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The problem of waves propagating on the surface of a two-dimensional ideal fluid
of infinite depth bounded above by an elastic sheet is studied with asymptotic and
numerical methods. We use a nonlinear elastic model that has been used to describe
the dynamics of ice sheets. Particular attention is paid to forced and unforced
dynamics of waves having near-minimum phase speed. For the unforced problem,
we find that wavepacket solitary waves bifurcate from nonlinear periodic waves of
minimum speed. When the problem is forced by a moving load, we find that, for
small-amplitude forcing, steady responses are possible at all subcritical speeds, but
for larger loads there is a transcritical range of forcing speeds for which there are no
steady solutions. In unsteady computations, we find that if the problem is forced at
a speed in this range, very large unsteady responses are obtained, and that when the
forcing is released, a solitary wave is generated. These solitary waves appear stable,
and can coexist within a sea of small-amplitude waves.
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1. Introduction
We consider the problem of surface waves on a semi-infinite incompressible inviscid

fluid in two-dimensions bounded above by a flexible elastic sheet. The two competing
restoring forces are gravity and the flexural elasticity of the sheet, and hence we
denote this problem as the fluid flexural-gravity (FG) wave problem. We shall use the
irrotational Euler equations with the fully nonlinear kinematic and dynamic boundary
conditions for the fluid, and, for the solid, use the simplest Kirchoff–Love nonlinear
elasticity model appropriate for thin flexible sheets as in Parau & Dias (2002) and
Bonnefoy, Meylan & Ferrant (2009). This elasticity model yields a restoring force in
the form of a pressure jump across the elastic sheet equal to

D∂2
x κ, (1.1)

where D is the flexural rigidity of the sheet and κ is its curvature. The principal
approximation made here is that the sheet is thin, and that its inertia and its stretching
(or the existence of a pre-stressed state) are neglected. At first sight, the formulation
for this problem appears similar to that of the gravity–capillary wave problem where
the pressure jump across the free surface is proportional to its curvature. Despite
this similarity, the phenomena observed in the two problems are quite different
and we shall highlight these differences below. More details on the bifurcations of
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Hydroelastic solitary waves in deep water 629

the FG wave problem with a pre-stressed sheet modelled with the inclusion of a
surface-tension-like term can be found in Il’ichev (2000).

Fluid FG models have been used to study waves generated by moving loads on a
thin ice sheet floating over water. A thorough treatment of the linear problem under
various modelling assumptions together with an extensive review of experimental
work is found in Squire et al. (1996). A particularly interesting case is that of near-
critical forcing which occurs when the load moves at a speed close to the minimum
phase speed of linear waves. In that case, the free-surface displacement can be large
and nonlinear effects may be important: at criticality, the linear elastic plate theory
predicts a displacement that grows unbounded with time. Squire et al. (1988) and
Takizawa (1988) measured the response of an ice sheet under moving loads with
particular attention to this regime and it is the nonlinear resolution of this issue that
inspired the work of Parau & Dias (2002) on the steady response. The nonlinear
unsteady moving load problem, together with an alternative numerical formulation to
that presented here (based on a truncation of the Dirichlet-to-Neumann map for the
potential fluid flow), was considered by Bonnefoy et al. (2009). A further resolution
of the unbounded displacement prediction that also addresses some observational
features is the inclusion of damping through a viscoelastic plate model designed to
better represent the material properties of ice, when the predicted response due to a
steadily moving load remains pronounced but finite at criticality (Hosking, Sneyd &
Waugh 1988; Wang, Hosking, & Milinazzo 2004).

In the present paper, we shall focus on both steady and dynamic phenomena of
free solitary waves with length scales in the vicinity of the minimum of the dispersion
relation which corresponds to the case where elastic and gravitational restoring
forces are comparable. Both localized and generalized solitary waves are found to
bifurcate from large-amplitude periodic waves. We also show that these waves may
arise naturally from the moving load problem in a transcritical forcing regime which
occurs only for sufficiently large loads. In order to give the reader an idea of the
scales involved in ice sheets in the conditions of the aforementioned experimental
measurements, D ranged from 105 to 109 Nm, corresponding to a minimum-speed
wavelength in the range 20–160 m and depending mainly on the thickness of the ice
(which varied from 17 to 160 cm).

Analysis and numerical computations of free waves on the FG problem of the
type we consider were pioneered, in the periodic case, by Forbes (1986). In Parau
& Dias (2002), free solitary waves were briefly considered in the ‘shallower’ case
(see below). More recently, further results on periodic waves, generalized solitary
waves and three-dimensional waves were obtained by Vanden-Broeck & Parau (2011)
and Parau & Vanden-Broeck (2011). A related problem with a longer history is
that of unstable fluid–elastic interactions such as the recent work of Peake (2001)
and references therein. In that regime, gravity is usually neglected, the inertia of
the elastic sheet and its stretching are included, and the addition of a mean flow
leads to instabilities. There have also been rigorous results on the FG wave problem:
recently, Toland (2008) proved the existence of periodic waves and introduced an
energetically consistent elastic model on which we shall comment later. A review
of bifurcations leading to solitary waves in a variety of fluid problems, including in
ice-sheet modelling problems, is found in Il’ichev (2000).

Much can be learned from the dispersion relation for the linearized FG model.
Note that (D/ρg)1/4 and (D/ρg5)1/8 are the characteristic length and time scales at
which the restoring effects of flexural rigidity and gravity balance. Using these to
non-dimensionalize the problem, the FG dispersion relation for an elastic sheet over
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a fluid of dimensionless depth H is

c2 = tanh(kH )

(
1

|k| + |k|3
)

, (1.2)

where c is the wave speed and k is the wavenumber. For all values of the depth H ,
c =

√
H is a local maximum at k = 0 and there is a global minimum of phase speed c∗

at k∗. For large k, c ∼ |k|3/2. These features imply that shallow-water-type generalized
solitary waves may bifurcate from k =0, which is the case considered in Vanden-
Broeck & Parau (2011), and that wavepacket-type solitary waves may bifurcate from
k∗. In this paper, we concentrate on the latter case. In Parau & Dias (2002), using a
weakly nonlinear normal-form analysis of the free and forced problem around this
minimum, they find that there is a critical depth Hc above which there are no free
solitary waves bifurcating from a uniform stream. For depths shallower than Hc, their
analysis shows that there are solitary waves and they compute these waves using a
fully nonlinear boundary-integral method. They also consider the problem forced by
a load moving at speed U . In this case and for the type of forcing they use, they
find that for H <Hc the branch of forced solutions exists only up to a speed U ∗ <c∗,
whereas if H > Hc this branch continues up to c = c∗. In contrast, we focus here on
infinite depth (as a model for H >Hc) and extend their results in several ways as
described below.

The existence of weakly nonlinear wavepacket solitary waves bifurcating from
the minimum of a phase-speed dispersion curve can be deduced from the
nonlinear Schödinger (NLS) equation governing the modulation of a carrier surface
displacement wave with wavenumber near k∗:

iAT + λAXX = µ|A|2A. (1.3)

If the product of the coefficients λ(H )µ(H ) < 0, the equation is of the focusing type,
and there exist sech-type solitary waves for the NLS equation. Since at a minimum
of c(k) the phase and group speed are equal, these NLS solitary waves approximate
the envelope of the wavepacket solitary waves of the original system. In the FG
problem, the sign of the dispersive coefficient λ is positive at k∗ for all values of H

(which follows directly from the fact that c is a minimum there), but the sign of the
nonlinearity coefficient µ changes at Hc, with µ > 0 for H >Hc. This fact disallows
solitary waves from bifurcating about the uniform state in deeper water. We shall
show in this paper that solitary waves do occur in deeper water, but they are a
new type in that they occur along a branch of generalized solitary waves that itself
bifurcates from periodic waves of finite amplitude. For simplicity, in this paper, we
shall assume that the water is infinitely deep, although we are confident the results
apply for all H >Hc. We also consider here the forced problem of the response to a
travelling load. We find that, for sufficiently large loads, no steady solutions exist for
a range of subcritical speeds and that in the time-dependent problem this gap yields
very-large-amplitude unsteady behaviour, including the generation of solitary waves.

It is useful to compare the present problem with the problem of gravity–capillary
(GC) waves (see, for example, Vanden-Broeck 2010). In the GC problem, when
the Bond number B (the inverse of a dimensionless depth squared) is below 1/3,
corresponding to ‘deep’ water, the dispersion relation is qualitatively similar to the
FG problem having a minimum at finite k. However, the corresponding NLS equation
in that GC regime always supports wavepacket solitary waves since the coefficients are
of the appropriate sign. One concludes from this that the ‘shallow’ regime (H <Hc)
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Hydroelastic solitary waves in deep water 631

of the FG problem is – from the perspective of bifurcation theory – qualitatively
similar to the deep regime B < 1/3 of the GC problem. It is in this case that
Parau & Dias (2002) compute some free solitary waves. The deep (H > Hc) regime
of the FG problem has no equivalent in the GC problem. It should be noted
that the shallow regime of GC waves (B > 1/3) also supports (generalized) solitary
waves; however, these are not of the wavepacket-type since they bifurcate from
k = 0.

This paper is structured as follows. In § 2, we briefly present a time-dependent
conformal mapping technique for the full problem, its reduction for the travelling
wave problem, and the linear and weakly nonlinear behaviour. In § 3, we present
forced and unforced numerical travelling-wave results, focusing on solitary waves
and present typical time-dependent forced behaviour. In the conclusions, we discuss
possible mathematical modelling extensions to the work.

2. Formulation
Consider a two-dimensional, irrotational flow of an inviscid, incompressible fluid

of infinite depth bounded above by an elastic sheet. Denoting the free surface by
y = ζ̄ (x, t) and the velocity potential by φ̄(x, y, t), the governing equations for the
flow and the nonlinear boundary conditions are

�φ̄ = 0 for −∞ < y < ζ̄ (x, t), (2.1)

φ̄ → 0 as y → −∞, (2.2)

ζ̄t + φ̄x ζ̄x = φ̄y at y = ζ̄ (x, t), (2.3)

φ̄t = −1

2

[
φ̄2

x + φ̄2
y

]
− ζ̄ − ∂xx

ζ̄xx(
1 + ζ̄ 2

x

)3/2
− P̄ at y = ζ̄ (x, t). (2.4)

The term P̄ (x, t) is the dimensionless pressure distribution exerted by a load on the
elastic sheet. These equations have been made dimensionless by choosing

(
D

ρg

)1/4

,

(
D

ρg5

)1/8

,

(
Dg3

ρ

)1/8

, (Dρ3g3)1/8, (2.5)

as the units of length, time, velocity and pressure, where ρ is the density of the fluid
and g is the acceleration due to gravity.

In order to handle the unknown free-surface computationally, we reformulate this
system using a time-dependent conformal map from the physical domain to the lower
half-plane with horizontal and vertical coordinates denoted by ξ and η, respectively.
Such a method was used by Dyachenko, Zakharov & Kuznetsov (1996), Li, Hyman
& Choi (2004) and Milewski, Vanden-Broeck & Wang (2010). The map can be found
by solving the harmonic boundary-value problem

yξξ + yηη = 0 for −∞ < η < 0, (2.6)

y = Y (ξ, t) at η = 0, (2.7)

y ∼ η as η → −∞, (2.8)

where Y (ξ, t) = ζ̄ (x(ξ, 0, t), t). The harmonic conjugate variable x(ξ, η, t) is defined
through the Cauchy–Riemann relations for the complex function z(ξ, η, t) =
x(ξ, η, t) + iy(ξ, η, t). In the transformed plane, the velocity potential φ(ξ, η, t) �
φ̄(x(ξ, η, t), y(ξ, η, t), t) and its harmonic conjugate ψ(ξ, η, t) also satisfy Laplace’s
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equation. Thus,

φξξ + φηη = 0 for −∞ < η < 0,

φ = Φ(ξ, t) at η = 0,

φ → 0 as η → −∞,

where Φ(ξ, t) � φ(ξ, 0, t). Defining Ψ (ξ, t) � ψ(ξ, 0, t) and X(ξ, t) � x(ξ, 0, t), from
elementary harmonic analysis, we have

Ψ = H [Φ], X = ξ − H [Y ], (2.9)

where H is the Hilbert transform,

H [f ] =

∫ ∞

−∞

f (ξ ′, 0, t)

ξ ′ − ξ
dξ ′. (2.10)

Next, we shall write the evolution equations for Y and Φ using the boundary
conditions at the free surface. The details (with the exception of the tedious
computation of the restoring force of the sheet) can be found in Milewski et al.
(2010) and follow from the application of the chain rule on Y (ξ, t) = ζ̄ (x(ξ, 0, t), t),
Φ(ξ, t) = φ̄(x(ξ, 0, t), y(ξ, 0, t), t) and Ψ (ξ, t) = ψ̄(x(ξ, 0, t), y(ξ, 0, t), t). The result is
the surface Euler system

Xξ = 1 − H [Yξ ], (2.11)

Ψξ = H [Φξ ], (2.12)

Yt = YξH

[
Ψξ

J

]
− Xξ

(
Ψξ

J

)
, (2.13)

Φt =
1

2

Ψ 2
ξ − Φ2

ξ

J
− Y − M

X3
ξ J

7/2
+ ΦξH

[
Ψξ

J

]
− P, (2.14)

where J =X2
ξ + Y 2

ξ , P (ξ, t) = P̄ (x(ξ, 0, t), t), and the bending term M is given by

M = −XξXξξξξY
5
ξ − 2X3

ξXξξξξY
3
ξ − X5

ξXξξξξYξ − 4X5
ξXξξξYξξ − 6X5

ξXξξYξξξ

+ X2
ξ Y

4
ξ Yξξξξ + 2X4

ξ Y
2
ξ Yξξξξ − 15X3

ξX
3
ξξYξ + 12X2

ξ Y
2
ξ Y 3

ξξ + 15X4
ξX

2
ξξYξξ

− 3X3
ξXξξY

2
ξ Yξξξ + 3XξXξξY

4
ξ Yξξξ + X3

ξXξξξY
2
ξ Yξξ + 5XξXξξξY

4
ξ Yξξ

− 33X2
ξX

2
ξξY

2
ξ Yξξ − 3X2

ξξY
4
ξ Yξξ + 10X4

ξXξξXξξξYξ + 11X2
ξXξξXξξξY

3
ξ

+ XξξXξξξY
5
ξ − 9X2

ξ Y
3
ξ YξξYξξξ − 9XξXξξY

3
ξ Y 2

ξξ − 9X4
ξ YξYξξYξξξ

− 3X4
ξ Y

3
ξξ + 36X3

ξXξξYξY
2
ξξ + X6

ξ Yξξξξ . (2.15)

Given initial values for Φ and Y , Xξ and Ψξ can be calculated with the first two
equations of (2.11)–(2.14), and Φ and Y can then be advanced in time with the last
two equations.

2.1. Travelling waves

Seeking travelling-wave solutions to the Euler equations (2.1)–(2.4) with wave speed
c, we assume that all functions depend on x − ct and replace (2.3) and (2.4) with

−cζ̄x = −φ̄x ζ̄x + φ̄y, (2.16)

−cφ̄x = −1

2

[
φ̄2

x + φ̄2
y

]
− ζ̄ − ∂xx

ζ̄xx

(1 + ζ̄ 2
x )3/2

− P. (2.17)
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Hydroelastic solitary waves in deep water 633

Following the same conformal mapping as in the previous section, the kinematic
boundary condition becomes Ψ = cY , then the dynamic boundary condition becomes

c2

2

(
1

J
− 1

)
+ Y +

M

X3
ξ J

7/2
+ P = 0. (2.18)

Equation (2.18), together with Xξ =1 − H [Yξ ], completes an integro-differential
system for Y . From the solution Y , Φ can be found using Φ = − cH [Y ]. The present
formulation for travelling waves is equivalent to that of Parau & Dias (2002) under
a different scaling.

2.2. Linear and weakly nonlinear waves

The dispersion relation of the system can be obtained directly from (2.1)–(2.4) or can
be recovered by linearizing the surface Euler system by taking Y , Φξ , Ψξ small and
Xξ ∼ 1, J ∼ 1. This results in the dispersion relation

ω2 = |k|(1 + k4) or c2 =

(
1

|k| + |k|3
)

. (2.19)

We consider solitary waves bifurcating from the phase-speed minimum

k∗ =

(
1

3

)1/4

≈ 0.7598, c∗ =
√

31/4 + 3−3/4 ≈ 1.3247. (2.20)

In order to derive the NLS equation governing modulations of a monochromatic
wave, one substitutes the ansatz(

ζ̄

φ̄

)
∼ ε

(
A(X, T )

B(X, T ) e|k|y

)
ei(kx−ωt) + c.c. + ε2

(
ζ1

φ1

)
+ ε3

(
ζ2

φ2

)
+ · · · , (2.21)

where T = ε2t , X = ε(x − cgt), c.c. indicates the complex conjugate of the preceding
term and cg is the group velocity, into (2.1)–(2.4), and ensures that the series is
well-ordered for t = O(ε−2). We omit the details of the derivation and state the result
for the carrier wave k∗. The envelopes A satisfy the NLS equation (with B slaved
to A):

iAT + λAXX = µ|A|2A, B = −ic∗A, (2.22)

with coefficients

λ =
37/8

2
, µ =

79

88
3−9/8. (2.23)

Since λµ > 0, the NLS equation is of the defocusing type and one does not expect
small-amplitude solitary waves to exist for c < c∗. The NLS analysis, however, predicts
a branch of periodic waves with c > c∗ bifurcating from a uniform flow. These periodic
solutions are Stokes’ waves and have the speed-amplitude dependence

c − c∗ =
µ

4k∗ |ζmax |2, (2.24)

which can be obtained from NLS solutions of the form A= a e−iΩT, with Ω = µa2.

2.3. Computational methods

The numerical integration of the surface Euler system is accomplished with a
Fourier spectral discretization of the ξ dependence, where all derivatives and Hilbert
transforms are computed in Fourier space. For travelling waves, the system is solved
using Newton’s method where the unknowns are the Fourier coefficients and branches
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Figure 1. (a) Travelling wave solution branches near the minimum speed c∗ (which is
shown by the vertical line). Branches of forced solutions are shown by two different forcing
amplitudes, a =0.2 and a = 0.02. The uppermost curve is a branch of unforced solitary waves
for c < c∗ (labelled SW) and generalized solitary waves for c > c∗ (labelled GSW). The branches
originating at c∗ are periodic Stokes solutions (labelled PW) and they are compared to the NLS
prediction (thick dashed curve). The amplitude parameter is 1

2
[max(Y ) − min(Y )]. Examples of

(b) unforced solitary waves and (c) generalized solitary waves.

are computed through straightforward continuation methods. For time-dependent
solutions, a fourth-order Runge–Kutta method is used and products are computed in
real space and dealiazed with a doubling of Fourier modes. Typically, for bifurcation
diagrams of travelling waves, 64–2048 Fourier modes provide accurate solutions. In
order to compute time-dependent solutions on large enough domains, 2048 modes
were used. The method was shown to be highly accurate in CG waves (Milewski
et al. 2010). Although some waves ‘wrap around’ in our computations, they do not
affect the qualitative dynamics. In computing the forced travelling-wave problem, we
used the pressure distribution P̄ = a e(x−st)2/16, and results are qualitatively similar for
other distributions.

3. Results
In the forced travelling-wave problem we note that there are two localized steady

solutions for certain subcritical speeds: one of smaller amplitude and the other of
larger amplitude (see figure 1). The solutions of smaller amplitude are a perturbation
of the free stream, and those of larger amplitudes are perturbed free solitary waves.
Note, however, that at larger forcing amplitudes, there are no steady solutions for a
range of transcritical forcing speeds, cmax <s <c∗. Here, cmax is defined as the largest
speed at which there is a steady solution for a fixed forcing amplitude (i.e. where the
branch of forced solutions turns around). This range or ‘gap’ will lead to interesting
time-dependent dynamics.

The branch of free solitary waves can be obtained by reducing the forcing to zero
from the large-amplitude forced solutions. Once the solitary wave branch is found, as
one reduces the amplitude along the branch, the solitary waves become generalized–
solitary waves when c > c∗. This happens due to a resonance with periodic waves
of speed c. As the amplitude of the central trough is further reduced, the ‘tails’ of
the generalized solitary wave increase in amplitude until the branch terminates on a
branch of finite-amplitude Stokes’ waves.
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Figure 2. (a) Families of finite-amplitude Stokes periodic waves with c > c∗ (c∗ is indicated by
the vertical line), bifurcating from zero amplitude for various k < k∗ (solid curves) and k > k∗

(dotted curves). The thick curve is a portion of the branch of solitary and generalized–solitary
waves shown in figure 1. The amplitude parameter is 1

2
[max(Y )−min(Y )]. (b) Large-amplitude

‘Wilton’ waves shown both as a function of ξ (dotted line) and x (solid line).

In addition to these branches, we also show in figure 1 the branch of Stokes periodic
waves bifurcating from the minimum of the dispersion relation, the corresponding
prediction from the NLS equation, and sample profiles of the solitary and generalized
solitary waves. In the nomenclature used in GC waves, the solitary waves we computed
are called depression solitary waves. We attempted to compute elevation solitary
waves, whose free-surface displacement is positive at the centre and which exist in
the GC problem, but were unsuccessful. Solitary waves of small amplitude of were
not found, as expected from the NLS analysis.

In order to better understand the origin of the large-amplitude generalized solitary
waves, we compute a more complete bifurcation diagram of periodic waves, as shown
in figure 2. For various values of k near k∗, branches of Stokes waves with period
2π/k are shown. For small amplitudes, it is the wave with 2π/k∗ periodicity that
has the lowest speed; however, at fixed higher amplitudes this is no longer the
case. Progressively longer waves with k < k∗ have the minimum speed, up to a fold
point where the minimum speed wave occurs on the branch corresponding, at small
amplitude, to ‘Wilton’ ripples. For more details on Wilton ripples in this context,
see Vanden-Broeck & Parau (2011). This branch is the left solid curve originating at
c ≈ 1.44 in figure 2. The solitary and generalized solitary wave branch is also shown
in this figure, and it appears that generalized solitary waves occur only when there
are no periodic waves of the same speed and larger amplitudes. The computation of
the generalized solitary wave branch near its bifurcation point is very sensitive to the
size of the computational domain, which selects a particular periodicity, and we only
show the curve where we are confident that it does not depend on the domain size.
Incidentally, the diverging branches of Wilton-like ripples in figure 2 clearly explain
the phenomenon observed by Bonnefoy et al. (2009), where the periodic wavetrain
generated by a moving load changes abruptly in behaviour when the load speed is
varied in the vicinity of c ≈ 1.44.

We now turn to time-dependent solutions, particularly to the case of subcritical
localized forcing. Physically, we investigate the response of a moving load on ice-
covered deep water at near-critical speeds (Parau & Dias 2002). In many situations,
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Figure 3. Time-dependent computation of the free surface due to a subcritically moving
force at smaller forcing amplitudes (a = 0.02, s = 1.3). The forcing is kept on throughout the
computation. (a–c) t =50, 125, 325. (d ) The solution at t = 325, in a case where the forcing is
turned off at t = 125. The forcing is also shown.

the response to a moving force in free-surface fluid problems is strongest and
fundamentally nonlinear when the speed s of the forcing is slightly below a minimum
or above a maximum of the phase speed of free dispersive waves, since there is a
near resonance and there is no linear mechanism to radiate the energy. For each
localized forcing in this case, there exists a range of forcing speeds (the transcritical
regime) for which there is no travelling solution to the problem. Within this range
the forcing is called resonant and one observes complex time-dependent solutions
often involving the periodic shedding of solitary waves. Examples are Wu (1987)
for surface water waves in shallow water, Grimshaw & Smith (1986) for internal
waves and Berger & Milewski (2000) for shallow three-dimensional GC flows. In
these examples, however, the transcritical regime exists for arbitrarily small forcing
amplitudes. This fact is a consequence of these problems having solitary waves that
exist down to zero amplitude. Since the branches of forced solutions are a perturbation
of the free solitary wave branch, arbitrarily small forcing will break the symmetry of
the bifurcation and create a gap in the existence of steady solutions. In the present
situation, this is not the case: the transcritical regime exists only for sufficiently large
forcing (see figure 1).

Two representative cases of time-dependent evolution are shown, both using s = 1.3.
A small forcing case (a = 0.02) in which there is no transcritical regime is shown in
figure 3, and a larger forcing case (a = 0.2), in which the forcing speed is in the
transcritical range, in figure 4. The behaviour of both cases is qualitatively very
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Figure 4. Time-dependent computation of the free surface due to a subcritically moving force
at larger forcing amplitudes (a = 0.2, s = 1.3). The forcing was switched on at t = 0, x = −220
and switched off at t = 125. The solution, together with the forcing, is shown in (a–d ) at times
t =50, 125, 137.5, 325, respectively. The forcing is also shown.

different. For the smaller forcing, as shown in figure 1, there is a small-amplitude
steady response to the forcing. In the time-dependent dynamics (see figure 3a–c),
the amplitude of the response remains small and close to the steady solution in
the vicinity of the forcing. There are, however, unsteady upstream and downstream
waves present due to the impulsive start of the forcing. For a larger forcing, if the
speed of the forcing lies in the gap for which steady solutions do not exist (see
figure 1), the response is much stronger. In this case, the time-dependent solutions
grow in amplitude and become steeper up to a point at which our numerical method
fails (we have computed solutions where the slope is greater than 2.5). We do not
observe a periodic shedding of solitary waves as observed in other transcritical forcing
regimes.

In the computation of figure 4 the forcing was turned off after a period of time
(t = 125). Snapshots in figure 4(b, c) are immediately before and shortly after the
forcing is switched off. We note that the solution rapidly relaxes to a symmetric
solitary wave. The last snapshot (figure 4d ) shows that the solitary wave persists
for long times in the midst of smaller linear waves. From longer computations (not
shown), we believe that these solitary waves are stable and robust. For the smaller
forcing of figure 3, we do not have any problems continuing the forced computation
for arbitrary long times, but, for comparison, we show the final profile of a numerical
experiment in which the smaller load has also been removed at t =125 (see figure 3d ).
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Figure 5. Maximum slope of the free surface as a function of time for the computations
shown in figures 3 and 4. The forcing was turned off at t = 125. The lower curve has been
vertically magnified by a factor of 10 to reflect the difference in forcing amplitude.

In this case, the disturbances disperse away and do not form the solitary wave seen
in figure 4. The contrast between the two regimes can be clearly seen in figure 5:
here we show the maximum slope of the elastic sheet as a function of time for the
computations described above. For the large forcing the approximate constancy of
the maximum slope after t = 125 is a result of the generated solitary wave, whereas
in the small forcing, the maximum slope decreases after the forcing is turned off as
a result of dispersion. Note the much larger amplification factor for the transcritical
regime (the small forcing curve has been scaled so the comparison is meaningful).

4. Conclusions
The bifurcation problem of deep water FG waves near the minimum of the

dispersion relation is rich with Stokes, solitary and generalized solitary waves. In
particular, solitary waves exist only at finite amplitude, which is, to our knowledge,
novel in free-surface fluid problems. Furthermore, the near-critically forced problem
has qualitatively different behaviour for small- and large-amplitude loads. This
qualitative difference should be observable in experimental measurements.

A particularly interesting case that emerges and warrants further study is that of
H ≈ Hc (recall that Hc is the transition at which the NLS equation predicts that
small-amplitude solitary waves cease to exist). In this case, the coefficient of the
cubic nonlinear term in the NLS equation is small and, under appropriate rescaling,
we believe that the modulations of wavepackets would be well described by the
cubic–quintic NLS equation (or, due to the influence of a mean-flow, a cubic–quintic
Benney–Roskes–Davey–Stewartson-type model):

iAt + λAXX = µ|A|2A + iδ1|A|2AX + iδ2A
2ĀX + γ |A|4A. (4.1)

In this case, the coefficient µ is negative (focusing) for H <Hc and positive
(defocusing) otherwise, whereas we conjecture that γ is negative (focusing). There
are interesting features of such a model. First, the equation has a rich set of solutions
corresponding to periodic, solitary and generalized solitary travelling waves of the
original system for µ > 0 (Gagnon 1989). These provide an analytical picture of the
finite amplitude bifurcation from Stokes to solitary waves. Second, given the quintic
focusing term, time-dependent solutions to the NLS equation will have finite time
singularities. This corresponds to a nonlinear focusing of wave energy, and whilst
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these blow-up solutions are surely in a regime which does not reflect the original
problem, they indicate the onset of a wave-collapse instability as has been observed
in the three-dimensional gravity–capillary problem (Akers & Milewski 2009).

We also comment on other possible elastic models. In this paper, we chose a model
which has been widely used and for which we can compare our results with those of
others, but which does not have a clear conservation form for the elastic potential
energy. Two other models that do have such an energy conservation principle are the
linear elasticity case (denoted below by the subscript L) and a simple conservative
nonlinear model appearing in Toland (2008) (denoted below by the subscript C). In
these cases, the pressure jump is given, respectively, by

D∂4
x η and D

(
∂2

ακ + 1
2
κ3

)
, (4.2)

where α is arclength. The dimensionless elastic potential energy in these cases is given
by

PL =

∫
1

2
ζ̄ 2
xx dx and PC =

∫
1

2
κ2 dα. (4.3)

Then, the total energy of the system is given by

1

2

∫
dx

∫ ζ̄

−∞

(
φ̄2

x + φ̄2
y

)
dy +

1

2

∫
ζ̄ 2 dx + PL,C. (4.4)

In the infinite depth case, these models should have qualitatively similar small
amplitude behaviour. Their linear theories are identical to that of the present
case (hence λ in the NLS equation is the same) and the respective nonlinear NLS
coefficients are also positive:

µL =
14

11
3−9/8 and µC =

1

44
3−9/8. (4.5)

These merit further investigation, particularly the conservative case which, given the
smallness of the NLS cubic coefficient, may be well described by a cubic–quintic NLS
model even in infinite depth.

This work was supported by the EPSRC under grant GR/S47786/01 and by the
Division of Mathematical Sciences of the National Science Foundation under grant
NSF-DMS-0908077.

REFERENCES

Akers, B. & Milewski, P. A. 2009 A model equation for wavepacket solitary waves arising from
capillary–gravity flows. Stud. Appl. Math. 122, 249–274.

Berger, K. & Milewski, P. A. 2000 The generation and evolution of lump solitary waves in
surface-tension-dominated flows. SIAM J. Appl. Math. 61, 731–750.

Bonnefoy, F., Meylan, M. H. & Ferrant, P. 2009 Nonlinear higher-order spectral solution for a
two-dimensional moving load on ice. J. Fluid Mech. 621, 215–242.

Dyachenko, A. L., Zakharov, V. E. & Kuznetsov, E. A. 1996 Nonlinear dynamics on the free
surface of an ideal fluid. Plasma Phys. Rep. 22, 916–928.

Forbes, L. K. 1986 Surface waves of large amplitude beneath an elastic sheet. Part 1. High-order
series solution. J. Fluid Mech. 169, 409–428.

Gagnon, L. 1989 Exact traveling-wave solutions for optical models based on the nonlinear cubic–
quintic Schrödinger equation. J. Opt. Soc. Am. A 6, 1477–1483.

Grimshaw, R. H. J. & Smith, N. 1986 Resonant flow of a stratified fluid over topography. J. Fluid
Mech. 169, 429–464.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

16
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.163


640 P. A. Milewski, J.-M. Vanden-Broeck and Z. Wang

Hosking, R. J., Sneyd, A. D. & Waugh, D. W. 1988 Viscoelastic response of a floating ice plate to
a steadily moving load. J. Fluid Mech. 196, 409–430.

Il’ichev, A. 2000 Solitary waves in media with dispersion and dissipation (a review). Fluid Dyn. 35,
157–176.

Li, Y. A., Hyman, R. J. M. & Choi, W. 2004 A numerical study of the exact evolution equations
for surface waves in water of finite depth. Stud. Appl. Math. 113, 303–324.

Milewski, P. A., Vanden-Broeck, J.-M. & Wang, Z. 2010 Dynamics of steep two-dimensional
gravity–capillary solitary waves J. Fluid Mech. 664, 466–477.

Parau, E. & Dias, F. 2002 Nonlinear effects in the response of a floating ice plate to a moving load.
J. Fluid Mech. 460, 281–305.

Parau, E. & Vanden-Broeck, J.-M. 2011 Three-dimensional waves under an ice sheet. Trans. Phil.
Soc. (in press) doi:10.1098/rsta.2011.0115.

Peake, N. 2001 Nonlinear stability of a fluid-loaded elastic plate with mean flow. J. Fluid Mech.
434, 101–118.

Squire, V. A., Hosking, R. J., Kerr, A. D. & Langhorne, P. J. 1996 Moving Loads on Ice Plates
(Solid Mechanics and Its Applications). Kluwer.

Squire, V. A., Robinson, W. H., Langhorne, P. J. & Haskell, T. G. 1988 Vehicles and aircraft on
floating ice. Nature 333, 159–161.

Takizawa, T. 1988 Response of a floating sea ice sheet to a steadily moving load. J. Geophys. Res.
93, 5100–5112.

Toland, J. F. 2008 Steady periodic hydroelastic waves. Arch. Rat. Mech. Anal. 189, 325–362.

Vanden-Broeck, J.-M. 2010 Gravity–Capillary Free-Surface Flows. Cambridge University Press.

Vanden-Broeck, J.-M. & Parau, E. 2011 Two-dimensional generalised solitary waves and periodic
waves under an ice sheet. Trans. Phil. Soc. (in press), doi:10.1098/rsta.2011.0108.

Wang, K., Hosking, R. J. & Milinazzo, F. 2004 Time-dependent response of a floating viscoelastic
plate to an impulsively started moving load. J. Fluid Mech. 521, 295–317.

Wu, T. Y. 1987 Generation of upstream advancing solitons by moving disturbances. J. Fluid. Mech.
184, 75–99.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

16
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.163

