
Astin Bulletin 40(2), 797-843. doi: 10.2143/AST.40.2.2061137 © 2010 by Astin Bulletin. All rights reserved.

COMPETITION-ORIGINATED CYCLES AND INSURANCE STRATEGIES

BY

VSEVOLOD K. MALINOVSKII 

ABSTRACT

An insurance company entering the property and liability insurance market at 
the high point of the insurance cycle may decide to slash premiums to gain an 
advantageous market share. Such aggressive intrusion may call forth a concerted 
industry response, producing a severe decline in the insurance market price. 
This can ruin some companies, and agrees with the observation that the insur-
ance cycles are correlated with clustered insolvencies. This paper addresses a 
quantitative analysis of competition-originated cycles; it explores an interplay 
of rational aggressive and defensive strategies in the multi-period Lundberg-
type controlled risk model.
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1. INTRODUCTION

There is convincing evidence (see Pentikäinen (1988)) that the long-term 
 variations called “business cycles” are a fundamental feature of the non-life 
insurance business. These business cycles are likely in all countries where there 
is a competitive insurance market. Insight into the driving forces of the under-
writing cycles is not only a paramount theoretical problem; but it is a key to 
understanding the nature of  the insurance market. It yields leverages for 
rational management and attracts permanent attention of  many parties, 
including managers and experts in economic and actuarial studies.

There are at least two major rationales of the cyclic behavior in insurance; 
one is the randomness of volatile interest rates, or the random up and down 
swings of  risk exposure. The other attributes the cycles to the interplay of 
insurers.

Typically, the cyclic behavior of the fi rst kind (see e.g., Malinovskii (2009a)) 
depends on the factors outside the insurance industry. Tangible as irregularly 
oscillating underwriting process is, it is largely caused by inevitable rate-making 
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errors. On the other hand, the cyclic behavior of the second kind consists of 
alternating up and down swing phases generated by insurance industry factors 
such as aggressive behavior and concerted industry response.

The aggressive behavior of  a particular insurer seeking a greater market 
share is a trigger for the competition-originated cycles. If  the market recognizes 
the gravity of that common threat, the response is a concerted reduction of the 
premium rates. That starts a down swing phase of the competition-originated 
cycle and can ruin some companies, as premium rates gradually fall below the 
real costs of insurance.

That constitutes a great danger even for old established businesses and agrees 
with the observation that the insurance cycles are correlated with related insol-
vencies of certain types of insurers. For example, US industry-wide combined 
ratios peaked at 109% in 1975 and 117% in 1984; the insurance failure rate, or 
the ratio of insolvencies to total companies, peaked at 1.0% in 1975 and 1.4% 
in 1985 (see Feldblum (2007a) with reference to Best’s Insolvency Study, Best’s 
(1991)).

Insolvencies constitute an important driving force behind the competition-
originated cycles. After elimination of exceedingly aggressive agents, or only 
weaker carriers, the prices increase uniformly over the industry and the upswing 
phase of the cycle ensues.

The impact of the competition-originated cycles on the fi nancial strength 
of the property and liability insurers is paramount. The insurers may be either 
ruined, having their risk reserve exhausted because of too low prices, or lose 
their business, having a majority of clients emigrate to those competitors who 
offer better prices. These two principal threats deserve thorough quantitative 
analysis.

Much attention is paid to insurance cycles in the economic literature. 
Among experts and scholars exploring the driving forces behind the cycles are 
Venezian (1985), Cummins and Outreville (1987), Doherty and Kang (1988), 
Harrington and Danzon (1994), Doherty and Garven (1995), Feldblum (2007a). 
Feldblum’s paper yields a convincing insight into the cycles of both kind; he 
provides as many as 109 references and it is a comprehensive account of the 
state of art in the fi eld.

Much less is known about quantifi cation of the additional risk associated 
with underwriting cycles. Using mostly simulation techniques, Pentikäinen 
(1988) and then Daykin et al. (1996) studied the relationship between the under-
writing cycles and the probabilities of ruin. From the premises of the individual 
approach, Subramanian (1998) addressed solvency and market share balance 
in modeling competition in a bonus-malus framework. Further developments 
within the framework of dynamic fi nancial analysis are D’Arcy et al. (1997), 
Kaufmann et al. (2001).

Quite a little is done for analytical investigation of the underwriting cycles. 
Based on the empirical data and discussion of  some potential background 
factors of  the cycles, Rantala (1988) applied the control-theoretical tools in 
the framework of autoregressive models. Describing the risk loading and the 
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claim rate by a heuristic non-random trigonometric function, Feldblum (2007b) 
modeled competition-originated underwriting cycles. His surplus model allows 
the insurer to vary the price in response to the cycles, losing or gaining market 
share. A more sophisticated Markovian model of the risk reserve’s periodic 
behavior is built in Asmussen and Rolski (1994). In Malinovskii (2007)  –
Malinovskii (2009a) emphasis was put on harmonization of equity and sol-
vency requirements sensitive to diverse scenarios of nature, and on the cyclic 
behavior of the fi rst kind.

This paper aims to give an exemplar of rigorous mathematical modeling 
of the competition-originated underwriting cycles within the control theoretical 
approach. Viewed as a “historical process” divided into distinct stages, the under-
writing cycles model’ prerequisite is a set of assumptions consistent with eco-
nomical evidence. The goal of the paper is to set a few, among many feasible, 
patterns of action called strategies of competing insurers and to quantify annual 
“moves legally possible” which constitute admissible building blocks for any 
competitive strategy. Though control theoretical approach is accentuated 
throughout the paper, it differs from conventional optimal control set-up (i.e., 
minimization of  an objective function subject to constrains), with a more 
sophisticated and more promising game theoretical approach in view.

In dealing with the insurance cycles originated by competition, practical 
interest of the insurance industry and academic, predominantly mathematical, 
interest behind the modeling is two-fold challenge. The former consists in pos-
sible practical use of a better understanding of the cycles phenomenon acquired 
from modeling. The later consists in solution of the academic problems such 
as selection of a suitable mathematical formalism.

This paper does not pretend to reveal the real economic mechanism behind 
the cycles and tends to analytical methods rather than e.g., numerical, based 
on simulation; it is inevitably biased by intensive application of a rather sophis-
ticated Poisson–Exponential model and of  corresponding fi nite-time ruin 
probability results. It focuses on the problems like “how to quantify aggressive 
actions and defensive reactions of interacting companies”, and “how an insur-
ance company can overcome a down swing phase of the underwriting cycle”.

In Malinovskii (2007)  –  Malinovskii (2009a) developed is a multi-period 
model set for a unique insurance company whose only competitor is nature. 
In this paper the competitor is the falling market, and the trajectory of  a 
“neutral”, or “competing with the market” company � is diagramed as 

 
thst

k0 0w u w w u w� � � � � �

year year
k0 1$ $ $ $ $g g

- -
-

g p p g p� �

k 1-

� � �
k k1 1- k0 1- ,

k1
1 2 34444 444 1 2 34444 4444

 (1)

where p�
k  refers to the k-th year probability mechanism, g�

k  –  1 to the k-th year 
control, wk

� and u�
k  –  1 to the state and control variables for �.

Further in this paper, two insurance companies are considered, one � called 
“aggressive”, and another � called “defending”. The interactive trajectories 
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for � and � are diagramed (the control-oriented reader may wish to start from 
formalities in Section 6 below) as

 (2)
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According to this diagram (for k  =  1, 2, …), at the end of (k  –  1)-st year the 
state variable wk  –  1  =  (w�

k  –  1,  w�
k  –  1) is observed; it is typically much more com-

plex than a couple of surplus values. At the beginning of the k-th year the 
aggressive company selects, following the strategy g�  =  {g�

k , k  =  0, 1, …}, the 
control variable u�

k  –  1. Then, applying the strategy g�  =  {g�
k , k  =  0, 1, …}, the 

defending insurer uses the control rule g�
k  –  1 which yields the control variable 

u�
k  –  1. These control variables fi x the k-th year’s probability mechanism of 

insurance for � and �; the transition function of this mechanism is denoted 
by pk  =  (p�

k ,  pk
�

 ). At the end of  the k-th year, it yields the state variable 
wk  =  ( wk

�,  wk
� ), and the process repeats anew.

The model (2) concatenates the annual probability mechanisms of � and 
� led by interactive control rules gk

�, gk
� and may be called a dynamic, or 

sequential, stochastic game with imperfect information (see von Neumann and 
Morgenstern (1944), Owen (1982)). It means that the later player has some 
knowledge about the actions of earlier player and both have some knowledge 
about the uncontrolled environment; albeit very little knowledge.

Paramount in that framework is modeling the annual mechanisms of insur-
ance pk and selecting sensible rational offensive and defensive control strate-
gies. In Malinovskii (2007) and Malinovskii (2009a) the annual mechanism of 
insurance is modeled by a homogeneous diffusion model. In Malinovskii (2008a) 
and Malinovskii (2008b) a homogeneous Lundberg-type (Poisson-Exponential) 
control model is applied. In this paper a non-homogeneous Lundberg-type 
(Poisson-Exponential) control model, with a non-homogeneous claims arrival 
process and with a variable portfolio size, is considered.

Having specifi ed the annual mechanism of insurance, it is necessary to keep 
track of how the information is revealed in time. It is known (see §1 of Chap-
ter 1 in Gihman and Skorokhod (1979)) that under certain mild regularity 
conditions the couple p  =  {(p�

k ,  pk
�

 ), k  =  1, 2, …} and g  =  {( gk
�, gk

� ), k  =  0, 1, …} 
is suffi cient background for a rigorous defi nition of the controlled random 
sequence on a probability space ( W,  F,  Pp,g ).

The rest of the paper is arranged as follows.
Section 2 contains basic assumptions and outlines the price competition-

originated cycles.
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Section 3 deals with a Lundberg-type collective model of the annual prob-
ability mechanism of insurance for an individual company with varying port-
folio size. That section lays a background for comprehensive modeling and for 
quantitative analysis of the interactive competitive strategies.

Section 4 is devoted to quantifi cation of a few types of annual controls which 
are the building blocks in diverse multi-period competitive insurance business 
models. Their quantifi cation is a major challenge of this paper. Seeking for 
transparency, we impose rather restrictive regularity conditions appropriate for 
Poisson-Exponential risk model. These conditions may be largely weakened at 
the price of  using more complicated auxiliary results which abound in risk 
theory literature (see for example Asmussen (2000), Malinovskii (1994), Mali-
novskii (1996b), Malinovskii (1998), Malinovskii (2000)).

Section 5 deals with a neutral company’s multi-period strategic modeling.
Section 6 glances at a competitive companies’ interactive multi-period stra-

tegic modeling.
Section 7 contains some further results on quantifi cation of  annual con-

trols.

2. ASSUMPTIONS AND OUTLINE OF COMPETITION-ORIGINATED CYCLES

The rationale behind the assumptions of this paper lies in the interplay of three 
main parties: (i) insurers (clustered in most of this paper as “aggressive com-
pany” �, “defending company” � and “the rest of the market”), (ii) insureds, 
more or less liable to migration, and (iii) regulators, more or less lenient. In par-
ticular, by market price the insurers’ price averaged over “the rest of the market” 
is largely meant.

Basic assumption (Assumption 3 in Section 2.3) postulates a persistent 
self-reinforcing trend triggered by a price aggression of �. Its rationale lies in 
the analysis of the intrinsic factors which induce “the rest of the market” to fol-
low � with a certain time lag, of one year in our case. Recall (see Soros (1994), 
p. 44) that “to put matters into perspective, we may classify events into two 
categories: humdrum, everyday events that are correctly anticipated by the 
participants and do not provoke a change in their perceptions, and unique, 
historical events that affect the participants’ bias and lead to further changes. 
The fi rst kind of event is susceptible to equilibrium analysis, the second is not: 
it can be understood only as part of a historical process”. According to that 
classifi cation, unfolded price aggression is considered to be a “historical event”, 
and our concern is to envisage its consequences.

Other basic assumptions (Assumptions 1 and 2 of Section 2.1) of “market-
homogeneous risk” and “time-homogeneous risk” are more technical. They do 
not hold for many practically interesting cases and will be relaxed in a future 
research.

It has to be mentioned straightforwardly that the set of assumptions in this 
paper is not a unique one conformable with practice.
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2.1. Years of soft and hard market and annual risk

The concept of a market-price rate being constant within each insurance year 
is paramount. It is consistent with the insurance practice, as price is a major 
stipulation of the insurance policy not liable to voluntarily variations within 
the period of time specifi ed in the contract.

DEFINITION 2.1 (Market price). Insurance price rate PM prevailing on the 
market in a certain insurance year is called market price.

It is known that the insurance market comprises better and worse risks; and the 
race for the better risks is a paramount component of competitive marketing (see 
Subramanian (1998)). In this paper we admit the following simplifi ed assumption.

ASSUMPTION 1 (Market-homogeneous risk). For each insurance year, the annual 
risks are market-homogeneous, i.e., the claim sizes are identically distributed over 
the whole insurance market.

DEFINITION 2.2 (Years of soft and hard market). The ratio k  =  PM  /  EY  >  0, 
where EY is the averaged losses, is called year’s index. The insurance year is 
called year of soft market, if  k  <  1. The insurance year is called year of hard 
market, if  k  >  1.

Though a particular insurer may keep its individual price P above or below 
the averaged losses EY, and above or below the market price PM, regardless of 
the year’s index, short-time and long-time consequences of the “row against 
the fl ood” are important for its safety.

Assumption 1 refers to the annual risks. Market homogeneity does not mean 
that the claim sizes may not differ in the different insurance years. Moreover, 
it is sensible to assume that claim sizes decrease (in a certain probabilistic sense) 
in the down swing phases of the insurance cycle because of more careful, and 
increase in the upswing phases because of less careful, underwriting. Though 
the time-inhomogeneous set-up is therefore paramount, this paper admits the 
following simplifi ed assumption.

ASSUMPTION 2 (Time-homogeneous risk). Market-homogeneous risks are time-
homogeneous, i.e., within consecutive insurance years the annual claim sizes are 
independent and identically distributed.

In particular, the averaged losses EY are assumed time-invariant and identical 
for all the companies on the market. That assumption is simplistic, allows 
easier mathematics, and will be removed in a future research.

2.2. Strategic goals

Besides the ultimate strategic goals which largely coincide with rather vague 
directives of solvency, profi tability and equity, the strategic goals of insurer 
may be structured as follows.
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• COMPETITIVE GOALS. In particular, that may be “to win a market share”, or 
“to win a market share and not be ruined”, or “to win a market share and 
to ruin the competitors”, or “not lose a market share”, or “not lose a market 
share and not be ruined”, or “not lose a market share and to ruin the com-
petition”, within a particular time span.

• PEACEFUL, OR PROFIT- SEEKING GOALS. Largely, that may be “to increase 
profi t” within a particular time span, which implies “not to be ruined”.

The main resources required in order to be able to compete are capital and 
market share. The main competitive advantage lies in a competent and timely 
confi guration of resources. For example, large market share may not only be 
an advantage but also a disadvantage, depending on the market conditions.

Besides underwriting, the main insurer’s maneuvering available to achieve 
the strategic goals is redistribution (win or lose) of the market shares. Techni-
cally, that comprises numerous marketing techniques such as:

• price decrease (increase) aimed to increase (decrease) market share,
• price increase (decrease) aimed to increase (decrease) capital,
• straightforward increase (decrease) of market share by selling or purchasing 

a part of the insurance portfolio,
• straightforward increase (decrease) of capital by means of capital lending or 

borrowing.

A clue to the competition-originated cycles lies in the antagonistic strategies 
of the companies endeavoring to achieve diverse – competitive or profi t-seek-
ing – strategic goals:

Goal A: redistribution (defense or conquest) of the market shares,
Goal B: profi table operations.

Each of these goals may be set at the discretion of a particular company, but 
it is essential that they dominate in turns over the whole insurance market and 
impel the individual insurers to make allowance for that.

2.3. Genesis of a cycle: concerted industry’s response

Formalize the intuitive idea that an aggressive price slash may call forth a 
decline of the market price due to the industry concerted response.

DEFINITION 2.3. Call aggressive a company � whose strategic goals are market 
share gains by means of severe reduction of the insurance price.

We assume that market share gains are equivalent to the portfolio growth due 
to immigration. Plainly, the intention of � to increase its market share would 
require a premium Pk

� below the market price Pk
M within a series of insurance 

years, k  =  1, 2, …. Otherwise a strong incentive for customers to change to � 
will not be created.
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Introduce an important notion of concerted industry response. Though the 
averaged losses EY are assumed fi xed in this paper, and the annual market 
price PM is established by the whole market, the infl uence of  a particular 
insurer on the whole market may either be negligible, or not. Concerted indus-
try response refers to the latter case.

ASSUMPTION 3 (Aggression calls forth a concerted industry response). Assume 
that an aggressive company � persistently seeks a larger market share, and 
reduces its prices below the current market price over a series of insurance years. 
Assume that the industry matches these prices after one year. Thus, in the years 
of hard market 

 P1
M  >  P1

�   =   P2
M  >  P2

�   =   P3
M   …  >  EY, (3)

and in the years of soft market 

 EY  >  P1
M  >  P1

�   =   P2
M  >  P2

�   =   P3
M  >  …. (4)

It appears from (3) that the company �, while operating in the years of hard 
market, consistently and aggressively reduces its annual prices, trading its pre-
mium income for market share, while (4) means that � is waging an open aggres-
sion1. Aggressively reducing prices below the costs of insurance, it aggravates 
the entire situation on the market, rendering profi table operations impossible.

Behavior of that kind is conventional for intruders entering the market at 
the high point of the insurance cycle. Having a large exogenous capital, they 
aim to seize a large market share and to win a leading position by drastically 
reducing prices. The apparent ease of  entry into the insurance market is a 
prerequisite for aggressive companies which seek greater market share by applying 
these means.

A necessary condition of the industry’s concerted response outlined in Eq. (3), 
(4) is recognition that � constitutes a grave common threat. It amounts to a 
gradual but synchronous drift from profi table operations (i.e., from Goal B) 
to the market share protection (i.e., to Goal A).

Resisting the aggression largely consists in matching the aggressive com-
pany �, even in reducing premiums below the real costs of insurance, until
the aggressor becomes exhausted or extinct. Unless the assaulted company � 

1 As the market remains hard, the year-by-year decrease of PM (see Eq. (3)) is annoying but endurable. 
It is a sensible maneuver for those who wish to protect their market share by reducing emigration 
to �. As soon as P� is set (see Eq. (4)) such that PM  >  EY  >  P�, it may be called “casus belli” by 
the whole market. From that time on, a company defending its market share by mere drastic reduc-
tion of premiums, can do it no more. Unless it possesses a huge capital, its portfolio reduction 
becomes constrained. Indeed, that — below-cost insurance-defi cient premiums — negatively affects 
the insurer’s solvency. It is such the larger the insurer’s portfolio is; because claims are no longer 
matched by premium income, a defending company imprudently charges an exceedingly low pre-
mium, while its portfolio remains large, and is likely to be ruined within a short time interval.

93864_Astin40/2_15.indd   80493864_Astin40/2_15.indd   804 13-12-2010   10:56:5813-12-2010   10:56:58

https://doi.org/10.2143/AST.40.2.2061137 Published online by Cambridge University Press

https://doi.org/10.2143/AST.40.2.2061137


 COMPETITION-ORIGINATED CYCLES AND INSURANCE STRATEGIES 805

is “too big to fail”’, a forestalling defensive evolution is the only option that 
makes it possible to engage in further defensive actions.

DEFINITION 2.4. Call mobilized a company structured to seek market share 
redistribution (Goal A), rather than to perform profi table operations (Goal B). 
Call demobilized a company structured to perform profi table operations (Goal B) 
rather than to seek market share redistribution (Goal A).

By defensive evolution we will largely mean switching of  a company from 
demobilized to mobilized condition. In the sequel we quantify the constrained 
defensive evolution in the framework of a Lundberg-type risk model. In par-
ticular, we formalize the observation that, as premiums are below marginal 
costs, the larger is a company’s market share the greater are the cumulative 
losses, and the excessive market share must be dropped down.

To return to profi table operations (i.e., to Goal B) requires eliminating the 
aggressive companies in either way2 and carrying out demobilization. It agrees 
with the fundamental observation of Feldblum (2001), who emphasized that 
“insolvencies are not just a by-product of dismal earnings; they are a driving 
force behind the cycles”.

2.4. Quarters linked in a cycle

Each cycle typically consists of one downswing and one upswing phase. Bear-
ing in mind years of hard and soft markets, specify the following successive 
quarters, which may be degenerate.

QUARTER DH (Downswing at hard market). A sequence of insurance years with 
market prices P1

M  >  P2
M  >  P3

M  >  …  >  EY is called Quarter DH of the insurance 
cycle.

Though there may be “anticipation of competition”, profi table operations are 
predominant in this quarter. Most companies, except aggressive and over-
cautious ones, which forestall the approaching competition, are demobilized.

QUARTER DS (Downswing at soft market). A sequence of insurance years with 
market prices EY  >  P1

M  >  P2
M  >  P3

M  >  … is called Quarter DS of the insurance 
cycle.

The beginning of that quarter is marked by “outbreak of open competition”
triggered by an aggressive company. The necessity to switch from the profi table 
operations (from Goal B) to defense (to Goal A) compels most companies to 
become mobilized as quickly as possible. Those who are late are more liable 
to quick ruin. The companies ready for defense wage “close contest” price 
competition. Capital is wasted by all companies, uniformly over the market. 
Started as “war of maneuver”, this quarter ends as “trench warfare”.

2 By means of contenting or destruction.
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QUARTER US (Upswing at soft market). A sequence of insurance years with 
market prices P1

M  <  P2
M  <  P3

M  <  …  <  EY is called Quarter US of the insurance 
cycle.

Since losses of all parties are heavy, the prices in this quarter gradually rise to 
the real costs of insurance. In the case of all-or-none competition, a “struggle 
of attrition” may occur. It means spiral competition, when the former aggres-
sor has wasted its capital and becomes lenient, while the formerly defending 
company preserved enough capital to reduce premiums and knock the com-
petitor down. The capital of both contenders expends over each spiral convo-
lution, as the rôle of aggressor and defender may be reversed many times.

QUARTER UH (Upswing at hard market). A sequence of insurance years with 
market prices EY  <  P1

M  <  P2
M  <  P3

M  <  … is called Quarter UH of the insurance 
cycle.

This quarter is marked by the elimination of weaker carriers. Those who are 
ruined go away, and the victors go the spoils. Profi table operations in a quiet 
market yield prosperity, which is liable to attract anew envious intruders.

2.5. Types of annual price control and price ratios

Consider different control price options available for particular insurers in the 
years of hard and soft markets.

DEFINITION 2.5 (Insurer’s price on hard market). In the year of hard market, set 

 Ph   =   Ph
CL-SW    ,    Ph

CW-SW    ,    Ph
CW-SL,   

where Ph
CL-SW   =   {P  :  0  <  P  G  EY  <  PM }, Ph

CW-SW  =  {P  :  EY  <  P  <  PM } and
Ph

CW-SL  =  {P  :  P  H  PM  >  EY }. The prices3 P  !   Ph
CL-SW are called capital losing  -  

share winning (CL-SW) control, the prices P  !   P h
CW-SW are called capital

winning  -  share winning (CW-SW) control, the prices P  !   P h
CW-SL are called 

capital winning  -  share losing (CW-SL) control.

DEFINITION 2.6. (Insurer’s price on soft marke). In the year of soft market, set 

 P s   =   P s
CL-SW   ,   P s

CL-SL   ,   P s
CW-SL,

where P s
CL-SW  =  {P  :  0  <  P  G  PM  <  EY },   P s

CL-SL  =  {P  :  PM  <  P  <  EY } and
P s

CW-SL  =  {P  :  P  H  EY  >  PM }. The prices4 P  !   P s
CL-SW are called capital losing  -

3 The price P  =  EY yields capital conserving  -  share winning (CC-SW) control, the price P  =  PM yields 
capital winning  -  share conserving (CW-SC) control.

4 The price P  =  EY yields capital conserving  -  share losing (CC-SL) control, the price P  =  PM yields 
capital losing  -  share conserving (CL-SC) control.
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share winning (CL-SW) control, the prices P  !   P s
CL-SL are called capital losing  -

share losing (CL-SL) control, the prices P  !   P s
CW-SL are called capital winning  -

share losing (CW-SL) control.

REMARK 2.1. Feldblum (2007b) applies the following terminology: CL-SC or 
CW-SC controls are called maintaining market share (MMS) controls, CC-SL 
or CC-SW controls are called conserving capital (CC) controls, and all other 
controls are called mixed controls.

DEFINITION 2.7 (Price ratios). The ratios 

 Y( ) 0, ( ) 0P d
P
P

> >= =P Pg ME

are called price to real costs of insurance ratio and price to market price ratio. 
For brevity, one may call g (P) price-to-cost and d (P) price-to-market ratio.

REMARK 2.2. In the year of hard market, as k  >  1 or EY  <  PM, which is equiv-
alent to the inequality d (P )  <  g (P ), the implication P  !   Ph

CL-SW is equivalent 
to d (P )  <  g (P )  G   1, the implication P  !   Ph

CW-SW is equivalent to d (P )  <  1  <  g (P ), 
and the implication P  !   Ph

CW-SL is equivalent to 1  G  d (P )  <  g (P ). In the year 
of  soft market, as k  <  1 or EY  >  PM, which is equivalent to the inequality 
g (P )  <  d (P ), the implication P  !   P s

CL-SW is equivalent to g (P )  <  d (P )  G  1, the 
implication P  !   P s

CL-SL is equivalent to g (P )  <  1  <  d (P ), and the implication 
P  !   P s

CW-SL is equivalent to 1  G  g (P )  <  d (P ).

DEFINITION 2.8 (Premium loading). Call t (P )  =  g (P )  –  1 loading on premium P.

Equivalent, but more familiar equality implying loading is P  =  (1  +  t (P )) EY. 
Positive loading on P means an excess over EY, while negative loading means 
defi ciency of P with respect to EY. Plainly, one has t(P)  H  0, as P  !   Ph

CW-SW    , 
Ph

CW-SL   ,     P s
CW-SL, and t (P )  G  0, as P  !   Ph

CL-SW  ,   P s
CL-SW  ,   P s

CL-SL, with t (P )  =  0 
iff  P  =  EY.

TABLE 2.1

PRICE CONTROLS IN DIFFERENT QUARTERS

Quarters Types of price control

DH CL-SW CW-SW CW-SL

DS CL-SW CL-SL CW-SL

US CL-SW CL-SL CW-SL

UH CL-SW CW-SW CW-SL

93864_Astin40/2_15.indd   80793864_Astin40/2_15.indd   807 13-12-2010   10:56:5913-12-2010   10:56:59

https://doi.org/10.2143/AST.40.2.2061137 Published online by Cambridge University Press

https://doi.org/10.2143/AST.40.2.2061137


808 V.K. MALINOVSKII

2.6. Strategic planning and annual maneuvering

Important for further modeling is the strategic planning and annual maneu-
vering of the aggressive, actively defending and neutral or, competing with the 
market, companies. That matter crucially depends on the strategic goals (see 
Section 2.2) in which diversity is overwhelming. However, the companies are 
eager, forced or allowed to apply a limited number of  controls for annual 
maneuvering.

TABLE 2.2

NEUTRAL COMPANY’S STRUGGLE “FOR JUST-SURVIVAL”

Quarters Neutral � (initial capital and initial share of middling size)

DH Profi t-seeking control followed by a 
defensive evolution

CW-SW   followed by  CW-SL

DS Passive defense: minimal solvency
and subsistence constraints

CW-SL   or  CL-SL   or X

US Passive defense: minimal solvency
and subsistence constraints

CW-SL   or  CL-SL   or X

UH If survived, � recovers share
and renews profi table operations

CL-SW   or  CW-SW   (if  Z)

Developing the outline of Section 2.4, consider competitors pursuing different 
strategic goals: a company � seeking survival (Table 2.2), an aggressive com-
pany � and an actively defending company � which compete for co-existence 
(Table 2.3), and � and � which fi ght an all-or-none battle (Table 2.4).

TABLE 2.3

COMPETITION FOR CO-EXISTENCE

Quarters Aggressive � (large initial capital,
small initial share)

Defensive � (relatively small initial
capital, large initial share)

DH Drastic reduction of prices 
and aggressive market share 
gain

CL-SW Defensive evolution CW-SL

DS Close contest CL-SW Close contest CW-SL

US � is contented and ceases 
aggression

CL-SW  or 
CL-SL

� agrees to end competition CL-SL

UH � wins a share and starts 
profi table operations

CW-SW � loses a share and renews 
profi table operations

CW-SW
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In Quarter DH, the aggressive company � is already structured for competi-
tion. Eager to acquire a greater share from a demobilized adversary � either 
by provoking its bankruptcy or by easier means, � reduces premiums. Thus � 
realizes a capital loss and market share win. The competitors remain either 
demobilized, i.e. non-resisting, or switch from Goal B to Goal A and make a 
constrained defensive evolution.

In Quarter DS, if  the company � remains mobilized and aggressive, it 
accelerates the premium decrease and keeps losing capital. Since � and most 
contending companies became mobilized at this moment, a close contest 
starts.

TABLE 2.4

COMPETITION “OF ELIMINATION”

Quarters Aggressive � (large initial capital,
small initial share)

Defensive � (relatively small
initial capital, large initial share)

DH Drastic reduction of prices and 
aggressive market share gain

CL-SW Defensive evolution CW-SL

DS Close contest CL-SW Close contest CW-SL

US Struggle of attrition:
� is aggressive

CL-SW Struggle of attrition:
� is defensive

CL-SL

Struggle of attrition:
� is defensive

CL-SL Struggle of attrition: 
� is aggressive

CL-SW

… … … …

� knocks � out, Z
� loses share (capital)
and agonizes,

CW-SL

or or

� loses share (capital) and 
agonizes

CW-SL � knocks � out Z

UH � wins spoils and starts 
profi table operations,

CW-SW
� is eliminated, X

or or

� is eliminated X � wins spoils and renews 
profi table operations

CW-SW

In Quarter US, the company � is still losing its capital, and is constrained 
to wage a more careful price policy; � becomes lenient and prices gradually 
increase. Its competitor � is either broken in spirits and agrees to stop compet-
ing, or starts competing aggressively by launching spiral competition, when the 
rôle of aggressor and sufferer alternates. The issue may be ruin for either.

In Quarter UH, as there are no aggressive companies in the market, the 
switching from Goal A to Goal B is universal, and premium prices grow above 
the real costs of  insurance. The successful companies are content with the 
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share won by action or by agreement, seek for profi t, carry on demobilization 
and trade off  the excessive capital for more market share.

Further discussion and quantifi cation is deferred to Sections 5 and 6.

REMARK 2.3. (Open model). It is noteworthy that not only leading aggressive 
company � (see Assumption 3) seeks to deprive � of  its market share, but so 
do all players on the insurance market which follow � in the price reduction 
race. Company � resists both the aggression of � and the downfall of the 
market price produced by a concerted industry’s action. In a sense, there are 
three interactive players: �, � and the rest of the market. In the next section, 
the customers gained by � are not quite the same as those who left �.

3. LUNDBERG-TYPE ANNUAL PROBABILITY MECHANISM OF INSURANCE

Models of the annual probability mechanism of insurance fi t to be used in the 
multi-period model of competition-originated cycle must render information 
about at least the year-end risk reserve, year-end portfolio size and downward 
crossings of zero capital level, which is ruin, by the end of the year. The least 
set of the controlled variables is the initial capital, the initial portfolio size, and 
the premium intensity.

Develop the Lundberg-type model of the annual probability mechanism of 
insurance with varying portfolio size, with non-homogeneous income-outcome 
balance and probability of ruin set as a measure of insolvency.

3.1. Migration of insureds

Emigration of insureds, or insurer’s market share losing, as time goes on, is 
induced by excess of P over PM. In terms of price-to-market ratio d (P )  =  P /
PM that is equivalent to d (P )  >  1. Market share gain is induced by P below 
PM, which is equivalent to d (P )  <  1. In the sequel we often omit the argument 
in d (P ) for notation simplicity.

DEFINITION 3.1 (Migration rate functions). For P  !   P s (P  !   Ph) and price-
to-market ratio d (P )  =  P /PM, introduce a set Y  =  {rd  (s), s  H  0} of positive 
continuous functions, such that rd  (0)  =  1 uniformly on d   !   R+. Assume that 

(i) for d  >  1, the function rd (s) is monotone decreasing in s   !  R+, and 
rd1

(s)  <  rd2
(s) for all s   !   R+, as d1  >  d2  >  1,

(ii) for 0  <  d  <  1, the function rd (s) is monotone increasing in s   !  R+, and 
rd1

(s)  >  rd2
(s) for all s   !   R+, as 1  >  d2  >  d1,

(iii) for d  =  1, the function rd (s), s   !   R+, is identically unit.

The functions from the set Y are called migration rate functions. The positive 
function rd  =  rd (+ 3), d  >  0, is called ultimate migration rate function.
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One has from (i)-(iii), that r1  =  1 and rd decreases from r0  =  supd  <  1   rd   H  1 to
r+3   =   infd  >  1  rd   !   [0, 1], as d increases from 0 to + 3. The function rd may be 
discontinuous. If  r0  <  3, the ultimate immigration is bounded, and the insur-
er’s capacity is fi nite. If  r+ 3  =  0, the ultimate emigration is total. If  r+ 3  >  0, it 
is not. 

DEFINITION 3.2 (Share functions). For a set Y  =  {rd (s), s  H  0} of migration 
rate functions and for the initial portfolio size l  >  0, introduce a set Yl of  
continuous positive functions ld (s) of time s   !   R+, such that 

 ld (s)   =   lrd (s),  s  H   0. (5)
 

Call5 the functions from the set Yl market share or portfolio size functions.
Evidently, one has lr+ 3(s)   G   ld (s)   G   lr0(s), s  H   0.

DEFINITION 3.3 (Intensity functions). Call 

 ( ( , 0,ds t,d d
t

0
HlL l s)t =) #

intensity function corresponding to the portfolio size function ld (s), s  H  0.
The following lemma is straightforward.

LEMMA 3.1. For t  H  0, l  >  0, one has 

 
( ) ( ) ( ) , as 1

( ) ( ) ( ) , as 1 0

d d

d d

< < < <

> > > > >

, , ,

, , ,

d d

d d

1 2 1

1 2 1

1 2

1 2

l

l

L L L

L L L

=

=

l l l

l l l

t t t t

t t t t

,

.

PROOF. The proof is straightforward from Defi nitions 3.1-3.3. ¡

Examples of the ultimate migration rate functions rd abound. Each positive 
function M (d ), d  H  0, which is monotone decreasing from M (0) to M (+ 3), 
as d increases from 0 to + 3, yields

 3)) /( / (1), where (0) / (1) 1, ( (1) 0.M M r M M r M Md 0 H H= = =3+dr +

To be specifi c, pick up arbitrarily two constants 0  G  c  <  1  <  C and construct 
rd such that C  =  r0, c  =  r+ 3. Set 

 + + rdr rr( ) / ( ), ,d 0d H=
- -

l

r e e  (6)

5 For brevity, write ℛ1  =  ℛ.
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where l  >  0 and r  =  c / (C  –  c)  >  0, r   =   – ln ((1  –  c)  /  (C  –  c))  >  0. It is notewor-
thy that the function rd is as closer to the step function 

 

, ,

, ,

, ,

C d

d

c d

0 1

1 1

1

< <

>

d = =r

Z

[

\

]]

]]

as larger is taken the power l.
To set examples of migration rate functions Y , introduce 

 s ss r r=- -( ) ( ) 1 ( )(1 ), [0, ]r r e e s td d d d != - - - -+ 1 1 , (7)

called exponential migration rate function. Since e – s  G  1, as s  H  0, and rd (s) 
depends on rd linearly,

 r+s s s( ) ( ) ( ) ( ) ( ), [0, ] .r r r r r s td 0 0 0G G != - + - =3 3 3+ + +
s sr - -1 e e1

In the case d  =  1, one has rd (s)  /  1, and the portfolio all the time remains 
unchanged. In the case d  > 1 (emigration) the value 1  –  rd   >  0 is the rate of ulti-
mate emigrants and (1  –  rd )  (1  –  e – s ) is the portion of the ultimate emigrants who 
left the portfolio by time s. In the case d  <  1 (immigration) rewrite (7) as

 =s ss d( ) ( ) ( ) ( ), [ , ],r r e e s t1 1 1 1 0d d d !- - + - -- -= r r

where rd   –  1  >  0 is the rate of ultimate immigrants and ( rd   –  1) (1  –  e – s ) is the 
portion of the ultimate immigrants who joined the portfolio by time s. The 
migration rate functions (7) yields 

 
t

t

s r

r

d

d

( ) ( ) ( ) ( )

( ) ( 1) .

ds e

t e t

,d d
t

d0
l l l

l l

L = = + - -

= - - + -

l
-

-

t tr 1 1

1

#
 (8)

Exponential migration may be exceedingly quick. Introduce k  >  0 and call 

   s k-k-s r rd d( ) ( ) ( ) ( ) ( ( ) ), [ , ],r r s s t1 0d d != + - + = - - - +1 11 1 1  (9)

power migration rate function. Since (1  +  s)  –  k  G  1, as s  H  0, and since rd (s) 
depends on rd linearly, for s  !  [ 0, t ] one has 

 r ss s s( ) ( ) ( ) ( ) (1 )(1 ) ( ) .r r r r r s rk
d

k
0 0 0G G= + - + + - + =3 3 3+ + +

- -1 1
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That yields 

 

t
t

t
t

r k
r

r k
r

d

d

d

d

( )
( ) (( ) ) / ( ), ,
( ) ( ),

( ) [ (( ) ) / ( )], ,
( ) ( ( )), .

ln

ln

k
k

t k
t k

1 1
1

1 1
1

,d
d

k

d

k

1

1

!

!

l l
l l

l l
l l

L =
+ - + - -

+ - + =

=
- - - + - -

- - - + =

l

-

-

t
tr
tr

t
t

1 1
1

1 1
1

1
1

1
1

*

*

 (10)

Note that e – t  +  t  >  1, t  >  ((1  +  t)1  –  k  –  1)  /  (1  –  k), t  >  ln (1  +  t), as t  >  0, in
Eq. (8), (10). Bearing in mind that 1  –  rd  >  0 in the case of  outgo (as d  >  1) 
and 1  –  rd   <  0 in the case of infl ow (as d  <  1) of insureds, one has migration-
originated adjustment terms for L1, l(t)  =  lt in Ld, l(t).

It is noteworthy that surveys of policy holders6 accentuate migration rate 
functions with rd (t)  >  0, which agrees with our models.

REMARK 3.1. The families Y l may be further sophisticated. Firstly, one may 
deal with random migration rate functions rather than with deterministic ones. 
Secondly, the dependence structure may be set more complex. For example, if  
migration of  insureds accelerates, as the initial risk reserve u decreases or 
increases, one may refi ne Eq. (6) and set rd  (u)  =  (e – r(u) d l (u)  + r(u))  /  (e – r(u)  +  r(u)) 
with appropriately chosen positive l(u), r(u) and r(u).

3.2. Migration and surplus process

Apply the classical Lundberg’s approach to model the non-homogeneous risk 
reserve process under migration.

DEFINITION 3.4 (Claims arrival process). For P  !   P s (P  !   Ph), price-to-mar-
ket ratio d (P )  =  P / PM and initial portfolio size l, the claims arrival process is 
a non-homogeneous Poisson process nd, l (s), s  !  [ 0, t ], with intensity function 
Ld, l (s)   =   l

s
d0

# (z) dz, s  !  [ 0, t ], where ld (s), s  !  [ 0, t ], is a function from Yl 

corresponding to P, d (P) and l.
It is well known that Ld, l (s)  =  End, l (s), s  !  [ 0, t ].

6 Quote from Subramanian (1998), p. 39: “Surveys of policyholders have consistently demonstrated 
some reluctance to switch insurers. In a survey of 2462 policyholders by Cummins et al. (see Cum-
mins et al. (1974)), 54% of respondents confessed never to have shopped around for auto insurance 
prices. To the question “Which is the most important factor in your decision to buy insurance?”, 
40% responded the company, 29% the agent, and only 27% the premium. A similar survey of 2004 
Germans (see Schlesinger et al. (1993)) indicated that, despite the fact that 67% of those responding 
knew that considerable price differences exist between automobile insurers, only 35% chose their 
carrier on the basis of their favorable premium. Therefore, we will assume that, given the opportunity 
to switch for a reduced premium, one-third of the policyholders will do so”.
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DEFINITION 3.5 (Total claim amount process). Assume that i.i.d. claim amounts 
Yi , i  = 1, 2, …, are independent on the claims arrival process nd, l (s), s  !  [ 0, t ]. The 
total claim amount process is the compound non-homogeneous Poisson process 

 Yis( ) ,Z ,
1

(

d
i

,d

=
n l s

l

)

=

/  (11)

as nd, l (s)  >  0, or zero, as nd, l (s)  =  0,  s  !  [ 0, t ] .

DEFINITION 3.6 (Premium income process). For P  !   P s (P  !   Ph), d  =  P / PM and 
initial portfolio size l, the premium income process is a non-random process 

 s (l zL
s s

( ) ) ( ) , [0, ]P P dz P r z dz s td d0 0
!l= =,d l ,# #  (12)

where ld (s), s  !  [ 0, t ], is a function from Yl corresponding to P, d and l.

DEFINITION 3.7 (Risk reserve process). For P  !   Ps (P  !   Ph ), d (P)  =  P / PM, for 
the initial portfolio size l  >  0 and for u  >  0 called initial risk reserve, the ran-
dom process 

 s s s( ) ( ) ( ),R u P Z, , ( ), ( ),u P d P d PL= + -l l l  (13)

as nd, l (s)  >  0, or u  +  P Ld, l (s), as nd, l(s)  =  0, s  !  [ 0, t ], is called risk reserve 
process corresponding to total claim amount (11) and premium income (12) 
processes.

LEMMA 3.2. For the claims arrival process nd, l (s), s  !  [ 0, t ], one has 

 s s( ) ( ( ) ), [0, ]s t, ,d d !n lLl l l /= ,N

where Nl (s), s  !  [ 0, t ], is the homogeneous Poisson process with intensity 
l  >  0. Moreover, for the risk reserve process (13),

 

s s s

s

d

Y

( ) ( ) ( )

[ ] ( ( ) / .

R u P Z

u P

, , ( ),

( ),

( (

u P

d i
i

s

1

(d P

l

L

L

= + -

= + -

l l

l

L

=

l l),

)

( ),

)/ )

d P

P l

l

lN

P

/

PROOF. See Bühlmann (1970), Theorem 1 on p. 38. ¡

LEMMA 3.3. Introduce 

 Ys( ) [ ] , as 0 ( )R u P s s, ,

( )

( ),u P i
i

N s

d
1

Gl lL= +l l
=

l

tPG / .- /  (14)
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For s sL( ) ( ) , 0 ,s t,d G Gt l= l /  one has 

 s s( ) ( ( )), 0 .RR s t, , , ,u P u P G Gt=l l  (15)

PROOF. The proof is standard (see Bühlmann (1970), p. 38-39 and Section 2.2.3, 
or Grandell (1991), Section 2.1 on p. 33, or Asmussen (2000), Remark 1.6 on 
p. 60). The time s sL( ) ( ) , 0 ,s t,d G Gt l= l /  is known under the name of 
operational time. Plainly, the passage of that time is no longer measured in 
calendar units, but in expected number of claims. ¡

REMARK 3.2 (Migration and expected surplus). The ratio g(P)  =  P / EY   !   R+ 
is called (see Defi nition 2.7) price-to-cost. It may be noteworthy that 

 
sE ( ) ( ) E ( ) ( E ) ( )

E ( ( ) ) ( ) .

R u P u Y

u Y g 1

, , , ,

,

u P d d d

d

L= + - = + -

= + -

l l l

l

t t t

tP

L

L

Z P
 (16)

If  the inequality g(P)  >  1 holds true, the averaged risk reserve is ascending, as 
time goes on, since ERu, l, P  (t)  >  u. Conversely, if the inequality g(P)  <  1 holds true, 
the averaged risk reserve is descending, as time goes on, since ERu, l, P  (t)  <  u.

THEOREM 3.1 (Risk reserve distribution for exponential claims). Assume that 
Yi , i  =  1, 2,…, are i.i.d. exponential with intensity m  >  0 (i.e., 1/m  =  EY ) and 
independent on the claims arrival process nd, l (s), s  !  [ 0, t ]. For P  !  P s (P  !  Ph), 
d  =  P / PM, for the initial portfolio size l  >  0 and initial risk reserve u  >  0, and 
for x   !   R
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where I1 (·) is the modifi ed Bessel function of unit order.

PROOF. It is straightforward from Lemma 3.3 and Theorem 2.1 in Malinovskii 
(2008a). ¡

3.3. Migration and probabilities of ruin

Introduce the probability of ruin in the Lundberg’s model with migration, as 
the risk reserve process is non-homogeneous.
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DEFINITION 3.8 (Probability of ruin). For all values of t, u and l positive, for 
P  !   P s (P   !   Ph ), the probability 

 st( ) P ( ) 0inf R <, , 0 , ,u P s t u P
<

=
G

l lc $ . (17)

is called probability of ruin within time t.
Direct corollary of Eq. (15) is 

 s s( ) ( ) .Rinf infR
0 , , 0 ( ) , ,s t u P s t u P

< < ,d

=
G G

l l
L l /l

 (18)

In a competitive business, the insurer may lose some of its insureds and mar-
ket share. So, he receives less in premiums, which makes the probability of ruin 
greater, and pays fewer claims, which makes the probability of ruin less. Either 
of these counteracting factors may dominate. In the same way, the insurer may 
receive more in premiums and pay more claims, as he gains market share.

Examine that effect in the framework of  Lundberg-type model, where 
simultaneous increase (decrease) of cumulative premiums and compound claims 
is introduced as a function of portfolio size, or market share, increase (decrease).

THEOREM 3.2. For all values of  t, u and l positive, the probability of  ruin 
cu, l, P (t) is monotone decreasing, as P  !   P s  (P  !   Ph ) monotone increases.

PROOF. Bearing in mind Eq. (18), one has 
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Recall that d (P)  =  P / PM  >  0. By Lemma 3.1, Ld (P), l (t) monotone decreases, 
as P  !   P s monotone increases. The same holds true, as P  !   P h. Both factors 
which depend on P in the expression for cu, l, P (t) contribute to a monotone 
decrease of cu, l, P (t), as P monotone increases, which completes the proof. 
 ¡

In the case of exponential claim size Yi , i  =  1, 2, …, an explicit expression for 
the annual probability of ruin cu, l, P (t) is available. Denote by In (z) the modifi ed 
Bessel function of n-th order, z   !   R and n  =  0, 1, 2, ….

THEOREM 3.3. Assume that Yi , i  =  1, 2, …, are i.i.d. exponential with intensity 
m  >  0 ( i.e., 1/ m  =  EY ) and independent on the claims arrival process nd, l (s), 
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s   !   (0, t ]. For P  !   P s (P   !   Ph ), d (P)  =  P / PM, g(P)  =  P / EY, for the initial 
portfolio size l  >  0 and for the initial risk reserve u  >  0, one has7 

u
n

(t ( )g1m +)/n 1- +( )
( )
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n e I x g dx1
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u P
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n0 1
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=
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L
- -

+

lum 2
! _ i/ #  (19)

or, alternatively,

 3t
p

( ) ) ( )f x dx1
, , , , , ,u P u P u P0p= -l l l+c ( ,c #  (20)

where8
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PROOF. By Eq. (18), it is straightforward from Corollary 2.1 in Malinovskii 
(2008a). ¡

Examples of numerical evaluation, by means of Theorem 3.3, of the annual 
probabilities of ruin cu, l, P (t) as functions of P for diverse initial portfolio sizes, 
and a reference level a, are shown on Fig. 1.

REMARK 3.3. Theorem 3.3 affords a most well know example of an explicit 
formula for the fi nite time probability of ruin cu, l, P (t). A number of results 
allowing calculation of cu, l, P (t) in a more complicated set-up (see Malinovskii 
(1998), Wang and Liu (2002), Sun (2007) and references therein) are known.

7 For brevity sake, we omit the argument P in the notation for d (P) and g (P).
8 Bear in mind that the right hand side of Eq. (21) does not depend on l.
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3.4. Approximations for the probabilities of ruin

An alternative to diverse procedures of  exact calculation of  cu, l, P (t) are 
approximations. Quite a handful of them is known. The following result is a 
counterpart (in the case t(P)  <  0) of an approximation in Teugels (1982).

THEOREM 3.4. In the assumptions of Theorem 3.3, set t (P( ( ) )a P 2
= - +1) 1  

and (Pt( 1 )b P 1 += /)  and put Ld, l (t)  "  3 , as t  "  3. For t (P )  <  0 and for 
fu, l, P (t)  =  1  –  cu, l, P (t), one has

 
/1 2-t

t t t
1f ( )

( ( ))
( )

( )
( )

( )exp
a

b
e e

b u
O

2 4 1, ,
,

/

/
( ) ( )

,
u P

d

u b a t

d
3 2

3 2
1

3 2
,d

p
m

L L
L=

+
- +l

l

m

l

L- - - l
bum

,d l` j* %4 /

for t( )u O /1 2
G Ld` j, as t  "  3.

PROOF. It is based on Theorem 3.3 where the explicit expression for fu, l, P (t) 
is given. The result is yielded by the expansions technique developed in Section 3 
of Malinovskii (2008b). ¡

Denote by F{0,1}(·) the standard normal distribution function. Of interest are 
the approximations fi t to large u. The following result is suited for t( ( ))u O ,dL= l ,
as t  "  3.

FIGURE 1: Level a  =  0.1 and probabilities of ruin (Y-axis) cu, l1, P (t)  <  cu, l2, P (t), l1  =  1.5  <  l2  =  2.2,
as functions of P (X-axis); P   !   (1, 2) ( i.e., P  !   P s

CL-SL ), when t  =  100, u  =  150, EY  =  2, PM  =  1.
The function Ld, l (t) is defi ned as in (10), with power k  =  1/2 and rd as in (6), where l  =  2, r  =  – ln (2/5), 

r  =  1/5 ( i.e., C  =  2, c  =  1/3 ).
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THEOREM 3.5. In the assumptions of Theorem 3.3, as u  "  3, one has

  (1) for t (P)  =  P / EY  –  1  <  0,

    tM um, ,u Pl (t t t
+

( ) ( ) /csup O{ , } ,
/

t
d0 1

1 2
F L- - =l

/1 2-S uum ,
! R

)_ `a ^i jk h  (22)

where Mt   =  – 1/t, St
2  =   – 2 / t3, and

  (2) for t (P)  =  P / EY  –  1  >  0,

tM, ,u Pl (t tu
t

+

o( ) ( ) / ,csup Ce u e{ , } ,
/k

t
d0 1

1 2mL- - =m- ku-S ul m
! R

F )_ `a _i jk i  (23)

where k  =  t  /  (1  +  t), C  =  1  /  (1  +  t), Mt  =  1  /  (t(1  +  t)),  St
2  =  2/t3.

PROOF. Bearing in mind Eq. (18), the proof of  part (1) of  Theorem 3.5 is 
straightforward from Theorem 5(I) in Malinovskii (1993), or from Section 3.1 
in Malinovskii (2008a), and the proof of part (2) of Theorem 3.5 is straight-
forward from Malinovskii (1994). ¡

REMARK 3.4. Though Theorems 3.4 and 3.5 are known to hold true in a quite 
more general set-up, we bounded ourselves by the Poisson-Exponential frame-
work of this paper. Theorems 3.4 and 3.5 may be formulated in a considerably 
enhanced form. In Malinovskii (1993), the asymptotic expansions in Eq. (22), 
and in Malinovskii (1996a), the corresponding large deviations are obtained 
in a general framework of stopped random sequences which fi ts well Sparre 
Andersen’s model.

In Malinovskii (1994), the asymptotic expansions in Eq. (23), and in 
Malinovskii (1996b), the corresponding large deviations are obtained in the 
framework of Sparre Andersen’s model. The latter means non-trivial approx-
imations for cu, l, P (t), as u, t  "  3 such that u  %  O—    (Ld (t)) and u  &  O—    (Ld (t)).

3.5. Probability mechanism of insurance

Since migration of insureds is modeled in Section 3.1 deterministically, concen-
trate on the annual probability mechanisms with two random components: the 
year-end risk reserve and ruin. For the risk reserve process Ru, l, P (s), s   !   [ 0, t ], 
defi ned in Eq. (13) and for a Borel set A introduce 
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where u   !   R+, d (P)  =  P / PM. Plainly,

 
; ,{ruin} ( ),

; ,{no ruin} P ( ) .

ct A

t A R A

0

0

, , , ,

, , , ,

u P u P

u P u P

G G

G G !

p

p

l l

l l

t

t

^

^

h

h # -

When the time-transformed process (14) is Poisson-Exponential, as in Theorem 3.3, 
more delicate analysis of (24) is possible. In this case one has 
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where t  =  inf{s  >  0  :  Ru, l, P (s)  <  0} is the time of ruin9 and d is the correspond-
ing defi cit at ruin.

The joined distribution of t and d was considered by several authors (see 
Gerber Shiu (1997)). In the Poisson-Exponential case (see Asmussen (1984)) 
t is independent on d ; the latter is exponential with parameter m. It yields 

 

my-

s

sdy

3

3

t

t

( ; {ruin}) P P (( ( ) / ) )

P (( ( ) / ) ) .

t dy ds t A

e ds t A

, ,

( )/

, , ,

( )/

, , ,

u P

t

y d d

t

y d d

0 0

0 0

,

,

d

d

! !

! !

p l

m l

L

L

= -

= -

l

l

l l

l

l l

L

L

-

-

l

l

d ! R

R

,A P

P

$ " $

" $

. , .

, .

# #

# #

The explicit expressions for pu, l, P (t; A, {ruin}) are yielded therefore by the 
results like Theorems 3.1 and 3.3.

4. QUANTIFICATION OF ANNUAL CONTROLS

Annual controls are a few types of building blocks used to create an edifi ce of 
a competitive insurance business model. Seeking for transparency, we quantify 
the annul maneuvers and set control options of aggressive, actively defending 
and neutral companies under the regularity conditions of Theorem 3.3.

These conditions are restrictive and may be weakened considerably at the 
price of  more complicated auxiliary results for probabilities of  ruin within 
fi nite time (see Asmussen (2000), Malinovskii (1994), Malinovskii (1996b), 
Malinovskii (1998), Malinovskii (2000)).

9 Note that {inf0  G  s  G  t Ru, l, P (s)  <  0}  =  {inf0  <  s  G  Ld, l(t) / l Ru, l, P (s)  <  0}  =  {t  G  Ld, l(t) / l}.
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We start with one more assumption which excludes such conventional control 
implements as borrowing or lending of capital, or selling or buying of portfolio 
shares. That simplifying assumption may be easily removed.

ASSUMPTION 4 (Capital and share’s continuity). Let each k-th year’s initial capital 
(portfolio size) be equal to the (k  –  1)-st year-end risk reserve (portfolio size).

4.1. Controls of three types

Controls may be classifi ed with respect to many different factors: active or 
passive; aggressive or defensive; applied mainly in the years of soft, or hard 
market; adaptive, i.e. based on the previous year’s observations, or rigid; inter-
active, or based on the information about the adversary, or non-interactive, 
and so on. Some examples will follow.

CONTROL 1. Let the initial capital be u  >  0 and the initial portfolio size be 
l  >  0. Call (e, a)-control the price P  !   P s (P  !   Ph ) which guarantees e-subsist-
ence and a-solvency, i.e. such that10 

 a( ) ( )cet t, ,d u PH Gl l( )P , . (25)

CONTROL 2. Let the initial capital be u  >  0 and the initial portfolio size be 
l  >  0. Call (lT,  a)-control the price P  !   P s (P  !   Ph ) which makes year-end 
portfolio size equal to the target value lT  &  e  >  0 and guarantees a-solvency,

 ,T a( ) ( )clt t, ,d u P Gl = l( )P . (26)

CONTROL 3. Let the initial capital be u  >  0 and the initial portfolio size be 
l  >  0. Call (uT,  e,  a)-control the price P  !   P s (P  !   Ph ) which makes year-end 
average capital equal to the target value uT  >  0 and guarantees e-subsistence 
and a-solvency,

 T aE ( ) , ( ) , ( )ceR t u t t, , , ,u P d u PH Gl=l l(P .)  (27)

It is readily seen that Controls 2, 3 are active, aimed at the target values lT and 
uT, while Control 1 is not. The constrains of Control 1 are rather vague. It may 
be applied (see Tables 2.2-2.4) by a neutral company �, or by � and �, as 
they cease active operations.

Control 2, as lT  &  l, may be applied (see Tables 2.3 and 2.4) by an aggres-
sive company � which takes heeds about its a-solvency. That control suits an 
“offensive and invasive” share gain.

10 Convenient is notation with market price PM and averaged losses EY shown explicitly, e.g. 
ld (P)(t  |  PM), cu, l, P (t  |  EY, PM ). In the sequel we will use it freely.
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Control 2, as 0  <  lT  %  l, or Control 3, as uT  &  u, may be applied (see 
Tables 2.3 and 2.4) by a defending company � to mobilize it for competition. 
That means to switch from a structure fi t to fulfi l profi table operations to a 
structure fi t to defense. Such defensive evolution trades off  a portion of the 
company’s portfolio for extra capital, and P  !   P h

CW-SL in Quarter DH, while 
P  !   P s

CW-SL in Quarter DS.
Controls 2 and 3 are called interactive, as target values lT and uT depend 

on the adversary’s position. That is indispensable for “close contest” or “struggle 
of  attrition” (see Tables 2.3 and 2.4). Both “close contest” or “struggle of 
attrition” refer exclusively to the case of soft market.

4.2. Quantifi cation of Control 1

Consider prices which guarantee e-subsistence as a function of the initial port-
folio size l. Recall from Section 3.1 that for d (P)  =  P / PM  >  0 and for migra-
tion rate function rd (s), s  H  0, introduced in Defi nition 3.1, the market share 
function is ld (P)(s)  =  lrd (P)(s), s  H  0.

FIGURE 2: Control 1. Shown are functions Pe, t (l  |  P1
M )  <  Pe, t (l  |  P2

M ) (Y-axis; X-axis is l) for P1
M   =  1.2, 

P2
M  =  2.5, e  =  2.0, t  =  55 in the case of exponential (Example 4.1) and power (Example 4.2) migration rate 

functions. The ultimate migration rate is rd   =  (e  – rd l  +  r) / (e  – r  + r), with l  =  2, r  =  – ln(2/5), r  =  1/5
(i.e., C  =  2, c  =  1/3), and l— e,t

[exp]  =  1.0,  le,t
[exp]  =  6.0 and l— e,t

[pow]  =  1.07,  le,t
[pow]  =  4.73.
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DEFINITION 4.1 (Subsistence price as function of share). For all values of e, t 
positive, the solutions Pe, t (l) of the subsistence equation

 ld (P) (t)   =   e (28)

with respect to P  !   P s (P  !   Ph ), considered as a function of initial share l, 
constitute exact upper bound of the set of subsistence prices, of  level e.

MONOTONY LEMMA 1. In the assumptions of Theorem 3.3, for all values of e, t 
positive, for l— e, t  =  er0

 – 1(t), l e, t  =  3+e 1r- (t) and for any EY and PM, the function 
Pe, t (l) of the argument l   !  ( l— e, t,  le, t) is continuous and monotone increasing 
from 0 to + 3, as l increases from l— e, t to l e, t.

PROOF OF MONOTONY LEMMA 1. The proof is straightforward from Defi ni-
tions 2.7, 3.1 and 4.1. ¡

EXAMPLE 4.1. For e  >  0, for the ultimate migration rate rd   =  (e – rd l  + r)  /
(e  – r  + r), d  H  0, set in Eq. (6), with 0  G  c  =  r+ 3  <  1  <  C  =  r0  <  3, and for the 
exponential migration rate function rd  (s)  =  rd   +  (1  –  rd )  e  – s, s  !  [ 0, t ], set in 
Eq. (7), the unique solution of the subsistence equation with respect P  !   P s 
(P  !   Ph ), writes as 

 d d
t1 ee( (P Pl + - =-r r) ) ,_a i k

where 0  <  l— e,t
[exp]   G   l   G   le,t

[exp]. In our particular case l— e,t
[exp]  =  er0

– 1(t), le,t
[exp]  =

3+e 1r- (t), where r0(t)  =  r0  +  (1  –  r0 ) e – t  =  C  +  (1  –  C ) e  – t and r+ 3(t)  =  r+ 3  +
(1  –   r+ 3 ) e – t  =  c  +  (1  –  c ) e – t. The solution may be written explicitly, as 

 +P P,
t

e
r r r1 / .lnP e e1 1t

1 1
;l e l= - - - - -- - - /

/
rM M

l
` ] _a `bj g i k j l% /

EXAMPLE 4.2. For e  >  0, for the ultimate migration rate rd   =  (e – rd l  + r)  /
(e  – r  + r), d  H  0, set in Eq. (6), with 0  G  c  =  r+ 3  <  1  <  C  =  r0  <  3, and for the 
power migration rate function rd  (s)  =  rd   +  (1  –  rd ) (1  +  s) – k, s   !   [ 0, t ], k  >  0,
set in Eq. (9), the subsistence equation with respect to P writes as 

 k-rd - d1 1r t( (l e+ + =P P ,) )_ ^` i h j

where 0  <  l— e,t
[pow]   G   l   G   le,t

[pow]. In our particular case l— e,t
[pow]  =  er0

– 1(t), le,t
[pow]  =

3+e 1r- (t), where r0(t)  =  r0  +  (1  –  r0 ) (1  +  t) – k  =  C  +  (1  –  C ) (1  +  t) – k and r+ 3 (t)  =  
r+ 3  +  (1  –  r+ 3 ) (1  +  t) – k  =  c  +  (1  –  c) (1  +  t) – k.
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FIGURE 3: Control 1 in the year of soft market: EY  =  2, PM  =  1.5. Shown are functions Pa, t, u (l  |  EY, PM ) 
(Y-axis; X-axis is l) for a  =  0.1, t  =  100. From top downward: u  =  50, 100, 150, 200.

The function Ld, l (t) is defi ned as in (10), with power k  =  1/2 and rd as in (6),
where l  =  2, r  =  – ln (2/5), r  =  1/5 (i.e., C  =  2, c  =  1/3).

0 2 4 6 8 10
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

FIGURE 4: Control 1 in the year of hard market: EY  =  2, PM  =  2.5. Shown are functions Pa, t, u (l  |  EY, PM ) 
(Y-axis; X-axis is l) for a  =  0.1, t  =  100. From top downward: u  =  50, 100, 150, 200.

The function Ld, l (t) is defi ned as in (10), with power k  =  1/2 and rd as in (6),
where l  =  2, r  =  – ln (2/5), r  =  1/5 (i.e., C  =  2, c  =  1/3).
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Investigate prices which guarantee a-solvency. Denote by Pa, u (+3) a solution 
of the equation exp{u / P  –  u / EY}  =  aP / EY with respect to P. Mention it that 
Pa, u (+3) is positive and fi nite.

DEFINITION 4.2. (Solvency price as function of share). For all values of a   !   (0,1) 
and t, u positive, the solutions Pa,t, u (l) of the solvency equation

 cu, l, P (t)   =   a (29)

with respect to P  !   P s (P  !   Ph ), considered as a function of initial share l, 
constitute exact lower bound of the set of solvency prices, of  level a.

Verify it that a solution of  the solvency equation actually exists and is 
unique for each l; analyze the solutions as a function of l. To do so, apply 
the explicit formula for cu, l, P (t) yielded by Theorem 3.3.

MONOTONY LEMMA 2. In the assumptions of Theorem 3.3, for all values of 
a   !   (0, 1) and t, u positive, and for any EY and PM, the function Pa, t, u (l) of 
the argument l  >  0 is continuous, convex and monotone increasing from zero 
to 0  <  Pa, u (+ 3)  <  + 3, as l increases from zero to + 3.

PROOF OF MONOTONY LEMMA 2. Continuity, convexity and monotony follow 
from implicit function differentiation arguments analogous to those in the 
proof of Theorem 3.2 in Malinovskii (2008a), applied to the solvency equation 
(29) with the left hand side explicit from Eq. (19); that is a straightforward 
analogue of the proofs in Malinovskii (2008a) and Malinovskii (2008b) and 
requires merely some elementary calculus.
Exact upper bound Pa, u (+ 3) evidently is a solution of the equation liml  "  + 3   

cu, l, P (t)  =  a with respect to P. Since liml  "  + 3  cu, l, P (t)  =  cu, +3, P (t)  =
cu, l, P  (+ 3)  =  cu, +3, P (+ 3) is given by Eq. (21), it rewrites as 

 u1 1 a( ) 1 ( ) .expg P g Pm- - =- -
` j% /

It is noteworthy that Pa, t, u (+ 3)  =  Pa,  +3,  u (+ 3)  >  EY for all values of a   !   (0,1) 
and u positive. ¡

In the case of power migration rate function, when Ld, l (t) is defi ned as in (10), 
the functions Pe, t  (l | PM ) and Pa, t, u (l | EY,  PM ) calculated numerically are shown 
on Fig. 5 and 6.

Quantifying aggressive actions and defensive reactions of interacting com-
panies and using annual (corresponding to particular EY and PM ) Control 1, 
one may use Fig. 5 and 6 to select admissible prices for diverse initial port -
folio sizes l. Those are “moves legally possible”. The set of admissible prices 
lies between Pe, t  (l | PM ) and Pa, t, u  (l | EY,  PM ); its shape for diverse l is “a curved 
bird’s beck” with the edge being the intersection point. The ordinate of the 
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826 V.K. MALINOVSKII

FIGURE 5: Control 1 in the year of soft market: EY  =  2, PM  =  1.2. Shown (Y-axis; X-axis is l)
are Pe, t (l  | PM ), l   !   [ l— e, t, le, t ], with l— e, t  =  er0

 – 1(t)  =  1.07, , l e, t  =  3+er 1- (t)  =  4.73, and Pa, t, u (l  |  EY, PM ) for 
u  =  40, 100, 150 (from top downward), with a  =  0.1, e  =  2, t  =  55. Vertical lines: la, e, t (150)  =  1.65, 

l  =  e  =  2.0, la, e, t (100)  =  2.6, la, e, t (40)  =  4.0. The function Ld, l (t) is defi ned as in (10), with power k  =  1/2 
and rd as in (6), with l  =  2, r  =   – ln (2/5), r  =  1/5 (i.e., C  =  2, c  =  1/3).

FIGURE 6: Control 1 in the year of hard market: EY  =  2, PM  =  2.5. Shown (Y-axis; X-axis is l)
are Pe, t (l  | PM ), l   !   [ l— e, t, le, t ], with l— e, t  =  er0

 – 1(t)  =  1.07, l e, t  =  3+er 1- (t)  =  4.73, and Pa, t, u (l  |  EY, PM )
for u  =  30, 130 (from top downward), with a  =  0.1, e  =  2, t  =  55. Vertical lines: la, e, t (130)  =  1.24, 

la, e, t (30)  =  1.82, l  =  e  =  2.0. The function Ld, l (t) is defi ned as in (10), with power k  =  1/2 and rd as in (6), 
with l  =  2, r  =   – ln (2/5), r  =  1/5 (i.e., C  =  2, c  =  1/3).
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beck’s edge point yields the lowest price among all admissible prices. For l
less than the abscissa of this point, admissible choices of Control 1 there are 
none.

4.3. Quantifi cation of Control 2

Quantifi cation of  Control 2 is similar to quantifi cation of Control 1 up to 
replacement of subsistence equation (28) by the targeting equation

 ld (P)(t)   =   lT , (30)

where lT is set larger than the least allowed level e . Denote by PlT, t (l) the 
solution of (30) with respect to P  !   P s (P  !   Ph ), considered as a function of 
initial share l.

MONOTONY LEMMA 3. In the assumptions of Theorem 3.3, for all values of 
lT, t positive, for l— lT, t  =  lT r0

  – 1(t), llT, t  =  lT 
3+
1r- (t) and for any EY and PM, the 

function PlT, t (l) of the argument l   !   ( l— lT, t, llT, t ) is continuous and monotone 
increasing from 0 to + 3, as l increases from l— lT, t to llT, t .

PROOF  OF  MONOTONY LEMMA 3.   The same as the proof  of  Monotony 
Lemma 1. ¡

EXAMPLE 4.3. For d (P)  =  P /PM  >  0, by Eq. (9) and (6), one has 

 d d( ) 1 1 1r t r t1( (P P
k= - - - + -

) ) ,_ ^_i h i

where rd (P)  =  (e – rd (P)l  +  r) / (e – r  +  r). Eq. (30) rewrites as rd (P)  =  1  –  (1  –  lT / l) /
(1  –  (1  +  t) – k ), and the explicit solution of (30) is 

 
+

P

rr/l k- r

( )

/ / .ln

P

P t e1 1 1 1 1

,

T /
t

M

M l1

T ;

l

=

- - - - + -

l

-

l

r^ _ ^_` `ab h i h ij j kl

In the case of power migration rate function, when Ld, l(t) is defi ned as in (10), 
the functions , tlTP

i
(l | PM ) and Pa, t, u (l | EY,  PM ) calculated numerically are shown 

on Fig. 7 and 8.
Quantifying aggressive actions and defensive reactions of interacting com-

panies and using annual (corresponding to particular EY and PM) Control 2, 
one may use Fig. 7 and 8 to select admissible prices for diverse initial port-
folio sizes l. For l less than the abscissa of  the point of  intersection of

, tlTP
i

(l | PM ) and Pa, t, u (l | EY,  PM ), admissible choices of Control 2 there are 
none.
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828 V.K. MALINOVSKII

FIGURE 7: Control 2 in the year of soft market: PM  =  1.2, EY  =  2.0. Shown ( Y-axis; X-axis is l ) are
P ,tTli

(l | PM ), i  =  1, 2, for 3.5  =  l1
T  <  l2

T  =  5.0, and Pa, t, u ( l | EY, PM ) for a  =  0.1, t  =  55, u  =  30.
The function Ld, l (t) is defi ned as in (10), with power k  =  1/2 and rd as in (6), with l  =  2,

r  =  – ln (2/5), r  =  1/5 (i.e., C  =  2, c  =  1/3).

FIGURE 8: Control 2 in the year of hard market: PM  =  2.5, EY  =  1.5. Shown ( Y-axis; X-axis is l ) are
P ,tTli

(l | PM ), i  =  1, 2, for 3.5  =  l1
T  <  l2

T  =  5.0, and Pa, t, u ( l | EY, PM ) for a  =  0.1, t  =  55, u  =  30.
The function Ld, l (t) is defi ned as in (10), with power k  =  1/2 and rd as in (6), with l  =  2,

r  =  – ln (2/5), r  =  1/5 (i.e., C  =  2, c  =  1/3).
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4.4. Quantifi cation of Control 3

Quantifi cation of Control 3 goes along the lines of quantifi cation of Control 1. 
The additional requirement is the targeting equation

 E Ru, l, P (t)   =   uT, (31)

with respect to P  !   Ps (P  !   Ph ), where uT is the target average capital. By Eq. (16), 
the targeting equation (31) rewrites as 

 u  +  EY ( g (P)  –  1)  Ld (P), l (t)   =   uT. (32)

DEFINITION 4.3 (Capital targeting price as function of share). For all values 
of t, u positive, the solutions Pu  "  uT, t (l) of the targeting equation E Ru, l, P (t)   =   uT 
with respect to P  !   Ps (P  !   Ph ), constitute a function of initial share l, called 
price targeting average capital at point uT.

MONOTONY LEMMA 4. In the assumptions of Theorem 3.3, for all values of 
uT, t, u positive, and for any EY and PM, the function Pu  "  uT, t (l) of the argu-
ment l  >  0 is a constant equal to EY, as u  =  uT, is continuous and monotone 
increasing to EY from below, as u  >  uT, and is continuous and monotone 
decreasing from above to EY, as u  <  uT.

PROOF OF MONOTONY LEMMA 4. The assertion in the case u  =  uT is evident 
from (32). The monotony, as u  >  uT or u  <  uT, is straightforward from
implicit function differentiation arguments analogous to those in the proof of 
Theorem 3.2 in Malinovskii (2008a), and requires merely some elementary 
calculus. ¡

In the case of power migration rate function, when Ld, l(t) is defi ned as in (10), 
the functions Pu  "  uT, t (l  | EY, PM) calculated numerically are shown on Fig. 9 and 
10. Quantifying aggressive actions and defensive reactions of interacting com-
panies and using annual (corresponding to particular EY and PM ) Control 3, 
one must make allowance for the admissible regions shown on Fig. 5 and 6.

5. STRATEGIC MODELING FOR A NEUTRAL COMPANY

For a neutral company �, starting at the top of a prospering phase and eager 
to survive until Quarter UH (see Table 2.2), the competitor is the market as a 
whole11. Consider a cycle directed by the market prices 

11 Or the sequence (33) of the market prices, at which the company can not infl uence. In that sense it 
is referred to as neutral.
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830 V.K. MALINOVSKII

FIGURE 9: Control 3 in the year of soft market: EY  =  2, PM  =  1.2. Additionally (cf. Fig. 5) shown are 
( Y-axis; X-axis is l ) functions Pu  "  uT, t (l | EY,  PM ) with u  =  150 and uT  =  70 (increasing curve)

and u  =  100 and uT  =  120 (decreasing curve).

FIGURE 10: Control 3 in the year of hard market: EY  =  2, PM  =  2.5. Additionally (cf. Fig. 6) shown are 
( Y-axis; X-axis is l ) functions Pu  "  uT, t (l | EY,  PM ) with u  =  130 and uT  =  90 (increasing curve)

and u  =  30 and uT  =  90 (decreasing curve).
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Assume that the main strategic goal of � is “just-survival” (see Section 2.2). 
More formally, that means “to keep the portfolio size above e  >  0, while the 
annual probability of ruin is kept below a  >  0”.

5.1. A multi-period controlled risk model

Model for � the insurance process matching diagram (1). That requires (see 
Malinovskii (2007)  –  Malinovskii (2009a)) a defi nition over the elementary 
state space ( W, F ) of a controlled random sequence (Wk, Uk ), k  =  0, 1, 2, …, 
assuming values from a state space W and a control space U. That is (see 
 Gihman and Skorokhod (1979)) a standard procedure based on the annual 
mechanisms of insurance pk, k  =  1, 2, …, and annual controls gk, k  =  0, 1, 2, ….

To be particular, introduce the state vectors 

 #w w w w, , W , , 0,1,2, ...,R R k0 1� � � �, 2, 3,
k k k k

1
#!= = =

+
` j " ,

whose components are: k-th year-end capital of  �, k-th year-end portfolio size 
of  � and indicator whether � suffered a ruin within k-th year, or not12. The 
components of the control vectors 

 #u u u u, , U , , , ...,k 1 2� � � �, , ,1 2 3
#!= = =

+ + +
k k k k1 1 1 1- - - - R R R` j

are: k-th year starting capital of �, k-th year initial portfolio size of � and k-th 
year premium intensity of  �.

For k  =  1, 2, …, the annual Markov controls are yielded by 

 wu .� �
k1 1g= -k-k 1- ` j  (34)

The corresponding annual transition function of the probability mechanism 
of insurance (see Section 3.5; bear in mind deterministic migration assumed 
in this paper and independence of  the annual interclaim times and claim 
amounts which is a common risk scenario assumption) is 

 
!( )t l

w

R�
!

k k1 1- -u u

w u

w w w

,

P , ( ) , 1

d

d t d d�

� � �

� � �, ,
{ ( }

,

k k k

k k M t k

1

1 2
0

3
<uk 1

!=

p -

-
)

;k 1-

� ,

` j

% /

12 Let w 1�,
k
3

=  means ruin within k-th year, w !1�,
k
3  means survival.
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where ( )t R�
u .inf

k 1- u ( )M s0 <= s
k 1-G t

�

The controlled random sequence (Wk, Uk), k  =  0, 1, 2, …, with the Markov 
control (34) is equivalent to the Markov chain with the transition probabilities 

 w w w w w, ; 1, 2, ...,;P d d k� � � � �

k k k k k k k1 1 1 1p g= =- - - - ,` `aj j k

on the state space (W, W ).
Write Pp, g for the probabilities on the elementary state space ( W,  F ) cor-

responding to the Markov chains with the initial state w �
0  and the transition 

probability P, and denote by Ep,g the expectation with respect to that measure.

5.2. An example of a “just-survival” adaptive strategy

Introduce the following scenario for a company � whose strategic goal is 
“just-survival”.

SCENARIO 1. The evolution of the market prices agrees with Assumption 3. 
Though insurer � can not predict competition intensity over the cycle, i.e. 
neither the whole sequence (33), nor the values ‡DH , ‡DS , ‡US are known to 
him in advance. But watching over �, insurer � can infer correctly about each 
next-year market price.

For k  =  1, 2, …, and for the initial state vector with components 

 w w w0, 0, ,0> >
� � �, , ,3

0
1

0
2

0 =

let the Markov strategy g for � be composed of the following annual controls. 
If  w ! 1,�,

k 1
3
-  one has13 

 

,e k k,

u w

u w

u w wP P Y Pw

� �

� �

� � �
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, ,

, ,

, ,
, ,

,

k

t k t k

1 1

2
1

2

3
1

2
1

2
1, �

k 1
!

=

= -

- --

M M

k 1- ,

E

,

k

k

k

1

1

1

-

-

- , ,Pa aa k kk

 (35)

provided (call that k-th year non-voidness condition)

 ,e k kw w E , .P P Y Pw
� �

a
,

, ,
,

t k t k1
2

1
2

, �
k 1
1

- --

M M
H Pa ak k  (36)

13 The market price Pk
M is known by Scenario 1.
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It is noteworthy that, by Assumption 3, Pk
M  =  P�

k  –  1, k  =  2, 3, …, until � remains 
aggressive. In that sense adaptive control (35) is interactive.

Both solvency and subsistence properties of the strategy g composed of the 
annual controls (35) are straightforward from the defi nition.

THEOREM 5.1. In the framework of the multi-period controlled risk model for 
�, for the strategy g defi ned in Eq. (35),

 th th afirst ruin occurs
in year

first fall of portfolio size
below occurs in yearP esup

w

,p g

�
0

, G- -
# #+ + { }0! R R

k k( () 2 23

for k  =  1, 2, ….

COROLLARY 5.1. In the framework of Theorem 5.1, for n  =  1, 2, …

 

th

th thP
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a

ruin within
years occur

portfolio size at the end
of year is below
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in year
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n
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,G
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-
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# #=
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+ +

{ }

{ }

0

0w

g
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!

R R

R R

n

k k

( ()

( ()

2 23

2 23/

Further quantifi cation of the strategy g composed of the annual controls (35), 
including verifi cation of  non-voidness condition (36), is a straightforward 
application of results of Section 4.2.

5.3. Optimized adaptive strategy

Optimize the strategy g composed of annual controls (35) to enable survival 
for � during as lengthy soft market, as possible.

The optimal behavior of � is to earn as much capital as possible in the pros-
pering phase, to reduce the portfolio size to the least allowed size e  >  0 at the 
edge of the soft market phase, and to keep it minimal until the beginning of the 
next prospering phase. The market share traded off for capital timely means reduce 
of the losses and secure of the capital needed for a longest possible — whichever 
may be the length of the soft market phase — struggle for survival.

So, in Eq. (35) advisable is to choose 
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Quantifi cation of the optimized strategy g, including verifi cation of non-voidness 
conditions, is a straightforward application of results of Section 4.3 or 4.4.

REMARK 5.1. If  additional smoothness constraints descending from practical 
requirements are applied, defensive evolution may be lasting for several years. 
If  the soft market phase is expected soon, advantageous may be to start reduc-
ing the portfolio size in good time, in a year k  <  ‡DH suffi ciently close to ‡DH, 
but such that Pk

M / EY  >  1 is still large.

6. STRATEGIC MODELING FOR COMPETITIVE COMPANIES

Assume that at the height of a prospering phase, which remains the starting 
point for our considerations, there are two dominating companies on the mar-
ket: one aggressive �, another defending �. The former means that � initiated 
the competition-originated cycle by applying prices 

 1 1 2 2 3 ,P P P P P Y> > > >
��M M M g= = E

which triggered the concerted industry’s response (see Section 2.3). The latter 
means that the assaulted company � is able to actively compete, and is able 
to initiate its own concerted industry’s response.

Assume fi rst (see Section 2.2) that the strategic goal of aggressive � is just 
“to win a share”, or “to win a share and not to be ruined whichever the response 
of � may be”, while the goal of � is “not to be ruined and to ruin the com-
petitor �”. Ruin of � would re-gain for � the formerly surrendered market share, 
and the goal “not to lose a share” is an offshoot of its main strategic goal.

6.1. A multi-period interactive controlled risk model

The multi-period controlled interactive risk model for � and � over the ele-
mentary state space (W, F ) with evolution matching the diagram (2), is based 
on the annual mechanisms of insurance pk  =  (pk

�,  pk
�), k  =  1, 2, …, and annual 
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controls gk  =  (gk
�,  gk

�), k  =  0, 1, 2, …. It is known (see Malinovskii (2007)  –
Malinovskii (2009a)) that a corresponding controlled random sequence (Wk, Uk ), 
k  =  0, 1, 2, …, assuming values from a state space W and a control space U, 
exists.

Set W  =  R  ≈  R+  ≈  {0,1}  ≈  R  ≈  R+  ≈  {0, 1} and U  =  R+  ≈  R+  ≈  R+  ≈  R+  ≈
R+  ≈  R+  . Introduce the state vectors 

 = W,kw w w w w w w, , , , , 1, 2, ...,k� � �, , , , ,� �

k k k k k k
1 2 3 2 3

=
,�1

!` j

whose components are: k-th year-end capital, k-th year-end portfolio size and 
indicator whether ruin has occurred in the k-th year, or not, for � and � 
respectively. The components of the control vectors 

 = ,u u u u u uu , , , , , 0,1, 2, ...,U k� � � � �
1

,
1

,
1

,
1 1

,
1

,
k k k k k kk

1 2 3 2 3
1 =- - - - - --

�,1
!` j

are: k-th year starting capital, k-th year initial portfolio size and k-th year pre-
mium intensity, for � and � respectively.

For k  =  1, 2, …, consider the annual Markov controls 

 uk – 1   =   gk – 1 (wk – 1 ). (37)

The corresponding annual transition function of the probability mechanism of 
insurance (see Section 3.5; bear in mind independence of the annual interclaim 
times and claim amounts which is a common risk scenario assumption) is 

 !

!
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/

where infR R�inf �
k k1 1- -u u u u( ) ( ), ( ) ( ) .M t M ts t s t0 0< <= =

G G
s s

k k1 1- -

��

The controlled random sequence (Wk, Uk), k  =  0, 1, 2, …, with the Markov 
control (37), becomes equivalent to the Markov chain with the transition prob-
abilities 

 ,ww ; ( ) , , ...,P d k 1 2k k k k k k k1 1 1 1p g= =- - - - ;w w wd ,_ _i i

on the state space (W,  W ).
Write Pp, g for the probabilities on the elementary state space (W,  F ) cor-

responding to the Markov chains with transition probability P, and denote by 
Ep, g the expectation with respect to that measure.
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6.2. A glance at competition “of elimination”

Introduce the following scenario (see Section 2.6, Table 2.4) for two companies 
� and �, whose strategic goals are highly antagonistic.

SCENARIO 2. The evolution of the market prices agrees with Assumption 3. 
The initial strategic goal of the aggressive insurer � starting with portfolio of 
small size w ,�

0
2 , but possessing large initial capital w �,

0
1 , is “to win a share” 

according to the business plan

 0 ...< < < <
� �T, T, T,� l ll1 2 3 ,

where �T,lk  is a directive target value for k-th year. Defense of � starts with 
portfolio of large size w ,�

0
2 , but relatively small capital w ,�

0
1 . The strategic goal 

of both players, as soon as aggression of � is triggered off  and � is forced to 
defend, is to eliminate the adversary.

The competition “of elimination” consists of the following periods.

I. For �: aggressive market share gain. For k  =  1,2,…, and for the initial state 
vector with components 

 w w w0, 0, 0,> >
� �, , ,�

0 0
1 2 3

0 =

the adaptive Markov strategy of � is governed by an increasing directive tar-
get values �T,lk , k  =  1, 2, …, and consists of the following annual controls: if
w ! 1,, �

k 1
3
-  set14

 

k,

w

w

wu

u

u

,

,

P P

�

� �

� �

, ,

, ,

, ,

�

t

1 1

2 2

3 2

=

=

= l

k k

k k

k k
M

1 1

1 1

1 1k

- -

- -

- -
,T � ,a k

provided k k
�w ,l , w .P P Yw

�

a, ,
,

t k 1
2

, �
k 1
1

--t Pk
M M

1k - E,2
,�T H Pa ak k  Quantifi cation of that 

segment of the strategy g straightforwardly applies the results of Section 4.3.

I. For �: defensive evolution. For k  =  1, 2, …, and for the initial state vector 
with components 

 w w w, ,0 0 0> >0 0 0 =
�,1 � �, ,2 3

14 The market price Pk
M is known by Scenario 1.
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the adaptive Markov strategy of � is governed by the sequence 

 k a( ) , 1, 2, ...,c c t kw
� �

k 1
G= =

-

and consists of the following annual controls: if  w ! ,1, �

k 1
3
-  set 

 

k,c
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w

w
k

u

u

u

,

,

P Pw
�

,
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t
3

,�
k 1
1

=

=
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�

� �
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, ,

, ,

1 1

2 2

�,

k k

k k

k k
M

1 1

1 1

1 1
2

- -

- -

- - ,a k

 (38)

provided ,e k k,w c w
k

.P P P Pw
,

,
�

t k t1
2

,�
k 1
1H- -

�
�,M

k
M

1
2
-a ak k  Quantifi cation of that 

segment of the strategy g straightforwardly applies the results of Section 4.3 
or 4.4.

REMARK 6.1. Evidently, the control (38) is interactive since u
,�

k 1
3
-  explicitly 

depends on wk 1-
,�2  through kc � , and adaptive since it depends on wk 1-

�,2 .

II. For � and �: close contest. As the portfolio sizes become even 

 w wk k1 1- -
,�2 ,�2

. ,

the prices of � and � may be chosen evenly,

 k k,cl , k
w wP P P Pw,k t k1 1

,�
k 1
1

- --
�

,�
t

2 ,�2
k

.,�T
M M ,a ak k

and decreasing year-by-ear, falling eventually below EY. That company has an 
advantage whose capital, w �

k 1
1
-
,  or wk 1-

�1, , is somewhat larger, and whose prob-
ability of ruin is therefore smaller. That phase may embrace the prosperous 
phase, but is pertinent to the soft market one. Quantifi cation of that strategy 
g’s segment applies the results of Section 4.2 or 4.3.

III. For � and �: struggle of attrition. That phase is relevant to soft market. 
As company � decides to cease the annual premiums reduction below the 
past-year market price, the company � wages aggression instead, by reducing 
its prices. The company � becomes defending, while � aggressive. On that 
spiral competition the capital of both � and � is expending over each convo-
lution, and the probability of  ruin increases for both. That company has an 
advantage, whose capital is larger, and whose probability of ruin is therefore 
smaller.
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IV. For � or �: victory or defeat. The struggle of attrition, if  not stopped 
with a truce, comes to a shortage of capital and to victory or defeat of � or �.

7. FURTHER RESULTS ON QUANTIFICATION OF ANNUAL CONTROLS

This section contains a few among a range of results useful to quantify the 
annual controls. An inventory of  such results would help to construct the 
strategies fi t to pursue competitive goals, whichever they may be. Remarkable 
are closed-form analytical expressions, if  available.

7.1. Solvency prices as function of initial capital

Introduce the following defi nition.

DEFINITION 7.1. (Solvency prices as function of  capital). For all values of 
a   !   (0, 1) and t, l positive, the solutions Pa, t, l (u) of  the solvency equation 
cu, l, P (t)  =  a with respect to P  !   P s (P  !   Ph ), considered as a function of 
capital u, constitute a function called solvency prices, of  level a.

MONOTONY LEMMA 5. In the assumptions of  Theorem 3.3, for a   !   (0, 1), 
t,  l   !   R+ fi xed and for any EY and PM, the price function Pa, t, l (u) is continu-
ous, concave and monotone decreasing, as u increases.

PROOF OF MONOTONY LEMMA 5. It is straightforward from implicit function 
differentiation arguments analogous to those in the proof of Theorem 3.2 in 
Malinovskii (2008a), and requires some elementary calculus. ¡

The functions Pa, t, l (u  |  EY,  PM ) in the years of soft and hard market calculated 
numerically are shown on Fig. 11 and 12.

7.2. Solvency capital as function of initial share

Useful is the following defi nition.

DEFINITION 7.2 (Solvency capital as function of  share). For all values of 
a   !   (0,1), t positive and P  !   P s (P  !   Ph ), the solutions ua, t, P (l) of the solvency 
equation cu, l, P (t)  =  a with respect to u, considered as a function of  initial 
share l, constitute a function called solvency capital, of  level a.

MONOTONY LEMMA 6. In the assumptions of  Theorem 3.3, for a   !   (0, 1), 
t   !  R+ and P   !   P fi xed, and for any EY and PM, the function ua, t, P (l) increases, 
as l increases.

PROOF OF MONOTONY LEMMA 6. That proof applies implicit function dif-
ferentiation arguments analogous to those in the proof of  Theorem 3.2 in 
Malinovskii (2008a) and requires some elementary calculus. ¡
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 COMPETITION-ORIGINATED CYCLES AND INSURANCE STRATEGIES 839

FIGURE 11: Functions Pa, t, l (u  | EY,  PM ) (Y-axis; X-axis is u ) in the year of soft market:
EY  =  2, PM  =  1.5. Here a  =  0.1, t  =  100 and (from top downward) l  =  10, 6, 4, 2.

The function Ld, l (t) is defi ned as in (10), with power k  =  1/2 and rd as in (6), where l  =  2,
r  =  – ln (2/5), r  =  1/5 (i.e., C  =  2, c  =  1/3).

FIGURE 12: Functions Pa, t, l (u  | EY,  PM ) (Y-axis; X-axis is u ) in the year of hard market:
EY  =  2, PM  =  2.5. Here a  =  0.1, t  =  100 and (from top downward) l  =  10, 6, 4, 2.

The function Ld, l (t) is defi ned as in (10), with power k  =  1/2 and rd as in (6), where l  =  2,
r  =  – ln (2/5), r  =  1/5 (i.e., C  =  2, c  =  1/3).
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FIGURE 13: Functions ua, t, P (l  |  EY,  PM ) (Y-axis; X-axis is l ) in the year of soft market:
EY  =  2, PM  =  1. Here a  =  0.1, t  =  100, P   !   P s

CL- SL and (from top downward) P  =  1.4, 1.5, 1.6, 1.7, 1.9, 2.0.
The function Ld, l (t) is defi ned as in (10), with power k  =  1/2 and rd as in (6), where l  =  2,

r  =  – ln(2/5), r  =  1/5 (i.e., C  =  2, c  =  1/3).

FIGURE 14: Functions ua, t, P (l  |  EY,  PM ) (Y-axis; X-axis is l ) in the year of hard market:
EY  =  2, PM  =  3. Here a  =  0.1, t  =  100, P   !   P h

CW- SW and (from top downward) P  =   2.00, 2.02, 2.05, 2.10, 
2.15, 2.20, 2.40. The function Ld, l (t) is defi ned as in (10), with power k  =  1/2 and rd as in (6), where l  =  2,

r  =  – ln(2/5), r  =  1/5 (i.e., C  =  2, c  =  1/3).
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The functions ua, t, P (l  |  EY,  PM ) in the years of soft and hard market calculated 
numerically are shown on Fig. 13 and 14.

Address a closed-form approximation for ua, t, P (l) which holds true which-
ever the loading t(P)  =  P / EY  –  1 on premium P may be, and irrespectively of 
soft (i.e., PM  <  EY ) or hard (i.e., PM  >  EY ) market.

THEOREM 7.1. In the assumptions of Theorem 3.3, for all values of a   !   (0, 1/2), 
t, m, l and P positive and such that Ld (P), l (t)  "  3, as t  "  3, one has

(1) for P  <  EY (negative loading on premium P) and a constant15 0  <  ca, P  <
{ , }0 1F

1- (1  –  a),

 /1 2P +a,P( ) (E ) E (2 ( )) (1), as ,u Y c Y t O ta, , ( ), (t P d P d P " 3l m L L= - + ),l l

(2) for P  =  EY (zero loading on premium P) and ca  =  { , }0 1F
1- (1  –  a / 2)  >  0,

/1 2
+a( ) (2 ( )) (1) as ,u c Y t O ta, , (Et dY Y " 3l m L= ,E ),lE

(3) for P  >  EY (positive loading on premium P),

a( ) ( )
1 ( )

1 ( ) .lim lnua, ,t t P l m t
t

t= -
+

+
"3 P

P
P^_ hi

PROOF. The proof of part (2) of Theorem 7.1 is straightforward from Theo-
rem 4.1 in Malinovskii (2008b). The proof of part (1) and (3) of Theorem 7.1 
are straightforward from parts (1) and (2) of  Theorem 3.5. ¡
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