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Compared to the known univariate distributions for continuous data, there are rel-
atively few available for discrete data. In this article, we derive a collection of 16
flexible discrete distributions by means of conditional Poisson processes. The cal-
culations involve the use of several special functions and their properties.

1. INTRODUCTION

Compared to the great multitude of continuous univariate distributions, there are
relatively few choices available with respect to univariate discrete distributions.
This is evident from the length of the compendiums of distributions available in the
literature; see Johnson, Kotz, and Balakrishnan [2,3] for continuous distributions
and Johnson, Kotz, and Kemp [4] for discrete distributions.

In this article, we present a collection of new discrete distributions. These are gen-
erated by means of conditional Poisson processes (Ross [6]); suppose {N(7), 1= 0},
where N(t) denotes the number of events during a time period of length ¢, is a Pois-
son process with rate parameter A. If g(A) denotes the probability density function
(p.d.f.) of A, then the unconditional distribution of N(z) can be written as

Pr{N(1) = n} = f M 2(A) dA. )

Now a discrete distribution for N(z) can be generated by substituting a valid form
for g(A). In this article, we generate a collection of discrete distributions for N(z)
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by taking g(A) to belong to 16 flexible families. The calculations use several spe-
cial functions, including the integral cosine defined by

* cos t
ci(x) = —f — df,

t

the integral sine defined by
*© sint
si(x) = — —dt,
.t

the incomplete gamma function defined by

I'(a, x) :f t* Lexp(—1t)dt,

the error function defined by

erfc(x) = 1— —f exp(—t?) dt,

the modified Bessel function of the third kind defined by

FT(E) e
K0 3y g ), et =0

the parabolic cylinder function defined by
exp(—x%/4) (= t?
D,,(x) = €Xpy— tx+ — Ii(p+l) dt,
I'(=p) 0 2

the | F; hypergeometric function (also known as the confluent hypergeometric func-
tion) defined by

/\
e \

i p Xk
1 Fi(a;b;x) = E m

=0 (b), k!’
the | F, hypergeometric function defined by

- (a)k xk

Fy(a;b,c;
b6 = 2 ) 0k
and the Kummer function defined by
r'(1-b) r(b-1)
V(a,b;x) = ————— Fi(a;b;x) + —————x'""% | F,(1 + a — b;2 — b;x),
r(1+a-—>) I'(a)
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where (f);, =f(f +1)---(f + k — 1) denotes the ascending factorial. The proper-
ties of these special functions can be found in Prudnikov, Brychkov, and Marichev
[5] and Gradshteyn and Ryzhik [1].

The details of the derivation for (1) are not given in this article and can be
obtained from the authors. The structural properties of N(r) are also not given since
they can be obtained directly from those of A. For example, the mean and the vari-
ance of N(t) are

E(N(1)) = tE(A)
and
Var(N(t)) = tE(A) + t>Var(A),
respectively. Thus, these follow directly by knowing E(A) and E(A?); see Johnson
et al. [2,3].
2. DISCRETE MODELS

In this section, we provide a collection of formulas for Pr{N(z) = n} by taking g to
belong to 16 flexible families.

Beta distribution: If g takes the form

W AP = Q) !
8 = 7 .
B(p,q)
for 0 < A < 1, then
t"B(p + n,q)
Pr{N(t) = n} = 2P g Fi(p+n;p+q+n—r1).
n!B(p,q)

If g takes the form of the generalized beta distribution given by
A=a)? "(b—r)7!

S -
for a < A < b, then
— n n n
Pr{N(t) = n} = GZI!);(—;IZ ;)(k)a"k(b — a)*B(k + p,q)

X Fi(k+ p;k+p+ q;—t(b — a)).

Uniform distribution: If g takes the form

oL
g()—b_a
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for a < A < b, then

I'n+1,ta) —T'(n+1,1tb)
m!(b —a)

Pr{N(t) = n} =

Inverted beta distribution: If g takes the form
2 (h) = AT 14+ A) ek
B(a, B)
for A > 0, then
t"T(n+ a)V(n+a,n—B+1;t)
n!'B(a, B) '

Exponential distribution: If g takes the form

g(A) = Bexp(—BA)

Pr{N(t) = n}=

for A > 0, then

pt"
- (t+ p)"+! :
Gamma distribution: If g takes the form

B! exp(—BA)
I'a)

Pr{N(t) = n}

g(A) =

for A > 0, then

Be"T (n + a)

PN =t = L omt + gy

Rayleigh distribution: If g takes the form
g(A) = 2B%Aexp{—(BA)*}

for A > 0, then

Pr{N(t) =n} = pymr )t [exp(q—>erfc<i>]

n! g™ 4p2 2B

q=t
Stacy distribution (¢ = 2): If g takes the form

2B X% exp{—(AB)*}
I'a)

g(A) =
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for A > 0, then

P L lma=n2nT (p + 2 ) (i)D (;)
r{N(t) = n} = BT () exp g7 | Pne Vg

If 2« is an integer, then the above reduces to the simpler form

Pr{N(t) = n} = Vm gt g [exp( 1 )erfc<i>]

n'T(a) ag" et @ 2B

Pareto distribution of the first kind: If g takes the form
g(A) = aker !
for A > k, then

a(kt)*T'(n — a, kt)

n!

Pr{N(1) = n} =

Pareto distribution of the second kind: If g takes the form
g(A) =ar*(A+c¢) !
for A > 0, then

all(n+a+1)(tc)"
Pr{N(t) = n} = ‘ Y(n+a+1,n+1;t).
n!

Inverse Gaussian distribution: If g takes the form
¢ ¢ 1
A= |—e A expy——(A+—
g0 = |5 exp(@)A V2 expy — S (A + 5

2 " @n-1)/4
\/_d)\;%i('(b)t (21‘?‘(1)) Kn—]/z( ¢(2t+d)))

Half Normal distribution: If g takes the form

2 A2
g(A) = \/\iﬂ—a eXp{_F}

for A > 0, then

Pr{N(t) = n} =

for A > 0, then
—t n an 20_2 o
Pr{N(t) = n} = ) exp 1 erfc 97
n!  dq" 2 \/5
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Half logistic distribution: If g takes the form

23 exp(—pBA)

S i

for A > 0, then

w (=2
Pr{N(t) = n} =2Bt" D} ( L ){r +(k+1)B} "L

Half Cauchy distribution: If g takes the form

2 /\2 —1
S
T o
for A > 0, then

Pr{N(t) = n} = 2:’: [a"" {sin <ta - ?)ci(ta) — cos (toz - ?) si(ta)}

[rn/2]
+7m D (n =2k (=) |

k=1

Half ¢ distribution: If g takes the form

2 /\2 —(1+wv)/2
e (1)
§ \vB(%,v/2) v
for A > 0, then
Pr{N(t) = n}
20727 r( ) F 1+v | v—n l+v—n t’v
= |t~ 1+ ; s
W B(L,/2) R ) W 2 2 4
N e
+ B ,
2 2 2
1+n 1 n—v t’v
X Fy e T ;
2 2 2 4
=2y —p—1 n+2
— B ,
2 2 2
24+4n 3 3+n—v %
X F, 5T, s —— |-
2 2 2 4
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If (1 + v)/2 is an integer, then the above reduces to the simpler form

2(3*1})/21}1//2(_1)n+(uf1)/2tn 9" 9 (v—1)/2
( ) 8(p,2)

Pr{N(t) = n} = (v = 1)/2)'B(X,v/2)n!  dp"

- 9
20z p=t,z=~r

where

sin(pz)ci(pz) — cos(pz)si(pz)
- .

g(p,2) =

Fréchet distribution: If g takes the form
Y Y
A) = —expl|——
g(A) v p( A)
for A > 0, then

2(,yt)(rz+l)/2
n!

K, (2\yt).

Pr{N(t) = n} =

Pearson type VI distribution: If g takes the form

_ L(p)(b—a)’ ' (A = b)1
I'(p—q—DT(g+1D(A—a)’

g(A)

for A =b > a > 0, then

T'(p)t" exp(—bt) S (") ki
(p—q—l)r(q+1)n!kzo(k>b Pty

PrN() = n} =

XW(g+k+1,g—p+k+2;t(b—a)).

3. CONCLUSIONS

We have generated a collection of 16 flexible discrete distributions. The definition
of the conditional Poisson process is used as the mathematical tool. We hope that
this work will help to address the inadequacy of the number of distributions avail-
able to model discrete data.
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