears and the flow becomes
laminar (see, for example, Choi, Moin & Kim 1994; Lee & Choi 2001). However,
turbulence survives in the MDR state with polymer additives. Warholic, Massah &
Hanratty (1999) experimentally studied MDR by polymer additives. They categorized
two different regimes of polymer drag reduction: ‘small drag reduction’ (SDR) and
‘large drag reduction’ (LDR). They showed that the two regimes have different trends
in the variation of turbulence statistics with increasing polymer concentration. One
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of the most noticeable results in their experiments on MDR is that the Reynolds
shear stress becomes nearly zero at MDR but turbulence does not disappear. Thus,
they concluded that the polymer plays a significant role in sustaining turbulence in
the MDR state, because the production of turbulent kinetic energy from the mean
flow becomes negligible. Sreenivasan & White (2000) also considered the existence
of turbulence in the MDR state to be an important feature, and thus they com-
pared scales of the dissipation of turbulent kinetic energy and the polymer elastic
energy. Through the scaling analysis, they suggested that even a small amount of
stretching would render the polymer elastic energy comparable to the turbulent kinetic
energy.

Min et al. (2003) investigated drag reduction by polymer additives in a channel flow
using direct numerical simulation. The onset criterion for drag reduction predicted in
their study was in excellent agreement with previous theoretical and experimental
studies. Transport equations for the kinetic and elastic energy were derived to
investigate the effect of the elasticity on drag reduction, using the elastic theory
of Tabor & de Gennes (1986). From the energy exchange between the kinetic and
elastic energy, they suggested a drag-reduction mechanism as follows. When drag
reduction occurs, the turbulent kinetic energy near the wall is absorbed by the
polymer and transformed to elastic energy. Then, fluid particles containing the elastic
energy stored near the wall are lifted up by the near-wall vortical motion and the
elastic energy is released into turbulent kinetic energy or dissipated in the buffer and
log layers. Therefore, in order to obtain drag reduction, the relaxation time of the
polymer solution should be long enough to transport the near-wall elastic energy to
the buffer or log layer. Otherwise, the elastic energy obtained near the wall is released
there and an equilibrium state exists in terms of the energy exchange, resulting in no
drag change (see Min et al. for details).

The objectives of the present study are to compare flow characteristics of the SDR
and LDR states, and to propose a mechanism for the MDR asymptote in polymer
drag reduction, using direct numerical simulation (DNS) of turbulent channel flow.
An Oldroyd-B model (linear Hookean dumbbells) is used to represent the behaviour
of the polymer solution. Simulations are conducted for Reb = Ubh/ν = 4000 based on
the bulk velocity Ub and channel height h. The present study complements the work
by Min et al. (2003), in that they investigate, respectively, the existence of MDR and
the onset criterion of drag reduction, both of which are important phenomena found
by Virk et al. (1967) and Virk (1971). The mechanism of MDR will be elucidated
through the energy exchange between the kinetic and elastic energy.

2. Governing equations and numerical method
The non-dimensional governing equations of unsteady incompressible viscoelastic

flow with an Oldroyd-B model are as follows:

∂ui

∂t
+

∂

∂xj

(uiuj ) = − ∂p

∂xi

+
β

Re

∂2ui

∂xj∂xj

+
1 − β

Re

∂τij

∂xj

, (2.1)

∂ui

∂xi

= 0, (2.2)

τij + We

(
∂τij

∂t
+ um

∂τij

∂xm

− ∂ui

∂xm

τmj − ∂uj

∂xm

τmi

)
=

∂ui

∂xj

+
∂uj

∂xi

, (2.3)
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where ui is the velocity, p the pressure, τij the polymer stress, Re( =Uδ/ν) the
Reynolds number, We( = λU/δ) the Weissenberg number, U the centreline velocity of
the fully developed laminar flow (U = 3

2
Ub), δ the channel half-height (δ = 1

2
h), ν the

kinematic viscosity, λ the relaxation time, and β the ratio of solvent viscosity con-
tribution to the total viscosity of solution. In the present study, Re= 3000 (Reb =
Ubh/ν =4000; Reτ = uτ0

δ/ν � 135), and β is fixed to be 0.9 for a viscoelastic fluid.
Here uτ0

is the wall-shear velocity for Newtonian fluid flow (β =1).
As is shown in § 3.1, the amount of drag reduction is very sensitive to the size

of the computational domain. Therefore, after a parametric study, we choose the
computational domain to be 14δ × 2δ × 7δ in the streamwise (x), wall-normal (y) and
spanwise (z) directions, respectively, with 128×97×192 grids (�x+ � 15, �y+

min � 0.3,
�z+ � 5). We impose the periodic boundary condition in the streamwise and spanwise
directions, and the no-slip boundary condition at the wall. A fully developed turbulent
flow field of a Newtonian fluid (β = 1) is used as initial condition for the simulation
of viscoelastic fluid flow. A constant mass flow rate is maintained in a channel during
simulation by adjusting the mean pressure gradient (−dp/dx) at each computational
time step, i.e. the bulk Reynolds number (Reb) is constant during simulation.

The numerical algorithm is based on a semi-implicit, fractional step method: the
velocity diffusion and polymer stress derivative terms in (2.1) are advanced with the
Crank–Nicolson method, and the velocity convection term in (2.1) and all the terms in
(2.3) are advanced with a third-order Runge–Kutta method. A fourth-order compact
difference scheme is used for the polymer stress derivative ∂τij /∂xj in (2.1), and a
modified compact upwind difference scheme (Min, Yoo & Choi 2001) is used for the
polymer stress convection term um∂τij /∂xm in (2.3). All other terms are discretized
using the second-order central difference scheme. For the details of the numerical
method, see Min et al. (2001, 2003).

3. Results
3.1. MDR asymptote and mean velocity

The percentage drag reduction (DR) is defined as

DR =
(−dp/dx) − (−dp/dx|0)

−dp/dx|0
× 100, (3.1)

where −dp/dx and −dp/dx|0 are the time-averaged mean pressure gradients for
viscoelastic fluid flow and Newtonian fluid flow, respectively. Figure 1(a) shows the
time traces of the mean pressure gradient required to drive a constant mass flow rate
in a channel for different Weissenberg numbers; and figure 1(b) shows the variation
of drag reduction with the Weissenberg number, plus the amount of drag reduction
at We =5 when different computational domain sizes are used for simulation. Note
that the small domain size results in a completely different transient behaviour and
underpredicts the amount of drag reduction. It is clear from figure 1 that the choice
of the computational domain size is critical in accurately predicting the amount of
drag reduction in the LDR regime and the domain size of 14δ × 2δ × 7δ provides
a fairly converged result. We did not increase the spanwise domain size beyond
7δ because the spanwise two-point correlations of the velocity fluctuations fell off
to zero within the separation distance of 3.5δ (half the domain size), indicating
that the computational domain is sufficiently large. It is seen that the drag decreases
more for larger Weissenberg number in the SDR regime. However, for LDR (We � 5),
the amount of drag reduction becomes saturated and approaches the MDR asymptote
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Figure 1. (a) Time traces of the mean pressure gradient to drive a constant mass flow
rate in a channel for different Weissenberg numbers; (b) variation of drag reduction with
the Weissenberg number. �, Computational domain 7δ × 2δ × 3.5δ; �, 14δ × 2δ × 7δ; �,
21δ × 2δ × 7δ, respectively. In (b), Weτ = λu2

τ0
/ν, Wecr is the onset Weissenberg number, and

the results for We � 4 are from Min et al. (2003).
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Figure 2. Mean streamwise velocities normalized by the actual wall-shear velocity uτ : ——,
Newtonian; – – –, We= 5; ·········, We= 6; – · – · –, We= 7; – ·· – ·· –, We= 8. The mean velocity
profile obtained during the transient time at We= 6 is denoted with �. Also shown are the
mean velocity profiles for We � 4 from Min et al. (2003).

of Virk (1971). According to Virk’s asymptote, the MDR value increases for higher
Reynolds number and it is 48% at Reb = 4000. The amount of MDR from the present
study is 44% and this is in good agreement with Virk’s asymptote at this Reynolds
number, considering that Virk’s asymptote was obtained for pipe flow and thus MDR
might not be identical to that of channel flow.

It is interesting to note from figure 1(a) that, at We = 6, the drag decreases
substantially in the transient period (up to 60%) and then reaches a fully developed
state with less drag reduction (44%). We confirmed the same behaviour for a larger
computational domain size of 21δ × 2δ × 7δ. The non-dimensional time to reach the
fully developed state after adding polymer additives is about 1000δ/U for We =6,
suggesting that a fairly long pipe or channel should be used in experiments to
investigate MDR (minimum 400 diameter in length in the streamwise direction when
we simply take the convection velocity as the centreline velocity).

The mean velocity profiles normalized by the actual wall-shear velocity uτ are shown
in figure 2. Here, u+ = u/uτ , y+ = yuτ/ν, and u is the mean streamwise velocity. For
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Figure 3. Root-mean-square velocity fluctuations normalized by the wall-shear velocity uτ0
.

Lines as in figure 2. Lines with � denote urms, plain lines vrms, and lines with � wrms. Here,
y+

0 = yuτ0
/ν.

SDR (We � 4), the log-law of the mean streamwise velocity can be expressed as

u+ = 2.5 ln y+ + B, (3.2)

where B = 5.5 for Newtonian fluid flow and B increases for larger drag reduction.
However, as seen in figure 2, (3.2) is not valid for LDR (We � 5), and the mean
streamwise velocity approaches Virk’s asymptotic formula (note that Virk’s formula
for the mean streamwise velocity was obtained for pipe flow at Reb > 10000). This
trend is in good agreement with the experimental results of Warholic et al. (1999).
However, note that the present mean velocity profile at the MDR state is still quite
different from Virk’s asymptote. In figure 2, we also plot the mean velocity profile
obtained during the transient period at We =6 (see figure 1a). Strikingly, this profile
nearly falls on Virk’s asymptote. Since no asymptotic formula for the mean velocity
has been reported in the literature at the low Reynolds number investigated in this
study, we do not understand the difference. However, as Virk’s asymptotic formula,
u+ =11.7 ln y+ − 17.0, was reported for high Reynolds number flows (Reb > 10000) at
which maximum drag reduction of more than 60% was obtained, the difference seems
to be due to the different amounts of drag reduction at different Reynolds numbers.

In Min et al. (2003), DNS were conducted at Reb = 4000 and 20000 in the SDR
regime using the Oldroyd-B model, and showed excellent agreement of the simulation
data for Reb = 20000 with the previous experimental data. In that study, the simulation
at Reb =20000 was conducted in a minimal channel of sustaining turbulence to reduce
the computational cost. In the present study, DNS is performed only at Reb = 4000,
mainly because the computational cost for high Reynolds number flow is very high
owing to the large computational box size required for LDR. Future large-scale
computations at large Reynolds numbers such as Reb = 20000 should be useful.

3.2. Turbulence statistics

The root-mean-square (r.m.s.) velocity fluctuations for LDR are shown in figure 3,
together with the r.m.s. streamwise velocity fluctuations for SDR from Min et al.
(2003). All the r.m.s. velocity fluctuations decrease in the whole channel for LDR
(We � 5). However, for SDR (We � 4), the r.m.s. streamwise velocity fluctuations
decrease in the sublayer but increase in the buffer and log layers. Warholic et al.
(1999) also reported these trends. The turbulent kinetic energy shows the same trend
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Figure 4. Reynolds shear stress, stress deficit and total shear stress normalized by the
wall-shear velocity uτ0

. Lines as in figure 2. Lines with � denote the Reynolds shear stress,
lines with � the stress deficit, and plain lines the total shear stress.

as the r.m.s. streamwise velocity fluctuations, because urms is much larger than vrms

and wrms. All three components of the vorticity fluctuations substantially decrease
with increasing Weissenberg number (not shown here), indicating that the streamwise
vortices become weakened and the sweep motion induced by those vortices is less
effective in producing high skin friction.

The Reynolds shear stress, −ρu′v′, time-averaged stress deficit, τp , and total shear

stress, T12 = µdu/dy − ρu′v′ + τp , normalized by uτ0
are shown in figure 4. Here,

µ and ρ are the viscosity and density of polymer solution, respectively, and τp is
one of the most interesting features in drag reduction by polymer additives (Gyr &
Tsinober 1997; den Toonder et al. 1997; Warholic et al. 1999). The total shear stress
should follow a straight line when the flow reaches a fully developed state, and the
present results show that this is indeed the case. The slope of the total shear stress
is much smaller than that of Newtonian fluid flow but decreases very slowly with
increasing Weissenberg number, because the flow reaches the MDR limit. A significant
reduction in the Reynolds shear stress is also observed throughout the channel with
polymer additives. For SDR, the slope of the Reynolds shear stress near the channel
centre is nearly equal to that of the total shear stress (Min et al. 2003), whereas, for
LDR, it deviates significantly from that of the total shear stress. The stress deficit
τp increases remarkably with increasing Weissenberg number and its maximum is in
the buffer layer as for SDR (Min et al.). However, for SDR, the slope of the stress
deficit is negligible around the channel centre, but it is not for LDR, showing a large
contribution of τp to T12 in the LDR regime. This is why the slope of the Reynolds
shear stress near the channel centre deviates from that of the total shear stress in the
LDR regime. Therefore, the viscoelasticity should be an important property of dilute
polymer solutions for drag reduction because the elongational–viscosity hypothesis
cannot show the existence of the stress deficit (den Toonder et al. 1997). The trend
of τp in the LDR regime is closely related to the MDR asymptote, which will be
discussed in the following section.

3.3. Polymer elastic energy and the mechanism of MDR

When the elastic theory of Tabor & de Gennes (1986) is incorporated into the kinetic
theory of Bird et al. (1987), the time-averaged polymer elastic energy can be expressed
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Figure 5. Profiles of the production Pk and dissipation εk of turbulent kinetic energy
normalized by u3

τ0
/δ. The lines as in figure 2.

as (Min et al. 2003)

ke =
1

2

1 − β

Re
τ ii . (3.3)

Min et al. suggested a drag-reduction mechanism in the SDR regime in terms of
the energy transfer between the kinetic and elastic energy. The energy transfer is
expressed through the following dynamic equations for the mean kinetic energy (km),
turbulent kinetic energy (kt ) and polymer elastic energy (ke):〈

Dkm

Dt

〉
= −〈Pk〉 − 〈Pe,m〉 + 〈Pw〉 + β

〈
1

Re

d2km

dy2

〉
− β〈εm〉, (3.4)

〈
Dkt

Dt

〉
= 〈Pk〉 − 〈Pe,t〉 + β

〈
1

Re

d2kt

dy2

〉
− β〈εk〉, (3.5)

〈
Dke

Dt

〉
= 〈Pe,m〉 + 〈Pe,t〉 − 1

We
〈ke〉, (3.6)

where

km = 1
2
u2, kt =

1
2
u′

iu
′
i , Pk = −u′v′ du

dy
, Pe,m =

1 − β

Re
τ 12

du

dy
,

Pw = −u
dp

dx
, εm =

1

Re

du

dy

du

dy
, Pe,t =

1 − β

Re

∂u′
i

∂xj

τ ′
ij , εk =

1

Re

∂u′
i

∂xj

∂u′
i

∂xj

.

Here 〈·〉 = (1/V )
∫

· dV and V is the total volume of the computational domain. For
details, see Min et al. The energy transfer between km and kt takes place through
Pk . The energy transfer between km and ke is through Pe,m, and that between kt and
ke is through Pe,t . The turbulent kinetic energy is dissipated by εk and the elastic
energy is dissipated by its damping term ke/We (i.e. polymer releases elastic energy
by damping).

The spatial distributions of Pk and εk are shown in figure 5. The production and
dissipation of turbulent kinetic energy significantly decrease throughout the channel
with polymer additives. This is mainly because the Reynolds shear stress is decreased
remarkably for LDR as shown in figure 4. Warholic et al. (1999) reported that the
significant decrease in the Reynolds shear stress results in zero Pk at the MDR state,
which means that the mean flow can no longer transfer its energy to turbulence.
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Figure 6. Profiles of the productions, Pe,m and Pe,t , and dissipation, −ke/We, of elastic
energy normalized by u3

τ0
/δ. The lines are as in figure 2.

y

z

Figure 7. Contours of the instantaneous Pe,t normalized by u3
τ0
/δ for We= 8. Here only

negative values of Pe,t are drawn for clarity and contour levels are from −1 to −30.

Thus, they presumed that turbulence existing in the MDR state originates from the
polymer. An interesting observation from figure 5 is that the production is almost zero
very near the wall (y+

0 < 10) and the dissipation is nearly constant irrespective of the
wall-normal distance, indicating that the near-wall dynamics in a regular turbulent
channel flow is clearly destroyed by the polymer in the MDR state.

The spatial distributions of the production and dissipation of elastic energy are
shown in figure 6. For SDR, the turbulent kinetic energy near the wall is absorbed
by polymer and transformed to elastic energy, and then the elastic energy obtained
near the wall is lifted up by the near-wall vortical motion and released into turbulent
kinetic energy or dissipated in the buffer and log layers (Min et al. 2003). On the other
hand, for LDR, the production of turbulent kinetic energy is nearly zero near the wall,
so that the same mechanism as for SDR is not expected to be observed. Very near the
wall, the production of elastic energy, Pe,m (energy transport from the mean flow to
the polymer), is balanced by the dissipation, −ke/We, and their magnitudes near the
wall in the LDR regime are smaller than those for SDR. Notable is the significant
increase in Pe,m in the buffer and log layers for LDR, which is mainly caused by the
increase in τp (figure 4) because τ̄12 = τp +µE dū/dy, where µE = (1 − β)µ. The elastic
energy increased from Pe,m is either dissipated by damping (−ke/We) or transported
to turbulent kinetic energy through Pe,t . That is, Pe,t becomes larger in negative value
with increasing We, meaning that the polymer elastic energy returns more energy to
turbulence in the buffer and log layers.

Figure 7 shows the contours of negative Pe,t inside the channel for We =8 cor-
responding to LDR. As shown, for We = 8 (LDR), energy transfer from the elastic
energy to the turbulent kinetic energy (Pe,t < 0) is very active away from the wall and
the magnitude is very large compared to the average value of Pe,t at this We (see
figure 6 for comparison). Although turbulence decreases more as the flow approaches
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the MDR limit, the energy transfer from the elastic energy to turbulence becomes
larger simultaneously, which clearly prevents the disappearance of turbulence inside
the channel. Therefore, turbulence is sustained even in the MDR state by the transport
from the polymer elastic energy to turbulent kinetic energy. With turbulence, the drag
at the MDR state is larger than for laminar channel flow, confirming the existence of
the MDR limit.

4. Conclusions and further remarks
DNS of turbulent viscoelastic flow in a channel was conducted to investigate the

mechanism of MDR by polymer additives. An Oldroyd-B model was used for the
polymer stress to represent the viscoelastic nature of polymer solutions. Simulations
were carried out by changing the Weissenberg number at the bulk Reynolds number
of 4000.

The amount of MDR predicted in the present study was 44%, showing good
agreement with Virk’s asymptote at this Reynolds number. Experiments showed that
the typical log-law for the mean streamwise velocity was not valid for LDR. Instead,
the mean streamwise velocity in wall coordinates approached Virk’s asymptotic
formula, but did not reach it due to the difference in the Reynolds numbers in the
present study and Virk’s experiments. Furthermore, for LDR, the r.m.s. streamwise
velocity fluctuations decreased in the whole channel with increasing Weissenberg
number, whereas they decreased in the sublayer but increased in the buffer and log
layers for SDR, as also observed in the experimental study.

For LDR, the production of turbulent kinetic energy decreased with increasing
Weissenberg number, but the polymer returned more energy from the elastic energy
to turbulence simultaneously, preventing the disappearance of turbulence. Therefore,
the noticeable effect of polymer additives at the state of MDR was turbulence
generation as well as drag reduction.

Finally, we should discuss the validity and limitations of the viscoelastic model
adopted in the present study. At present, one of the most feasible macroscopic
models for coupled DNS of polymer drag reduction is the two-bead model such as
the FENE-P (Sureshkumar, Beris & Handler 1997) and Oldroyd-B models (Min et al.
2003). The main reason why we used the Oldroyd-B model is that the elastic energy
is easily formulated in an explicit form for linear dumbbells (Oldroyd-B model) but
not for nonlinear dumbbells (FENE-P model) (see § 4 in Min et al. 2003 for details).
Theoretically, however, the polymer stretch in the Oldroyd-B model is not upper
bounded, whereas it is bounded in the FENE-P model. Min et al. (2003) investi-
gated this issue and showed in the SDR regime that the time evolution of the
polymer stretch (ckk; cij =We τij + δij ) in the Oldroyd-B model is upper bounded due
to the finite magnitude of the shear rate in the flow field, and its boundedness is
almost the same as that of the FENE-P model. We conducted a separate simulation
with the FENE-P model for We = 6 to examine the behaviour of the polymer stretch
in the LDR regime. As shown in figure 8, the polymer stretch from the Oldroyd-B
model does not show any unboundedness and the r.m.s. velocity fluctuations are
nearly the same as obtained from the FENE-P model. Therefore, the present results
on polymer drag reduction are not model dependent. On the other hand, as Ilg et al.
(2002) reported in their one-way-coupled DNS (i.e. polymer does not affect the flow),
the polymer stretch and orientation of the two-bead macroscopic model may show
different behaviours from a multi-bead microscopic model that is believed to be more
realistic. Therefore, two-way-coupled DNS with the microscopic model would verify
the present MDR mechanism based on the elastic theory.
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Figure 8. (a) Time histories of the polymer stretch ckk at y+
0 = 10 and (b) r.m.s. velocity

fluctuations normalized by uτ0
(We= 6). ——, Newtonian; – – –, Oldroyd-B model; ·········,

FENE-P model with L2 = 3600, where L2 is the dumbbell extensibility of the FENE-P model.
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