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We present a detailed derivation and analysis of a model consisting of seven coupled delay

differential equations for louse-borne relapsing fever (LBRF), a disease transmitted from

human to human by the body louse Pediculus humanus humanus. Delays model the latency

stages of LBRF in humans and lice, which vary in duration from individual to individual, and

are therefore modelled using distributed delays with relatively general kernels. A particular

feature of the transmission of LBRF to a human is that it involves the death of the louse,

usually by crushing which has the effect of releasing the infected body fluids of the dead louse

onto the hosts skin. Careful attention is paid to this aspect. We obtain results on existence,

positivity, boundedness, linear and nonlinear stability, and persistence. We also derive a basic

reproduction number R0 for the model and discuss its dependence on the model parameters.

Our analysis of the model suggests that effective louse control without crushing should be

the best strategy for LBRF eradication. We conclude that simple measures and precautions

should, in general, be sufficient to facilitate disease eradication.

Key words: Louse-borne relapsing fever, vector-borne disease, epidemic, delay, stability, basic

reproduction number

1 Introduction

Infectious diseases associated with human lice can be lethal if not promptly or effectively

treated. One such disease is louse-borne relapsing fever (LBRF), which is caused by a

spirochaete bacteria called Borrelia recurrentis, transmitted by the body louse Pediculus

humanus humanus. The bacteria B. recurrentis is related to Borrelia duttonii, which causes

another type of relapsing fever known as tick-borne relapsing fever (TBRF). In this paper,

we present a detailed derivation and analysis of a mathematical model for LBRF.

In the absence of proper treatment, mortality due to LBRF can vary from 10% to 40%,

decreasing with treatment to 2%–5% (Raoult et al. [14], Cutler et al. [3]). Patients

experience episodes of fever, headache, muscle and joint aches and nausea, and in the

absence of treatment, illness can be severe (Badiaga et al. [1], Southern and Sanford [16]).

After a first remission, the spirochaetes reappear in the blood causing a relapse, giving

rise to the name of the disease. Without treatment there may be several relapses, but

LBRF can be treated using antibiotics [1]. Due to antigenic variation of Borrelia strains,

infection confers a partial immunity. The relapsing phenomenon is not within the scope
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of the present paper, since it requires detailed modelling of the immune response within

a human host and the fact that B. recurrentis has evolved effective immune evasion

strategies (Meri et al. [12]).

In the first half of the last century, LBRF reached epidemic levels after World Wars I

and II, especially in refugee camps in eastern Europe, the former Soviet Union and Africa.

In more recent times, there have been a number of LBRF outbreaks in Ethiopia, Sudan,

Burundi, Rwanda and the Democratic Republic of the Congo (Raoult et al. [14], Hoch

et al. [8], Ciervo et al. [2]). Historically, the disease was common in places involving

refugees, asylum seekers, homeless people, prisoners and slum dwellers. Outbreaks tend

to be exacerbated by the combination of cold weather and lack of hygiene. This can be

explained by the fact that people are likely to be wearing more clothing in such conditions,

and if this is shared and unwashed, conditions become very suitable for the spread of

body lice and the body fluids of dead lice, and the diseases they carry.

While TBRF can infect dogs and deer as well as humans and is transmitted by tick bites,

LBRF is transmitted from human to human via the body louse P. humanus humanus. Very

importantly, it is transmitted only by crushed infectious lice (Raoult et al. [14], Badiaga

et al. [1]). We assume that only humans are hosts. A body louse can only become infected

by B. recurrentis bacteria and become a disease carrier if it feeds on the blood of an

infectious human. The chemical reactions in the louse start with the ingestion of the

bacteria within its midgut, where the bacteria multiply over a period of about 6 days.

After that time, transmission to another human is possible if the infectious louse has

been crushed dead. Crushing an infectious louse releases its infected body fluids onto the

person’s skin. The B. recurrentis bacteria can penetrate intact mucosa and skin and enter

the bloodstream, where they multiply (Southern and Sanford [16]). The transfer of bacteria

to human skin can be via clothes or bedding, and thus disease transmission from human

to human is a possibility in situations where people share unwashed clothes or bedding

that is soiled with the body fluids of crushed lice (Raoult et al. [14], Badiaga et al. [1]).

An infectious living louse does not transmit LBRF disease when it bites a susceptible

human, unless the louse is crushed. This is, however, a likely possibility because of the

tendency of people to scratch their bites.

There have been numerous studies of vector-borne diseases associated with flying insects

such as mosquitoes and midges. For example, the midge-borne disease bluetongue has been

modelled and analysed by Gubbins et al. [5], Hartemink et al. [7], Gourley et al. [4] and

others. However, less attention seems to have been given to the mathematical modelling of

the dynamics of diseases transmitted by non-flying insects including LBRF. Whether the

vectors can fly or not has some implications for the details of the modelling, but many of

the basic principles, including the way we model the latency stage, apply to both flying and

non-flying vectors. There have been a few previous modelling studies specifically of lice

populations. These include studies of head lice by Laguna and Risau-Gusman [11] who

used Leslie and Lefkovitch matrices, body lice in sheep flocks (Horton and Carew [9]) and

the recent PhD dissertation of Palmer [13] that is specifically on relapsing diseases. The

most important difference between the model of LBRF in this paper and recent models

of diseases such as bluetongue that are carried by flying insects is that the transmission

of LBRF from a louse to a human involves the death of the louse. A living infectious

louse does not transmit LBRF disease. The total biomass of dead lice is highly relevant,
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and we have a variable for it, since the infected body fluids from crushed lice are present

on clothing and bedding.

This paper presents a detailed mathematical model, in the form of a system of seven

delay differential equations, for the vector (lice) and host (human) populations. Delays

enter into the model because of the need to take account of the latency times of the

disease in both humans and lice. We formulate the model equations in Section 2 and

then establish basic properties of the model. Further analysis including linear stability,

dynamics of the disease and its persistence, and global stability are presented in Section 3.

In Section 4, we discuss our findings.

2 The model

To formulate a mathematical model for LBRF, we introduce susceptible S(t), exposed

E(t) and infectious I(t) components for both hosts (humans) and vectors (lice). We apply

subscripts h and v to denote hosts and vectors, respectively. We use an additional variable

Cv(t) to denote the biomass of crushed lice, because it is via crushed lice that human to

human transmission occurs. We model the infection rate using mass action normalised by

total host density Nh(t) = Sh(t) + Eh(t) + Ih(t), with each transmission coefficient denoted

by β with appropriate subscripts (βvh and βhv are the transmission coefficients for vector

to human, and human to vector, respectively).

The E (exposed) variables take into account the latency stages of LBRF in humans

and lice, which are modelled using distributed delays. A distributed delay formulation

is appropriate for situations, such as this, in which the latency stage is not of a fixed

duration. Its duration varies considerably between individuals and is usually between four

and eight days in humans.

Let Fv(η) be the probability that a louse is still in the exposed class η time units

after becoming infected, having had a blood meal from an infectious human. Then,

Fv : R+ → R+,

Fv(0) = 1 and Fv(∞) = 0.

We write Fv(η) in terms of a probability density function fv : R+ → R+, where fv(r) � 0

and

Fv(η) =

∫ ∞

η

fv(r) dr.

Note that ∫ ∞

0

fv(r) dr = 1 and F ′
v(η) = −fv(η).

The probability of a louse remaining alive between times η and t is exp(−(μv + cv)(t− η)),

where μv and cv are the per-capita rates at which lice die naturally or are crushed.

Therefore, the total number of exposed lice at time t is

Ev(t) =

∫ t

−∞
βhv

Sv(ξ)Ih(ξ)

Nh(ξ)
e−(μv+cv)(t−ξ)Fv(t− ξ) dξ, (2.1)

where βhv is the host–vector infection rate, taken here as constant (the effects of seasonality

will be considered in a separate work). In (2.1), the integral sums over all possible times
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ξ ∈ (−∞, t] of infection and the integrand is the number of new infections over an

infinitesimal time interval [ξ, ξ + dξ], multiplied by the probability that those newly

infected lice are still alive at time t and by the probability Fv(t− ξ) that they are still in

the exposed class.

With a similar formulation for the incubation period in humans, the total number of

exposed humans is

Eh(t) =

∫ t

−∞
βvh

Sh(ξ)Cv(ξ)

Nh(ξ)
e−μh(t−ξ)Fh(t− ξ) dξ, (2.2)

where βvh is the vector–host transmission coefficient, μh is the per-capita mortality rate

(due to causes other than LBRF) for humans and

Fh(η) =

∫ ∞

η

fh(r) dr, with

∫ ∞

0

fh(r) dr = 1 and fh(r) � 0.

Note that (2.2) makes the assumption that susceptible humans catch LBRF only from

crushed infectious lice, so that the assumption of mass action leads to the product

Sh(ξ)Cv(ξ) in the integrand.

We propose the following equations for the human (subscript h) population:

S ′
h(t) = bh ((Sh + Eh + Ih) (t)) − βvh

Sh(t)Cv(t)

Nh(t)
− μhSh(t) + νIh(t), (2.3)

E′
h(t) = βvh

Sh(t)Cv(t)

Nh(t)
− μhEh(t) −

∫ t

−∞
βvh

Sh(ξ)Cv(ξ)

Nh(ξ)
e−μh(t−ξ)fh(t− ξ) dξ, (2.4)

I ′h(t) =

∫ t

−∞
βvh

Sh(ξ)Cv(ξ)

Nh(ξ)
e−μh(t−ξ)fh(t− ξ) dξ − (μh + δh + ν)Ih(t), (2.5)

where bh(Sh(t) + Eh(t) + Ih(t)) is the birth rate for humans, ν is the per-capita recovery

rate from LBRF and δh is the human per-capita death rate due to LBRF.

Next, we turn our attention to the lice population. We model this using a stage-structured

approach, but there are differences between our approach here and most stage-structured

models of populations that lump all pre-adult stages together and consider those as

one compartment (often known as the larval stage, even though it includes all pre-adult

stages), with the adults as the sole other compartment. It is an approach that works

well for species in which larvae and adults have completely different characteristics and

inhabit different environments, as is the case with mosquitoes. With lice, the situation is

different. Larval and adult lice have remarkably similar characteristics and can be treated

as indistinguishable as far as LBRF transmission is concerned. However, eggs do not

transmit LBRF. Therefore, in our model, it is the egg stage that is treated separately. All

other life stages, including larvae and adults, are lumped together.

Lice do not transmit LBRF disease to their eggs. Newborns are always susceptible, and

remain so throughout the egg stage. No variable for the number of eggs is necessary in the

model. However, as soon as eggs hatch, the lice larvae are at risk of infection immediately

since they must feed on the host human blood. The time required for eggs to hatch is

predictable and is therefore taken as a fixed constant τ for each egg. We let μe be the

per-capita mortality rate for eggs. The probability of a louse surviving through the egg
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stage is therefore exp(−μeτ). Moreover, since LBRF does not cause death in lice, mortality

of lice post hatching is caused either by crushing (at a per-capita rate cv) or happens at a

per-capita rate μv that accounts for all other causes of louse death. Therefore, we propose

the following equations for the louse (subscript v, standing for vector) population:

S ′
v(t) = e−μeτbv ((Sv + Ev + Iv) (t− τ)) − βhv

Sv(t)Ih(t)

Nh(t)
− (μv + cv)Sv(t), (2.6)

E′
v(t) = βhv

Sv(t)Ih(t)

Nh(t)
− (μv + cv)Ev(t) −

∫ t

−∞
βhv

Sv(ξ)Ih(ξ)

Nh(ξ)
e−(μv+cv)(t−ξ)fv(t− ξ) dξ, (2.7)

I ′v(t) =

∫ t

−∞
βhv

Sv(ξ)Ih(ξ)

Nh(ξ)
e−(μv+cv)(t−ξ)fv(t− ξ) dξ − (μv + cv)Iv(t), (2.8)

C ′
v(t) = cvIv(t) − μbCv(t), (2.9)

where bv(·) is the egg-laying rate for lice, taken to be a function of the total number of

lice and μb is the bacteria clearance rate from the crushed lice. All parameters are strictly

positive except for τ, which is non-negative.

3 Model analysis

3.1 Existence and uniqueness

To determine the initial data that has to be prescribed, and to determine a suitable state

space, one can consider what information would be required for the evaluation of the

right-hand sides of (2.3)–(2.9) at time t = 0. Where delays are involved, initial data usually

has to be prescribed on an interval, which may be (−∞, 0], and the interval in negative

time over which data must be prescribed can differ from one component to the next, as is

the case here. Moreover, the integral equations (2.1) and (2.2) impose constraints on the

admissible initial data.

As the right-hand sides of (2.3)–(2.9) clearly show, for the variables Sh, Sv , Eh, Ih and

Cv , initial data, denoted with superscript 0, must be prescribed for all t � 0. We prescribe

Sh(θ) = S0
h (θ) � 0, Sv(θ) = S0

v (θ) � 0, Eh(θ) = E0
h (θ) � 0,

Ih(θ) = I0
h (θ) � 0, Cv(θ) = C0

v (θ) � 0, for θ ∈ (−∞, 0].
(3.1)

The initial data for the variables Ev and Iv only needs to be given for t ∈ [−τ, 0], and thus

we prescribe

Ev(θ) = E0
v (θ) � 0, Iv(θ) = I0

v (θ) � 0, θ ∈ [−τ, 0]. (3.2)

The initial data for the seven variables must not only be prescribed as above but must

additionally satisfy the constraints

E0
v (0) =

∫ 0

−∞
βhv

S0
v (ξ)I0

h (ξ)

S0
h (ξ) + E0

h (ξ) + I0
h (ξ)

e(μv+cv)ξFv(−ξ) dξ (3.3)

and

E0
h (0) =

∫ 0

−∞
βvh

S0
h (ξ)C0

v (ξ)

S0
h (ξ) + E0

h (ξ) + I0
h (ξ)

eμhξFh(−ξ) dξ, (3.4)
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which come from (2.1) and (2.2), evaluated at t = 0. Note that, while constraint (3.3) is

simply an expression for E0
v (0) in terms of the initial data for certain other variables, the

second constraint (3.4) is an integral equation since the initial data for the variable Eh is

involved in both sides of the equation.

Let BUC(−∞, 0] be the set of bounded uniformly continuous functions on (−∞, 0].

For a Δ > 0 to be chosen, define

CΔ = {φ : (−∞, 0] → R : φ(s)eΔs ∈ BUC(−∞, 0]}

with the norm

‖φ‖CΔ
= sup

s�0
|φ(s)eΔs|.

Then, CΔ is a Banach space. For any particular ξ ∈ (−∞, 0],

S0
h (ξ)eΔξ � sup

ξ�0
|S0

h (ξ)|eΔξ = ‖S0
h‖CΔ

,

and so

S0
h (ξ) � ‖S0

h‖CΔ
e−Δξ

and similarly for the other variables. To determine a suitable Δ for a viable state space,

the integrals on the right-hand sides of (2.5) and (2.8) must be finite for all t � 0 and, in

particular, at t = 0. So, we consider the situation at t = 0. The first of these integrals at

t = 0 is

∫ 0

−∞
βvh

S0
h (ξ)C0

v (ξ)

N0
h (ξ)

eμhξfh(−ξ) dξ �

∫ 0

−∞
βvhC

0
v (ξ)eμhξfh(−ξ) dξ

� ‖C0
v ‖CΔ

∫ 0

−∞
βvhe

(μh−Δ)ξfh(−ξ) dξ

using that Sh/Nh � 1. This expression is finite if C0
v ∈ CΔ and Δ < μh, where we use that

∫ 0

−∞
fh(−ξ) dξ =

∫ ∞

0

fh(ξ) dξ = 1.

If we estimate in the same way the integral arising in (2.8), and use that Ih/Nh � 1, we

conclude finiteness of that integral at time t = 0 if S0
v ∈ CΔ and Δ < μv + cv . Therefore, to

ensure finiteness of both integrals, we choose Δ such that 0 < Δ < min(μh, μv + cv). With

such a choice for Δ we can now construct a suitable state space in which to prove local

existence of a unique solution. If additionally we can show that solutions remain bounded

while they exist (sufficient conditions for this are presented later), then in fact we have

global existence.

We use the subscript t notation with its usual meaning in the theory of delay equations,

i.e., xt is the function with values xt(θ) = x(t + θ), θ � 0. The precise domain for θ is

either (−∞, 0] or [−τ, 0] depending on the solution component. The state of the system

at time t is that entity that contains all the information necessary to predict the solution
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at future times. For system (2.3)–(2.9), the state at time t is

St = (Sht , Eht , Iht , Svt , Evt , Ivt , Cvt )

with the domains for the components being (−∞, 0] for all components except Ev and Iv ,

for which it is [−τ, 0]. In view of the various considerations above, the best choice for the

state space, which we call XΔ, is given as follows:

St = (Sht , Eht , Iht , Svt , Evt , Ivt , Cvt ) ∈ XΔ = CΔ × CΔ × CΔ × CΔ × Cτ × Cτ × CΔ,

where Cτ, which appears twice and relates to the components Ev and Iv , is the Banach

space of continuous functions from [−τ, 0] to R with the supremum norm denoted ‖ · ‖Cτ
.

The space XΔ is a Banach space with the norm

‖S‖XΔ
:= max(‖Sh‖CΔ

, ‖Eh‖CΔ
, ‖Ih‖CΔ

, ‖Sv‖CΔ
, ‖Ev‖Cτ

, ‖Iv‖Cτ
, ‖Cv‖CΔ

).

We will later establish that solution variables always remain non-negative, but for the

purposes of establishing local existence of solutions it can be useful to have the birth

functions defined even for negative arguments. Assume bh(·) and bv(·) are locally Lipschitz

continuous for non-negative arguments. We extend the definitions of bh and bv to negative

arguments by defining bh(N) = 0 = bv(N) for N < 0. Since the birth functions always

satisfy bh(0) = bv(0) = 0, such an extension preserves Lipschitz continuity. We are now in

a position to prove the following theorem on local existence and uniqueness.

Theorem 1 Suppose the prescribed initial data S0 = (Sh0
, Eh0

, Ih0
, Sv0 , Ev0 , Iv0 , Cv0 ) meets the

form and constraints given in (3.1)–(3.4) and that S0 ∈ XΔ, with 0 < Δ < min(μh, μv + cv).

Suppose also that bh, bv : R → R are locally Lipschitz non-negative functions such that

bh(0) = bv(0) = 0. Then, system (2.3)–(2.9) has a unique solution in XΔ defined on an

interval [0, T ) for some 0 < T � ∞.

Proof The proof essentially follows from a well-known standard theory, but we need to

explain how we deal with the integral terms in system (2.3)–(2.9) since these all involve

infinite delay. However, in each integral the contribution from the subinterval ξ ∈ (−∞, 0]

only involves the initial data, which is given. Over any given finite interval of positive time,

solutions of (2.3)–(2.9) can therefore be interpreted as solutions of another system with

finite delay suitable for the application of well known results. To see how this works let

us examine one particular equation with an integral term. Consider the Iv equation (2.8).

Let t# be fixed but arbitrary. On the interval t ∈ [0, t#], the variables satisfy a system of

seven equations that includes the following equation with finite delay, replacing (2.8):

I ′v(t) = �(t) +

∫ t

t−t#
βhv

Sv(ξ)Ih(ξ)

Nh(ξ)
e−(μv+cv)(t−ξ)fv(t− ξ) dξ − (μv + cv)Iv(t),

where �(t) : [0, t#] → � is the known function:

�(t) =

∫ t−t#

−∞
βhv

S0
v (ξ)I0

h (ξ)

N0
h (ξ)

e−(μv+cv)(t−ξ)fv(t− ξ) dξ, t ∈ [0, t#].
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The integral terms in the other equations of (2.3)–(2.9) are dealt with similarly. In

this way, we convert the original system to one with finite delay. The function

�(t) is well defined and continuous, since the initial data is in XΔ. On subinter-

vals of [0, t#], existence and uniqueness of solutions follow from the standard theory

(Hale and Verduyn Lunel [6]). �

3.2 Positivity and boundedness

Non-negativity of solutions can be established easily using an approach that is now

standard. The rigor of this approach has been well established (see, for example, Smith [15,

Theorem 5.2.1, p. 81]). The approach is applied to system (2.3)–(2.9) in the following

manner. In each equation, except for the Eh and Ev equations, we identify the variable

that appears on its left-hand side. Then, every undelayed occurrence of that variable on

the right-hand side is set equal to zero. If what remains of the right-hand side is non-

negative when all remaining variables (delayed and undelayed) are non-negative, then

non-negativity follows. For example, in the Sh equation (equation (2.3)), we set all Sh(t)

terms on the right-hand side to zero leaving

S ′
h(t) = bh((Eh + Ih)(t)) + νIh(t) � 0

when Eh(t), Ih(t) � 0. This test will not establish non-negativity of the Eh and Ev variables.

However, non-negativity of those variables follows from the fact that we have integral

equations for them (see equations (2.1) and (2.2)).

The above approach only establishes non-negativity of solution components. Establishing

that solution components become and remain strictly positive is more difficult, and as we

shall see, it raises a number of delicate issues. We start by establishing strict positivity of

Ih(t) and Iv(t) under certain assumptions. With the help of this, we then identify the class

of initial data that results in all seven variables becoming and remaining strictly positive.

It is the nature of our problem, and in particular its dependence on distributed delay

terms with relatively general delay kernels fh(t) and fv(t), that makes this issue non-trivial.

Proposition 1 Assume that fh and fv are continuous and that, for some η∗ � 0, either

(i) Sh(η
∗)Cv(η

∗) > 0 and fh([−η∗,∞)) �= {0}, or

(ii) Sv(η
∗)Ih(η

∗) > 0 and fv([−η∗,∞)) �= {0},

in either case with the initial functions being continuous. Then, Ih(t) or Iv(t), respectively,

becomes strictly positive at some time, and remains strictly positive as long as the solution

exists.

Proof We prove only the first statement of the proposition. Since fh([−η∗,∞)) �= {0},
there exists ξ∗ � −η∗ such that fh(ξ

∗) > 0 and, since fh is a continuous function, fh(ξ) > 0

in some interval of ξ∗. Moreover, we can arrange so that ξ∗ > −η∗. If ξ is close enough to

η∗, more precisely, if ξ is in some open interval I1 containing η∗, then fh(ξ
∗ + η∗− ξ) > 0.
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Now suppose that Ih(t) ≡ 0 for all t > 0. Then,

∫ t

−∞
βvh

Sh(ξ)Cv(ξ)

Nh(ξ)
e−μh(t−ξ)fh(t− ξ) dξ ≡ 0 for all t > 0.

The above integral evaluated at time t = ξ∗ + η∗ > 0 is

∫ ξ∗+η∗

−∞
βvh

Sh(ξ)Cv(ξ)

Nh(ξ)
e−μh(ξ

∗+η∗−ξ)fh(ξ
∗ + η∗ − ξ) dξ.

Since Sh(η
∗)Cv(η

∗) > 0, and Sh(t) and Cv(t) are continuous, there exists some interval I2
containing η∗ such that Sh(ξ)Cv(ξ) > 0 for all ξ ∈ I2. But

∫ ξ∗+η∗

−∞
βvh

Sh(ξ)Cv(ξ)

Nh(ξ)
e−μh(ξ

∗+η∗−ξ)fh(ξ
∗ + η∗ − ξ) dξ

�

∫
I1∩I2

βvh
Sh(ξ)Cv(ξ)

Nh(ξ)
e−μh(ξ

∗+η∗−ξ)fh(ξ
∗ + η∗ − ξ) dξ > 0.

This contradicts Ih(t) ≡ 0. Hence, Ih(t) must become strictly positive at some time

t > 0. It remains positive thereafter, since it satisfies the differential inequality I ′h(t) �
−(μh + δh + ν)Ih(t). �

The next question that arises is the following: is it true that if one of Ih(t) or Iv(t)

becomes and remains positive, then all other variables necessarily become and remain

positive? We see immediately that, mathematically, this need not follow. There is a scenario

in which Ih(t) > 0 but Iv(t) remains identically zero for all t ∈ R, but it is an exceedingly

implausible scenario biologically. The scenario is that there are no living lice (susceptible,

exposed or infectious) at all, but there are some crushed lice. It is easy to appreciate that

the number of infectious humans Ih(t) would become and remain positive. However, the

numbers of susceptible, exposed and infectious lice could all remain identically zero for all

time. Even in this exceedingly unlikely scenario, Cv(t) will tend to zero as t → ∞ and the

system evolves to a steady state in which there are only susceptible humans, the number

Sh(t) of which satisfies

S ′
h(t) = bh(Sh(t)) − μhSh(t).

Note also that the model (2.3)–(2.9) does not make sense if there are no humans at all,

since the infection rates are divided by total host (human) density Nh(t). Therefore, we do

not consider the scenario in which there are lice but no humans.

Our next proposition aims to capture the minimal assumptions on the initial data that

will ensure that all seven variables become and remain strictly positive. Assumption (ii)

implies there are some humans present initially. The variables need not all become positive

at the same time.

Proposition 2 Suppose that bh(·) and bv(·) satisfy bh(0) = 0 and bv(0) = 0, and are otherwise

strictly positive. Suppose also that fh and fv are continuous and that, for some η∗ � 0,

(i) Sv(η
∗)Ih(η

∗) > 0 and fv([−η∗,∞)) �= {0},
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(ii) at least one of Sh(0), Eh(0), Ih(0) is strictly positive.

Then, all seven variables of system (2.3)–(2.9) become and remain strictly positive.

Proof By Proposition 1, Iv(t) becomes strictly positive at some time t � 0, and remains

strictly positive. Equation (2.9) clearly implies that Cv(t) cannot remain identically zero

for all t � 0, therefore, Cv(t) > 0 for all t sufficiently large. Suppose now that Sv(t) ≡ 0

for all t � 0. Then, (2.6) implies that

0 = e−μeτbv((Sv + Ev + Iv)(t− τ))

so that (Sv + Ev + Iv)(t − τ) ≡ 0 for all t � 0, which is only true if Sv, Ev, Iv ≡ 0 for all

t � −τ, contradicting that Iv becomes and remains strictly positive. Therefore, Sv(t) must

become positive at some time t1. For t > t1,

S ′
v(t) � −Sv(t)

(
βhv

Ih(t)

Nh(t)
+ μv + cv

)

so that

Sv(t) � Sv(t1) exp

{
−

∫ t

t1

(
βhv

Ih(ξ)

Nh(ξ)
+ μv + cv

)
dξ

}
> 0.

Next, we establish strict positivity of Ev(t). Recall that

Ev(t) =

∫ t

−∞
βhv

Sv(ξ)Ih(ξ)

Nh(ξ)
e−(μv+cv)(t−ξ)

∫ ∞

t−ξ

fv(r) dr dξ. (3.5)

Since fv([−η∗,∞)) �= {0}, there exists ξ∗v � −η∗ such that fv(ξ
∗
v ) > 0 and we may choose

ξ∗v such that ξ∗v > −η∗. If ξ is in some open interval I1 containing η∗, fv(ξ
∗
v + η∗ − ξ) > 0.

Also, since Sv and Ih are continuous, there is an interval I2 containing η∗ such that

Sv(ξ)Ih(ξ) > 0 for all ξ ∈ I2.

Now, evaluate Ev(t) at time t = ξ∗v + η∗:

Ev(ξ
∗
v + η∗) =

∫ ξ∗v +η∗

−∞
βhv

Sv(ξ)Ih(ξ)

Nh(ξ)
e−(μv+cv)(ξ

∗
v +η∗−ξ)

∫ ∞

ξ∗v +η∗−ξ

fv(r) dr dξ

�

∫
I1∩I2

βhv
Sv(ξ)Ih(ξ)

Nh(ξ)
e−(μv+cv)(ξ

∗
v +η∗−ξ)

∫ ∞

ξ∗v +η∗−ξ

fv(r) dr dξ.

Note that Sv(ξ)Ih(ξ) > 0 on I1 ∩ I2. Also, ξ ∈ I1 ∩ I2 ⊂ I1 so fv(ξ
∗
v + η∗ − ξ) > 0, i.e., fv(r)

is strictly positive at the lower limit of integration r = ξ∗v + η∗ − ξ on the inner integral.

Also, fv(r) is continuous and non-negative everywhere. Taken together, these facts imply

that ∫ ∞

ξ∗v +η∗−ξ

fv(r) dr > 0,

and therefore Ev(ξ
∗
v + η∗) > 0 and Ev will remain strictly positive after time ξ∗v + η∗.
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Next, we prove that Sh, Eh, Ih become and remain positive. We know by hypothesis that

at least one of Sh(0), Eh(0), Ih(0) > 0. Suppose Sh(t) ≡ 0 for all t > 0. Then, (2.3) implies

0 = bh((Sh + Eh + Ih)(t)) + νIh(t),

which yields that Ih(t) ≡ 0 and bh((Sh + Eh + Ih)(t)) ≡ 0, so that (Sh + Eh + Ih)(t) ≡ 0 and,

in particular, Sh(t) ≡ 0, a contradiction.

Proving that Eh(t) becomes and remains positive is similar to the corresponding proof

for Ev(t) shown above.

The proof that Ih(t) becomes and remains positive is similar to the corresponding

proof for Iv(t) in Proposition 1, but here we do not need to worry about the condition

Sh(η
∗)Cv(η

∗) > 0. That condition holds (with some translate in time) since we have strict

positivity of Sh and Cv for t sufficiently large. Therefore, Ih(t) will become and remain

positive under the condition ∫ ∞

0

fh(t) dt = 1,

because that condition (together with continuity of fh) implies the existence of an interval

of values in which fh(t) > 0, as in the proof of Proposition 1. �

To ensure that solutions are bounded, we first establish the following lemma. It is a

rather general result because it does not require b to be either monotone or bounded. It

admits birth functions that grow, as long as they meet the requirement that b(S) < μS for

sufficiently large S .

Lemma 1 Let b : R+ → R+ be a continuous function. Assume that μ > 0 is such that there

are some values of S for which b(S) > μS , but there exists S0 > 0 such that

b(S0) = μS0 and b(S) < μS for all S > S0.

Define

b̄(S) = sup
0�s�S

b(s).

Then, b̄(S) is monotone non-decreasing, continuous, and

b(S) � b̄(S) ∀S � 0.

Moreover, if S̆ = b0/μ, where b0 = b̄(S0), then S̆ � S0 and b̄(S) < μS for all S > S̆ .

Moreover, if b is monotone non-decreasing on [0, S0], then S̆ = S0.

Proof We prove only that S̆ � S0, and that b̄(S) < μS for all S > S̆ . The truth of the

other statements of the lemma is clear.

Suppose, for contradiction, that S̆ < S0. Then b̄(S0) < μS0 = b(S0). However, from the

definition of b̄, we should have b(S0) � b̄(S0).
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Suppose, for contradiction, that there exists S∗ > S̆ such that b̄(S∗) � μS∗. Then,

b̄(S∗) = sup
0�s�S∗

b(s) = max { sup
0�s�S0

b(s), sup
S0<s�S∗

b(s)}

< max { sup
0�s�S0

b(s), sup
S0<s�S∗

μs} = max {b̄(S0), μS∗}

= max {μS̆ , μS∗} = μS∗,

a contradiction. �

We also require the following lemma, closely related to Proposition 3.3 in Gourley

et al. [4].

Lemma 2 Assume that the hypotheses of Lemma 1 hold, and let S̆ = b0/μ where b0 = b̄(S0).

Let N(t) be differentiable on (0,∞) and satisfy

N′(t) � b(N(t− τ)) − μN(t).

Then,

lim sup
t→∞

N(t) � S̆ .

Moreover, if b is monotone non-decreasing on [0, S0], then S̆ = S0.

With the above results, we may prove the following theorem.

Theorem 2 Suppose that bv and bh are continuous functions. Assume that there exist N0
v > 0

and N0
h > 0 such that

e−μeτbv(N
0
v ) = (μv + cv)N

0
v and e−μeτbv(N) < (μv + cv)N for all N > N0

v ;

bh(N
0
h ) = μhN

0
h and bh(N) < μhN for all N > N0

h .

Define

b̄v(N) = sup
0�η�N

bv(η) and b̄h(N) = sup
0�η�N

bh(η),

and

N̆v = b0
v/(μv + cv), where b0

v = b̄v(N
0
v );

N̆h = b0
h/μh, where b0

h = b̄h(N
0
h ).

Then,

lim sup
t→∞

(Sv(t) + Ev(t) + Iv(t)) � N̆v, (3.6)

and

lim sup
t→∞

(Sh(t) + Eh(t) + Ih(t)) � N̆h. (3.7)

Moreover, if bv is monotone non-decreasing on [0, N0
v ], then N̆v = N0

v , and if bh is monotone

non-decreasing on [0, N0
h ], then N̆h = N0

h .
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Proof The total number of lice Nv(t) = Sv(t) + Ev(t) + Iv(t) satisfies

dNv(t)

dt
= e−μeτbv(Nv(t− τ)) − (μv + cv)Nv(t),

and therefore (3.6) follows from an application of Lemmas 1 and 2. The total number of

humans Nh(t) = Sh(t) + Eh(t) + Ih(t) satisfies

dNh(t)

dt
= bh(Nh(t)) − μhNh(t) − δhIh(t) � bh(Nh(t)) − μhNh(t),

and (3.7) follows from another application of those two lemmas. �

3.3 Existence of disease-free equilibria

System (2.3)–(2.9) may have a disease-free equilibrium in which the E and I variables,

and Cv , are all zero, while Sh = S0
h , Sv = S0

v , where S0
h and S0

v satisfy

bh
(
S0
h

)
= μhS

0
h , (3.8)

e−μeτbv
(
S0
v

)
= (μv + cv) S

0
v . (3.9)

The existence of unique values S0
h > 0 and S0

v > 0 satisfying these equations depends on

the birth rate functions bh(·) and bv(·) and the values of the model parameters that appear

in (3.8) and (3.9). We are assured of the existence of unique S0
h > 0 and S0

v > 0 under

assumptions (A1) and (A2) below. These assumptions essentially state that the birth (or

maturation) rate exceeds the death rate at lower densities, but that deaths outweigh births

at high densities since competition effects then become important and tend to reduce

fecundity. These are minimal, yet reasonable, assumptions for any population in a habitat

where conditions are right for it to thrive, yet there are factors that limit further growth

at high densities.

(A1) bh(Sh) is non-negative with bh(0) = 0 and there exists S0
h > 0 such that

bh(Sh) > μhSh when 0 < Sh < S0
h and bh(Sh) < μhSh when S0

h < Sh.

(A2) bv(Sv) is non-negative with bv(0) = 0 and there exists S0
v > 0 such that

e−μeτbv(Sv) > (μv + cv)Sv when 0 < Sv < S0
v and e−μeτbv(Sv) < (μv + cv)Sv when

S0
v < Sv .

Assumptions (A1) and (A2) are not required for all our results but we shall impose them

as necessary.

3.4 Extinction of the whole lice population

From (3.9) note that, as the per-capita crushing rate cv increases, the steady-state com-

ponent S0
v decreases. For realistic bv(·), if cv is sufficiently large, equation (3.9) has no root

with S0
v > 0. This suggests the following result on extinction (in infinite time) of the whole

lice population.
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Theorem 3 If bv(0) = 0 and bv(·) is non-negative, concave, twice differentiable and such

that

μv + cv > e−μeτb′v(0),

then, for sufficiently large cv , the whole lice population Nv(t) → 0 as t → ∞.

Proof Let Nv(t) = Sv(t) + Ev(t) + Iv(t) be the total number of lice. Then,

dNv(t)

dt
= e−μeτbv (Nv(t− τ)) − (μv + cv)Nv(t). (3.10)

Since bv(·) is concave, a Taylor expansion gives bv(Nv) � b′v(0)Nv and therefore, from (3.10),

dNv(t)

dt
� e−μeτb′v(0)Nv(t− τ) − (μv + cv)Nv(t). (3.11)

The right-hand side of (3.11) increases as Nv(t − τ) increases, since b′v(0) > 0, and this

facilitates the application of a comparison argument. Let Ñv(t) be the solution of

dÑv(t)

dt
= e−μeτb′v(0)Ñv(t− τ) − (μv + cv)Ñv(t)

subject to the same initial data as the variable Nv(t). By Theorem 5.1.1 of [15, p. 78],

Nv(t) � Ñv(t). Since e−μeτb′v(0) < μv + cv , Ñv(t) → 0 as t → ∞. Since 0 � Nv(t) � Ñv(t),

Nv(t) → 0 as t → ∞. �

We now know that if the lice-crushing rate cv is increased to a sufficiently large value, the

whole lice population becomes extinct. Lowering the crushing rate will increase a positive

S0
v , but a sufficiently low crushing rate, as we show later, always eradicates LBRF. This

is because LBRF transmission is only via crushed lice. In fact, LBRF can be eradicated

either by taking cv sufficiently low or sufficiently large (in the latter case because the lice

themselves become extinct).

3.5 Linear stability of the disease-free equilibrium

Assumptions (A1) and (A2) hold, so that there exists a disease-free equilibrium with

S0
h > 0 and S0

v > 0 and all other components zero. We analyse the linear stability of this

equilibrium by linearising the system about it. We introduce small perturbations (the tilde

quantities) defined by

Sh = S0
h + S̃h, Eh = 0 + Ẽh, Ih = 0 + Ĩh,

Sv = S0
v + S̃v , Ev = 0 + Ẽv, Iv = 0 + Ĩv , Cv = 0 + C̃v.

It turns out that the linearisations of the Ih, Iv and Cv equations of (2.3)–(2.9) form

a decoupled subsystem that can be used to show that those variables approach zero

under some conditions. Therefore, we start by considering the Sh and Sv equations and

their linearisations in the case when Ih = Iv = Cv = Eh = Ev = 0. As a starting point,

we prove the following theorem that admits only perturbations in which no disease is
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introduced. Later, we prove Theorem 5 that admits general small perturbations (including

small introductions of disease).

Theorem 4 If (A1) and (A2) hold, b′h(S
0
h ) < μh and

−(μv + cv) � e−μeτb′v(S
0
v ) < μv + cv, (3.12)

then the disease-free equilibrium in which Sh = S0
h and Sv = S0

v is locally asymptotically

stable to small perturbations in which Cv and all E and I variables remain zero.

Proof With Cv and the E and I variables remaining zero, the Sh equation linearises as

follows:

S̃ ′
h(t) = S̃h(t)b

′
h(S

0
h ) − μhS̃h(t). (3.13)

Thus, since b′h(S
0
h ) < μh, S̃h(t) → 0 and therefore Sh(t) → S0

h as t → ∞. Linearising the Sv
equation gives

S̃ ′
v(t) = e−μeτS̃v(t− τ)b′v(S

0
v ) − (μv + cv)S̃v(t)

and the ansatz S̃v(t) = eλt leads to the characteristic equation:

λ + μv + cv = e−μeτb′v(S
0
v )e

−λτ. (3.14)

Assumption (3.12) implies that the roots of (3.14) all have negative real parts, as we

now show. Suppose, for a contradiction, that there exists a root λ∗ of (3.14) such that

Re λ∗ � 0. From (3.14),

|λ∗ + μv + cv| = e−μeτ|b′v(S0
v )|e−(Re λ∗)τ � e−μeτ|b′v(S0

v )|.

Hence, λ∗ lies in the disk in C of radius e−μeτ|b′v(S0
v )|, centred at the point −(μv + cv) ∈ C.

But if

−(μv + cv) < e−μeτb′v(S
0
v ) < μv + cv,

then this disk is contained entirely in the open left side of complex plane, so that Re λ∗ < 0,

contradicting Re λ∗ � 0. However, assumption (3.12) allows the possibility that

−(μv + cv) = e−μeτb′v(S
0
v ),

in which case the above-mentioned disk is in {Re λ < 0} ∪ {0}, requiring us to consider

the possibility that λ∗ = 0. In that case, from (3.14),

μv + cv = e−μeτb′v(S
0
v ) = −(μv + cv),

a contradiction. Hence, Re λ < 0 for all roots of the characteristic equation (3.14). �

Next, we note that the linearisations of the Ih, Iv, Cv equations form a self-contained

subsystem determining those three variables (near to the disease-free equilibrium). More
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precisely, the small variables Ĩh, Ĩv and C̃v are determined by

Ĩh
′
(t) =

∫ t

−∞
βvhC̃v(ξ)e−μh(t−ξ)fh(t− ξ) dξ − (μh + δh + ν)Ĩh(t),

Ĩv
′
(t) =

∫ t

−∞
βhv

(
S0
v

S0
h

)
Ĩh(ξ)e−(μv+cv)(t−ξ)fv(t− ξ) dξ − (μv + cv)Ĩv(t),

C̃v
′
(t) = cvĨv(t) − μbC̃v(t).

Seeking non-trivial solutions of the form (Ĩh(t), Ĩv(t), C̃v(t)) = eλt(c1, c2, c3), we find that λ

must satisfy a characteristic equation that is most easily studied when written in the form

λ + μb =
βvhβhvcvS

0
v f̂h(λ + μh)f̂v(λ + μv + cv)

S0
h (λ + μh + δh + ν)(λ + μv + cv)

, (3.15)

where f̂h and f̂v are the Laplace transforms of fh and fv:

f̂h(λ) =

∫ ∞

0

e−λωfh(ω) dω, f̂v(λ) =

∫ ∞

0

e−λωfv(ω) dω.

We investigate the roots of (3.15) in the next theorem. We denote by R0 the basic

reproduction number for the disease. It takes the form

R0 =
βvhβhvcvS

0
v f̂h(μh)f̂v(μv + cv)

S0
h (μh + δh + ν)(μv + cv)μb

. (3.16)

Later, we shall be introducing other basic reproduction numbers Rh
0 and Rv

0 that relate to

the survival of hosts and vectors in the absence of disease.

Theorem 5 If the hypotheses of Theorem 4 hold and, additionally, R0 < 1 where R0 is

defined by (3.16), then the disease free equilibrium in which Sh = S0
h and Sv = S0

v is locally

asymptotically stable to perturbations involving small introductions of disease.

Proof We prove the theorem by showing that, when R0 < 1, all the roots λ of the

characteristic equation (3.15) satisfy Re λ < 0. That establishes that (Ĩh(t), Ĩv(t), C̃v(t)) →
(0, 0, 0) as t → ∞. It then follows from the integrals (2.1) and (2.2) that the E variables also

approach zero. Having established these facts, as noted earlier, the Sh and Sv equations

and their linearisations can then be considered in the case when all other variables are

zero, and the previous theorem (Theorem 4) yields that the S variables approach their

respective steady-state values.

For a contradiction, suppose (3.15) has a root λ∗ such that Re λ∗ � 0. We have

∣∣∣f̂h(λ∗ + μh)
∣∣∣ =

∣∣∣∣
∫ ∞

0

fh(η)e
−(λ∗+μh)η dη

∣∣∣∣ �

∫ ∞

0

fh(η)e
−(Re λ∗)ηe−μhη dη

�

∫ ∞

0

fh(η)e
−μhη dη
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so that

|f̂h(λ∗ + μh)| � f̂h(μh)

for Re λ∗ � 0. Similarly,

|f̂v(λ∗ + μv + cv)| � f̂v(μv + cv).

Moreover, since Re λ∗ � 0,

|λ∗ + μh + δh + ν| � μh + δh + ν and |λ∗ + μv + cv| � μv + cv.

Therefore, any root λ∗ of (3.15) such that Re λ∗ � 0 should also satisfy

|λ∗ + μb| =

∣∣∣∣∣βvhβhvcvS
0
v f̂h(λ

∗ + μh)f̂v(λ
∗ + μv + cv)

S0
h (λ

∗ + μh + δh + ν)(λ∗ + μv + cv)

∣∣∣∣∣ , (3.17)

which implies

|λ∗ + μb| �
βvhβhvcvS

0
v f̂h(μh)f̂v(μv + cv)

S0
h (μh + δh + ν)(μv + cv)

= μbR0. (3.18)

Hence, λ∗ is in the disk in the complex plane centred at −μb of radius μbR0. Since R0 < 1,

this is incompatible with Re λ∗ � 0. �

Note that R0 → 0 as cv → 0, suggesting that reducing lice crushing (e.g., by not

scratching bites) can help to eradicate the disease. Recall that the disease is transmitted

only by crushed lice. Note also that R0 depends on S0
v , which depends on cv through the

following equation:

e−μeτbv
(
S0
v

)
= (μv + cv) S

0
v .

For realistic bv(·), as cv increases S0
v decreases. Usually, there is no S0

v > 0 when cv is

above some finite value. Thus, R0 < 1 both when cv is sufficiently small and also when cv
is sufficiently large.

3.6 Persistence

The ultimate aim of this section is to establish a set of conditions under which LBRF

disease is persistent in the population. These conditions are stated later, in Theorem 6,

and include the requirement that R0 > 1, where R0 is defined in (3.16).

3.6.1 Persistence of lice and humans in the absence of disease

We start by identifying a minimal set of conditions that will ensure that the susceptible

human and lice populations persist in the absence of LBRF disease. In this situation, the

equations for Sh(t) and Sv(t) are

S ′
h(t) = bh (Sh(t)) − μhSh(t), (3.19)

S ′
v(t) = e−μeτbv (Sv(t− τ)) − (μv + cv)Sv(t). (3.20)
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Define

Rh
0 =

1

μh
lim inf
S→0+

bh(S)

S
, (3.21)

Rv
0 =

1

μv + cv
e−μeτ lim inf

S→0+

bv(S)

S
. (3.22)

The following result establishes persistence of host (human) and vector (louse) populations

in the absence of LBRF.

Proposition 3 Assume that bh(·) and bv(·) are monotonically increasing and satisfy condi-

tions (A1) and (A2) and that Rh
0 > 1 and Rv

0 > 1. Then, if Sh(0) > 0 and Sv(θ) > 0 for all

θ ∈ [−τ, 0], we have

Sh∞ = lim inf
t→∞

Sh(t) > 0 and Sv∞ = lim inf
t→∞

Sv(t) > 0,

meaning that both host and vector strongly persist.

Proof We present only the proof that Sv∞ > 0. The proof that Sh∞ > 0 is similar.

Suppose for a contradiction that lim inf t→∞ Sv(t) = 0. Then, there exists a sequence

tn → ∞ such that Sv(tn) → 0 as n → ∞ and S ′
v(tn) � 0 for all n. Moreover, tn can be

chosen such that Sv(t) � Sv(tn) for all t � tn, so in particular Sv(tn − τ) � Sv(tn) for all n.

Since Rv
0 > 1, we have

1

μv + cv
e−μeτ lim inf

S→0+

bv(S)

S
> 1,

and therefore, for sufficiently large n,

e−μeτbv(Sv(tn)) > (μv + cv)Sv(tn). (3.23)

Using that bv is increasing, Sv(tn) � Sv(tn − τ) and (3.20),

e−μeτbv(Sv(tn)) − (μv + cv)Sv(tn) � e−μeτbv(Sv(tn − τ)) − (μv + cv)Sv(tn) = S ′
v(tn) � 0,

which contradicts (3.23). �

3.6.2 Behaviour of susceptible variables at very low levels of disease

Eventually, we shall prove Theorem 6. Since the proof of that theorem is by a con-

tradiction argument, we first present various results on the properties of solutions of

(2.3)–(2.9) in the situation when disease is present at uniformly low levels (in the sense

that lim supt→∞ Iv(t) < ε, where ε is a small positive number).

Proposition 4 Suppose that ε > 0 is a small positive real number such that

lim sup
t→∞

Iv(t) < ε.
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Then,

lim sup
t→∞

Cv(t) �
cvε

μb
, lim sup

t→∞
Ih(t) �

βvh(2cvε)

μb(μh + δh + ν)
, lim sup

t→∞
Eh(t) �

βvh(2cvε)

μbμh
.

Proof Let ε > 0 be a small positive number and suppose that

I∞v = lim sup
t→∞

Iv(t) < ε.

By the fluctuation method, there exists a sequence (tj), with tj → ∞, such that Cv(tj) → C∞
v

and C ′
v(tj) → 0 as j → ∞, where

C∞
v = lim sup

t→∞
Cv(t).

Since lim supt→∞ Iv(t) < ε, we have, for t sufficiently large,

Iv(t) � ε.

From (2.9),

C ′
v(tj) = cvIv(tj) − μbCv(tj) � cvε− μbCv(tj) for j sufficiently large.

Taking the limit as j → ∞ gives 0 � cvε− μbC
∞
v and so

C∞
v �

cvε

μb
.

Therefore, if the number of infectious lice is uniformly small, then so is the number of

crushed infectious lice. Next, we prove that the number of infectious humans also remains

uniformly small. Since

C∞
v = lim sup

t→∞
Cv(t) �

cvε

μb
,

we have, for sufficiently large t, that the following larger bound holds for Cv(t):

Cv(t) �
2cvε

μb
. (3.24)
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Let T > 0 be large enough so that the estimate (3.24) holds for t � T , and assume that

t > T . We estimate the integral term in (2.5) as follows:

∫ t

−∞
βvh

Sh(ξ)Cv(ξ)

Nh(ξ)
e−μh(t−ξ)fh(t− ξ) dξ �

∫ t

−∞
βvhCv(ξ)e−μh(t−ξ)fh(t− ξ) dξ

=

∫ T

−∞
βvhCv(ξ)e−μh(t−ξ)fh(t− ξ) dξ +

∫ t

T

βvhCv(ξ)e−μh(t−ξ)fh(t− ξ) dξ

�

∫ T

−∞
βvhCv(ξ)e−μh(t−ξ)fh(t− ξ) dξ + βvh

(
2cvε

μb

)∫ t

T

e−μh(t−ξ)fh(t− ξ) dξ

� βvhe
−μh(t−T )

∫ ∞

t−T

Cv(t− η)fh(η) dη + βvh

(
2cvε

μb

)∫ t−T

0

e−μhηfh(η) dη

� βvhe
−μh(t−T )

(
max

t∈(−∞,∞)
Cv(t)

)∫ ∞

0

fh(η) dη + βvh

(
2cvε

μb

) ∫ ∞

0

fh(η) dη

= βvhe
−μh(t−T )

(
max

t∈(−∞,∞)
Cv(t)

)
+ βvh

(
2cvε

μb

)

since
∫ ∞

0
fh(η) dη = 1. Hence,

I ′h(t) � βvhe
−μh(t−T )

(
max

t∈(−∞,∞)
Cv(t)

)
+ βvh

(
2cvε

μb

)
− (μh + δh + ν)Ih(t). (3.25)

By the fluctuation method, there exists a sequence tj → ∞ such that Ih(tj) → I∞h and

I ′h(tj) → 0 as j → ∞, where I∞h = lim supt→∞ Ih(t). Evaluating (3.25) at t = tj , with j

large enough so that tj � T ,

I ′h(tj) � βvhe
−μh(tj−T )

(
max

t∈(−∞,∞)
Cv(t)

)
+ βvh

(
2cvε

μb

)
− (μh + δh + ν)Ih(tj). (3.26)

Letting j → ∞, and noting that the first term in the above inequality tends to zero, gives

I∞h �
βvh(2cvε)

μb(μh + δh + ν)
.

Next, we show that a similar bound holds for the variable Eh. From the differential

equation for Eh(t), equation (2.4),

E′
h(t) � βvh

Sh(t)Cv(t)

Nh(t)
− μhEh(t) � βvhCv(t) − μhEh(t). (3.27)

There is a sequence tj → ∞ such that Eh(tj) → E∞
h and E′

h(tj) → 0 as j → ∞. From (3.27),

E′
h(tj) � βvhCv(tj) − μhEh(tj) � βvh

(
2cvε

μb

)
− μhEh(tj)

for j sufficiently large, using the bound (3.24). Letting j → ∞ yields
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E∞
h �

βvh(2cvε)

μbμh
.

�

Proposition 5 Suppose bh(·) is increasing and satisfies (A1). Suppose that ε is a small

positive real number such that

lim sup
t→∞

Iv(t) < ε.

Then,

lim inf
t→∞

Sh(t) � S̄0
h (ε) and lim sup

t→∞
Sh(t) � Ŝ0

h (ε),

where S̄0
h (ε) and Ŝ0

h (ε) satisfy

bh(S̄
0
h (ε)) = μhS̄

0
h (ε) + βvh

(
2cvε

μb

)
, (3.28)

and

bh

(
Ŝ0
h (ε) +

3βvhcv
μb

(
1

μh
+

1

μh + δh + ν

)
ε

)
+ ν

(
3βvhcvε

μb(μh + δh + ν)

)
= μhŜ

0
h (ε). (3.29)

Proof From the bounds on the limsups of Cv(t), Ih(t) and Eh(t) established in Proposition 4,

the following larger bounds apply for sufficiently large t:

Cv(t) �
2cvε

μb
, Ih(t) �

3βvhcvε

μb(μh + δh + ν)
, Eh(t) �

3βvhcvε

μbμh
.

Using that bh(·) is increasing, Ih(t) � 0 and Sh(t)/Nh(t) � 1, it follows from (2.3) that

S ′
h(t) � bh(Sh(t)) − βvh

(
2cvε

μb

)
− μhSh(t).

It follows that Sh(t) � S̄h(t), where

S̄ ′
h(t) = bh(S̄h(t)) − μhS̄h(t) − βvh

(
2cvε

μb

)
.

Therefore, if ε is sufficiently small, then S̄h(t) → S̄0
h (ε) as t → ∞, where S̄0

h (ε) satisfies (3.28)

and has the property that S̄0
h (ε) → S0

h as ε → 0. By comparison,

lim inf
t→∞

Sh(t) � lim
t→∞

S̄h(t) = S̄0
h (ε).

Also, from (2.3), and using that bh(·) is increasing,

S ′
h(t) � bh

(
Sh(t) +

3βvhcvε

μbμh
+

3βvhcvε

μb(μh + δh + ν)

)
− μhSh(t) + ν

(
3βvhcvε

μb(μh + δh + ν)

)
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so that, by comparison, Sh(t) � Ŝh(t) where Ŝh(t) satisfies the corresponding ordinary

differential equation (i.e., � replaced by = in the above). Moreover, Ŝh(t) → Ŝ0
h (ε) as

t → ∞, where Ŝ0
h (ε) satisfies (3.29). Also, Ŝ0

h (ε) → S0
h as ε → 0. Moreover,

lim sup
t→∞

Sh(t) � lim
t→∞

Ŝh(t) = Ŝ0
h (ε).

�

Proposition 5 implies that, for sufficiently large t,

S̄0
h (ε) − ε � Sh(t) � Ŝ0

h (ε) + ε.

Since the left- and right-hand sides of the above estimate both approach S0
h as ε → 0,

the above estimate establishes that if disease is present at a uniformly low level, in the

sense that lim supt→∞ Iv(t) < ε, the number of susceptible humans Sh(t) remains close to

its steady-state value S0
h in the absence of disease.

Next, we establish an upper bound for Sv(t) that holds under all circumstances (not

only when Ih(t) is small).

Proposition 6 Suppose that bv is a positive bounded function. Then,

lim sup
t→∞

Sv(t) �
e−μeτbsup

v

μv + cv
, (3.30)

where bsup
v = supS�0 bv(S).

Proof From (2.6), S ′
v(t) � e−μeτbsup

v − (μv + cv)Sv(t) and (3.30) follows. �

Next, we establish an upper bound for Ev(t) that applies when Iv(t) remains small. This

bound is similar to those of Proposition 4, but its derivation requires the additional

assumption that the function bv should be bounded.

Proposition 7 Suppose that ε > 0 is a small number such that

lim sup
t→∞

Iv(t) < ε,

and suppose that bv(·) is a bounded function, and that bh(·) is increasing and satisfies (A1).

Then,

lim sup
t→∞

Ev(t) �
βhv

S̄0
h (ε) − ε

(
2e−μeτbsup

v

(μv + cv)2

)(
3βvhcvε

μb(μh + δh + ν)

)
, (3.31)

for ε sufficiently small such that S̄0
h (ε) − ε > 0.
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Proof Since the hypotheses include those of Proposition 4, we may use the upper bound

for lim supt→∞ Ih(t) from Proposition 4, and that for lim supt→∞ Sv(t) from Proposition 6.

From (2.7), for t sufficiently large, we have

E′
v(t) �

βhv

Nh(t)

(
2e−μeτbsup

v

μv + cv

) (
3βvhcvε

μb(μh + δh + ν)

)
− (μv + cv)Ev(t).

But Nh(t) = Sh(t) + Eh(t) + Ih(t) � Sh(t) � S̄0
h (ε) − ε for t sufficiently large, so that

E′
v(t) �

βhv

S̄0
h (ε) − ε

(
2e−μeτbsup

v

μv + cv

)(
3βvhcvε

μb(μh + δh + ν)

)
− (μv + cv)Ev(t)

and therefore (3.31) holds. �

Next, we show that, when the Iv, Ih and Cv variables remain small, Sv(t) remains close

to its steady-state value.

Proposition 8 Suppose that bv(·) is increasing, bounded above and satisfies (A2) and that

bh(·) is increasing and satisfies (A1). Let ε > 0 be a small number such that

lim sup
t→∞

Iv(t) < ε.

Then, Sv(t) remains close to its steady-state value S0
v in the sense that

S̄0
v (ε) � lim inf

t→∞
Sv(t) � lim sup

t→∞
Sv(t) � Ŝ0

v (ε),

where Ŝ0
v (ε) and S̄0

v (ε) respectively satisfy

e−μeτbv

(
Ŝ0
v (ε) +

βhv

S̄0
h (ε) − ε

(
2e−μeτbsup

v

(μv + cv)2

)(
3βvhcvε

μb(μh + δh + ν)

)
+ ε

)
= (μv + cv)Ŝ0

v (ε),

e−μeτbv

(
S̄0
v (ε)

)
=

βhv

S̄0
h (ε) − ε

(
2e−μeτbsup

v

μv + cv

) (
3βvhcvε

μb(μh + δh + ν)

)
+ (μv + cv)S̄0

v (ε).

(3.32)

Note that Ŝ0
v (ε) and S̄0

v (ε) both approach S0
v as ε → 0, where S0

v is given by (3.9).

Proof For t sufficiently large,

Iv(t) � ε and Ev(t) �
βhv

S̄0
h (ε) − ε

(
2e−μeτbsup

v

(μv + cv)2

) (
3βvhcvε

μb(μh + δh + ν)

)
.

Therefore, for t sufficiently large,

S ′
v(t) � e−μeτbv

(
Sv(t−τ)+

βhv

S̄0
h (ε) − ε

(
2e−μeτbsup

v

(μv + cv)2

) (
3βvhcvε

μb(μh + δh + ν)

)
+ ε

)
−(μv+cv)Sv(t).
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By the comparison theorems in Smith [15] and Kuang [10], since bv(·) is increasing,

Sv(t) � Ŝv(t) where

Ŝv
′
(t) = e−μeτbv

(
Ŝv(t−τ)+

βhv

S̄0
h (ε)−ε

(
2e−μeτbsup

v

(μv + cv)2

)(
3βvhcvε

μb(μh + δh + ν)

)
+ ε

)
−(μv+cv)Ŝv(ε),

and again using that bv(·) is increasing, Ŝv(t) generically converges as t → ∞ to the unique

positive steady state Ŝ0
v (ε) that satisfies the first equation of (3.32). Moreover, Ŝ0

v (ε) → S0
v

as ε → 0 and

lim sup
t→∞

Sv(t) � lim
t→∞

Ŝv(t) = Ŝ0
v (ε).

Since bv(·) is increasing, for t sufficiently large, using that Nh(t) � Sh(t) � S̄0
h (ε) − ε,

S ′
v(t) � e−μeτbv (Sv(t− τ)) − βhv

Sv(t)

Nh(t)

(
3βvhcvε

μb(μh + δh + ν)

)
− (μv + cv)Sv(t)

� e−μeτbv (Sv(t− τ)) − βhv

S̄0
h (ε) − ε

(
2e−μeτbsup

v

μv + cv

) (
3βvhcvε

μb(μh + δh + ν)

)
− (μv + cv)Sv(t).

Therefore, Sv(t) � S̄v(t) where S̄v(t) satisfies the ordinary differential equation associated

with the above differential inequality (when we replace � by =), and therefore

lim inf
t→∞

Sv(t) � lim
t→∞

S̄v(t) = S̄0
v (ε),

where S̄0
v (ε) satisfies the second equation of (3.32). Note that, as ε → 0, S̄0

v (ε) → S0
v , the

equilibrium value of Sv in the case of no disease.

Finally, we conclude that, for sufficiently large t,

S̄0
v (ε) − ε � Sv(t) � Ŝ0

v (ε) + ε. (3.33)

Therefore, Sv(t) remains near to S0
v when disease is present at a low level. �

3.6.3 Persistence of disease

With the benefit of the above results, we may present our main result of this section.

Theorem 6 Assume that bh(·) and bv(·) are increasing functions satisfying (A1) and (A2),

respectively. Additionally, assume that bv is bounded above. If R0 > 1, Rh
0 > 1 and Rv

0 > 1,

where R0 is defined in (3.16), and Rh
0 and Rv

0 are defined in (3.21) and (3.22), respectively,

then there exists ε > 0 such that

lim sup
t→∞

Iv(t) � ε,

for all solutions with Sh(0) > 0, Ih(0) > 0, Iv(0) > 0, Cv(0) > 0 and Sv(t) > 0 for some

t ∈ [−τ, 0].
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Proof If the statement is not true, then for any ε > 0 there is a solution such that Iv(0) > 0

and

lim sup
t→∞

Iv(t) < ε,

and the results of the previous propositions hold. By shifting forward in time, we have

0 < Iv(t) � ε, Eh(t) � c1ε, Ih(t) � c2ε,

where

c1 =
3βvhcv
μbμh

, c2 =
3βvhcv

μb(μh + δh + ν)
.

Also, for t sufficiently large, we know from Propositions 5 and 8 that

S̄0
h (ε) − ε � Sh(t) � Ŝ0

h (ε) + ε, S̄0
v (ε) − ε � Sv(t) � Ŝ0

v (ε) + ε.

Since Nh(t) = Sh(t) + Eh(t) + Ih(t), we have Nh(t) � Ŝ0
h (ε) + ε + c1ε + c2ε. Using these

inequalities in equations (2.5) and (2.8) of the model, we obtain

I ′h(t) �

∫ t

0

βvh
(S̄0

h (ε) − ε)Cv(ξ)

Ŝ0
h (ε) + ε + c1ε + c2ε

e−μh(t−ξ)fh(t− ξ) dξ − (μh + δh + ν)Ih(t),

I ′v(t) �

∫ t

0

βhv
(S̄0

v (ε) − ε)Ih(ξ)

Ŝ0
h (ε) + ε + c1ε + c2ε

e−(μv+cv)(t−ξ)fv(t− ξ) dξ − (μv + cv)Iv(t),

where additionally we have replaced the lower limit −∞ on the integrals by zero, since

we may discard the non-negative contribution of
∫ 0

−∞. The Laplace transform can be

applied to inequalities as long as the transform variable is real. Therefore, applying the

Laplace transform operator, denoted by L, and restricting to real values of the transform

variable λ, we obtain

λL{Ih}(λ)−Ih(0) � βvh
S̄0
h (ε) − ε

Ŝ0
h (ε) + ε + c1ε + c2ε

L{Cv}(λ)L
{
e−μhtfh(t)

}
−(μh+δh+ν)L{Ih}(λ),

where we have used the convolution theorem for the Laplace transform. Since

L
{
e−μhtfh(t)

}
= L{fh}(λ + μh),

further simplification, ignoring the non-negative term Ih(0), leads to

L{Ih}(λ) �
1

λ + μh + δh + ν

(
βvh(S̄

0
h (ε) − ε)

Ŝ0
h (ε) + ε + c1ε + c2ε

)
L{Cv}(λ)L{fh}(λ + μh).

Similarly,

L{Iv}(λ) �
1

λ + μv + cv

(
βhv(S̄0

v (ε) − ε)

Ŝ0
h (ε) + ε + c1ε + c2ε

)
L{Ih}(λ)L{fv}(λ + μv + cv),

L{Cv}(λ) =
1

λ + μb
cvL{Iv}(λ).
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Multiplying these inequalities and simplifying,

1 �
1

λ + μv + cv

(
βhv(S̄0

v (ε) − ε)

Ŝ0
h (ε) + ε + c1ε + c2ε

)
L{fv}(λ + μv + cv)

1

λ + μh + δh + ν

×
(

βvh(S̄
0
h (ε) − ε)

Ŝ0
h (ε) + ε + c1ε + c2ε

)
L{fh}(λ + μh)

1

λ + μb
cv.

Letting λ → 0 and then ε → 0, and recalling that Ŝ0
h (ε) → S0

h , S̄
0
h (ε) → S0

h and S̄0
v (ε) → S0

v

as ε → 0, the above inequality takes the form

1 �
βvhβhvcvS

0
v L{fh}(μh)L{fv}(μv + cv)

(μh + δh + ν)(μv + cv)μbS
0
h

= R0,

which contradicts the assumption that R0 > 1. �

3.7 Eradication of disease: the nonlinear regime

In this section, we obtain a condition, stronger than that of Theorem 5, that is sufficient

to establish that the Ih, Iv and Cv variables approach zero as components of the solution

of the full nonlinear model (2.3)–(2.9). There is no linearisation in this result, even though

linear theory features. What happens is that we use comparison theorems to bound the Ih,

Iv and Cv components of the solution by other functions that satisfy a linear system. In

the case of (2.8), handling the denominator term Nh(ξ) presents difficulties due to the need

to retain the Ih(ξ) factor in the integrand for the generation of a linear system suitable

for the application of comparison theory. For (2.5) there is no such problem, Cv(ξ) is

the factor to be retained and so we simply use Sh/Nh � 1. To deal with the difficulties

with (2.8), we need to impose a smallness restriction on the initial numbers of infectious

individuals.

Theorem 7 Suppose the birth functions bh and bv satisfy (A1) and (A2), respectively, and

that both are monotone nondecreasing on [0, S0
h ] and [0, S0

v ], respectively, with bv bounded.

Assume also that

cvβvhβhv

(
e−μeτbsup

v

μv+cv

)
L{fh}(μh)L{fv}(μv + cv)

S0
h (μh + δh + ν)(μv + cv)μb

< 1,

where L denotes the Laplace transform operator. Then, provided that

(i) the variables Ih(t), Iv(t) and Cv(t) are sufficiently small initially,

(ii) the total human population Nh(t) is initially not too far below its disease-free equilibrium

value S0
h ,

(iii) Sv(0) � e−μeτbsup
v /(μv + cv),

then, as components of the solution of the full nonlinear model (2.3)–(2.9), the variables

(Ih(t), Iv(t), Cv(t)) → (0, 0, 0) as t → ∞.
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Proof We begin by defining, indirectly, a certain continuous function φ(ε) that satisfies

φ(0) = 0. We know from (A1) that x = S0
h is the unique positive root of the equation

bh(x) = μhx. If the right-hand side of this equation is changed to μhx+δhkε for sufficiently

small positive ε, then its root drops from S0
h to a smaller value that we call S0

h − φ(ε).

In this way, we implicitly define a function φ(ε), and moreover φ(0) = 0. With φ(ε) thus

defined, let ε > 0 be sufficiently small such that

cvβvhβhv

(
e−μeτbsup

v

μv+cv

)
L{fh}(μh)L{fv}(μv + cv)

(S0
h − φ(ε))(μh + δh + ν)(μv + cv)μb

< 1. (3.34)

Recall that the total number of humans Nh(t) = Sh(t) + Eh(t) + Ih(t) satisfies

N′
h(t) = bh(Nh(t)) − μhNh(t) − δhIh(t).

Suppose that the initial data is such that

Ih(t) � ε for all t � 0, and Sh(0) + Eh(0) + Ih(0) � S0
h − φ(ε),

and suppose that a constant k can be found such that Ih(t) � kε for all t > 0 (this will be

confirmed later, in Proposition 9). Using the bound Ih(t) � kε,

N′
h(t) � bh(Nh(t)) − μhNh(t) − δhkε.

A simple comparison argument together with elementary properties of solutions of one-

dimensional ODEs, and the above remarks concerning the definition of φ(ε), yields that

Nh(t) � min
(
Sh(0) + Eh(0) + Ih(0), S0

h − φ(ε)
)

= S0
h − φ(ε) for all t � 0.

From the proof of Proposition 6, it is clear that our assumption Sv(0) � e−μeτbsup
v /(μv +cv)

implies that

Sv(t) �
e−μeτbsup

v

μv + cv
for all t � 0,

where bsup
v = supS�0 bv(S). Using this information and that Sh/Nh � 1, we obtain from (2.5)

and (2.8) the following system of differential equations and inequalities for Ih, Iv and Cv ,

holding for all t � 0:

I ′h(t) �

∫ t

−∞
βvhCv(ξ)e−μh(t−ξ)fh(t− ξ) dξ − (μh + δh + ν)Ih(t),

I ′v(t) �

∫ t

−∞
βhv

(
e−μeτbsup

v

μv+cv

)
S0
h − φ(ε)

Ih(ξ)e−(μv+cv)(t−ξ)fv(t− ξ) dξ − (μv + cv)Iv(t),

C ′
v(t) = cvIv(t) − μbCv(t).
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By a comparison argument, Ih � Īh, Iv � Īv and Cv � C̄v where

Ī ′h(t) =

∫ t

−∞
βvhC̄v(ξ)e−μh(t−ξ)fh(t− ξ) dξ − (μh + δh + ν)Īh(t),

Ī ′v(t) =

∫ t

−∞
βhv

(
e−μeτbsup

v

μv+cv

)
S0
h − φ(ε)

Īh(ξ)e−(μv+cv)(t−ξ)fv(t− ξ) dξ − (μv + cv)Īv(t),

C̄ ′
v(t) = cvĪv(t) − μbC̄v(t).

We have bounded the solution components Ih, Iv and Cv by new variables that satisfy the

above linear system. A search for non-trivial solutions of the form (Īh, Īv , C̄v) = eλt(c1, c2, c3)

yields the characteristic equation

(λ+μh +δh + ν)(λ+μv + cv)(λ+μb) =
cvβvhβhve

−μeτbsup
v

(μv + cv)(S
0
h − φ(ε))

L{fh}(λ+μh)L{fv}(λ+μv + cv),

(3.35)

where L denotes Laplace transform. Analysis similar to that presented in the proof of

Theorem 5 yields that, if

cvβvhβhv

(
e−μeτbsup

v

μv+cv

)
L{fh}(μh)L{fv}(μv + cv)

(S0
h − φ(ε))(μh + δh + ν)(μv + cv)μb

< 1,

which holds (see early in the proof), then all roots λ of the characteristic equa-

tion (3.35) satisfy Re λ < 0 so that (Īh(t), Īv(t), C̄v(t)) → (0, 0, 0) as t → ∞. Hence,

also (Ih(t), Iv(t), Cv(t)) → (0, 0, 0) as t → ∞. �

The following proposition confirms that if the three variables Ih, Iv and Cv start small,

then they remain small for all t > 0.

Proposition 9 Suppose the hypotheses of Theorem 7 hold and that the initial data is such

that

0 � Ih(t), Iv(t), Cv(t) � ε for all t � 0.

Then, there exists k > 0 such that Ih(t) � kε for all t > 0. Furthermore, k is independent of

the initial data, and is also independent of ε for ε > 0 sufficiently small.

Proof Let

K =
βhve

−μeτbsup
v

(μv + cv)(S
0
h − φ(ε))

with the function φ(ε) defined early in the proof of Theorem 7, and ε again assumed to

be sufficiently small so that (3.34) holds. Then, the differential equations for Īh(t), Īv(t)
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and C̄v(t) that feature in the proof of Theorem 7 can be written as

Ī ′h(t) =

∫ t

−∞
βvhC̄v(ξ)e−μh(t−ξ)fh(t− ξ) dξ − (μh + δh + ν)Īh(t),

Ī ′v(t) = K

∫ t

−∞
Īh(ξ)e−(μv+cv)(t−ξ)fv(t− ξ) dξ − (μv + cv)Īv(t),

C̄ ′
v(t) = cvĪv(t) − μbC̄v(t).

We take the Laplace transform of each equation, splitting the integral as
∫ 0

−∞ +
∫ t

0
and

applying the convolution theorem to the second integral. With L denoting the Laplace

transform operator, and λ the transform variable, we obtain

λL{Īh}(λ) − Īh(0) =βvhL
{∫ 0

−∞
C̄v(ξ)e−μh(t−ξ)fh(t− ξ) dξ

}
+ βvhL{C̄v}(λ)L{fh}(λ + μh)

− (μh + δh + ν)L{Īh}(λ)

and two similar equations, so that

⎛
⎝ λ + μh + δh + ν 0 −βvhL{fh}(λ + μh)

−KL{fv}(λ + μv + cv) λ + μv + cv 0

0 −cv λ + μb

⎞
⎠

⎛
⎝ L{Īh}(λ)

L{Īv}(λ)
L{C̄v}(λ)

⎞
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Īh(0) + βvh

∫ ∞

0

e−λ̄t

∫ 0

−∞
C̄v(ξ)e−μh (̄t−ξ)fh (̄t− ξ) dξ d̄t

Īv(0) + K

∫ ∞

0

e−λ̄t

∫ 0

−∞
Īh(ξ)e−(μv+cv)(̄t−ξ)fv (̄t− ξ) dξ d̄t

C̄v(0)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let A(λ) denote the matrix in the left-hand side. Then,

⎛
⎝ L{Īh}

L{Īv}
L{C̄v}

⎞
⎠=

1

Δ(λ)
(Ajk(λ))

T

⎛
⎜⎜⎜⎜⎜⎜⎝

Īh(0) + βvh

∫ ∞

0

e−λ̄t

∫ 0

−∞
C̄v(ξ)e−μh (̄t−ξ)fh (̄t− ξ) dξ d̄t

Īv(0) + K

∫ ∞

0

e−λ̄t

∫ 0

−∞
Īh(ξ)e−(μv+cv)(̄t−ξ)fv (̄t− ξ) dξ d̄t

C̄v(0)

⎞
⎟⎟⎟⎟⎟⎟⎠
,

where Δ(λ) is the determinant of A(λ), given by

Δ(λ) = (λ+μh+δh+ν)(λ+μv +cv)(λ+μb)−cvβvhKL{fh}(λ+μh)L{fv}(λ+μv +cv), (3.36)

and Ajk(λ) is the cofactor of the element ajk(λ) of A(λ). Note that each Ajk(λ) is analytic

in λ for Re λ � 0.
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We have

L{Īh}(λ) =
1

Δ(λ)

[
A11(λ)

(
Īh(0) + βvh

∫ ∞

0

e−λ̄t

∫ 0

−∞
C̄v(ξ)e−μh (̄t−ξ)fh (̄t− ξ) dξ d̄t

)

+A21(λ)

(
Īv(0) + K

∫ ∞

0

e−λ̄t

∫ 0

−∞
Īh(ξ)e−(μv+cv)(̄t−ξ)fv (̄t− ξ) dξ d̄t

)
+ A31(λ)C̄v(0)

]
.

Taking the inverse Laplace transform,

Īh(t) =
1

2πi

∫ σ+i∞

σ−i∞

eλtdλ

Δ(λ)

[
A11(λ)

(
Īh(0) + βvh

∫ ∞

0

e−λ̄t

∫ 0

−∞
C̄v(ξ)e−μh (̄t−ξ)fh (̄t− ξ) dξ d̄t

)

+A21(λ)

(
Īv(0) + K

∫ ∞

0

e−λ̄t

∫ 0

−∞
Īh(ξ)e−(μv+cv)(̄t−ξ)fv (̄t− ξ) dξ d̄t

)
+ A31(λ)C̄v(0)

]
,

where the integral is the standard Bromwich integral with the quantity σ, in the limits,

taken as any real number that strictly exceeds the supremum of the real parts of the zeros

of Δ(λ). By Cauchy’s residue theorem,

Īh(t) =
∑

{λ:Δ(λ)=0}
Res

[
eλt

Δ(λ)

[
A11(λ)

(
Īh(0)+βvh

∫ ∞

0

e−λ̄t

∫ 0

−∞
C̄v(ξ)e−μh (̄t−ξ)fh (̄t− ξ) dξ d̄t

)

+A21(λ)

(
Īv(0) + K

∫ ∞

0

e−λ̄t

∫ 0

−∞
Īh(ξ)e−(μv+cv)(̄t−ξ)fv (̄t− ξ) dξ d̄t

)
+ A31(λ)C̄v(0)

]]
,

where the summation includes the residues at all the poles of the integrand, i.e., all the

zeros of Δ(λ). But the equation Δ(λ) = 0 is the same as the characteristic equation (3.35)

that arose in the proof of Theorem 7, and therefore its roots all satisfy Re λ < 0. Let λ∗ be

the dominant root of Δ(λ) = 0, so all other roots satisfy Re λ � λ∗ and λ∗ itself satisfies

Re λ∗ < 0. The dominant term in the solution variable Īh(t) will be attributable to the

residue at the dominant root λ = λ∗, and therefore

Īh(t) �
1

Δ′(λ∗)
eλ

∗t

[
A11(λ

∗)

(
Īh(0) + βvh

∫ ∞

0

e−λ∗ t̄

∫ 0

−∞
C̄v(ξ)e−μh (̄t−ξ)fh (̄t− ξ) dξ d̄t

)

+A21(λ
∗)

(
Īv(0) + K

∫ ∞

0

e−λ∗ t̄

∫ 0

−∞
Īh(ξ)e−(μv+cv)(̄t−ξ)fv (̄t− ξ) dξ d̄t

)
+ A31(λ

∗)C̄v(0)

]

=
1

Δ′(λ∗)

[
eλ

∗t
(
A11(λ

∗)Īh(0) + A21(λ
∗)Īv(0) + A31(λ

∗)C̄v(0)
)

+ A11(λ
∗)βvh

∫ ∞

0

eλ
∗(t−t̄)

∫ 0

−∞
C̄v(ξ)e−μh (̄t−ξ)fh (̄t− ξ) dξ d̄t

+A21(λ
∗)K

∫ ∞

0

eλ
∗(t−t̄)

∫ 0

−∞
Īh(ξ)e−(μv+cv)(̄t−ξ)fv (̄t− ξ) dξ d̄t

]
.
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Note that |eλ∗t| = e(Re λ∗)t � 1 for t � 0, since Re λ∗ < 0. Since Īh(ξ), Īv(ξ), C̄v(ξ) � ε for

all ξ � 0,

Īh(t) = |Īh(t)| �
ε

|Δ′(λ∗)|

[
|A11(λ

∗)| + |A21(λ
∗)| + |A31(λ

∗)|

+ |A11(λ
∗)|βvh

∫ ∞

0

eRe λ∗(t−t̄)

∫ 0

−∞
e−μh (̄t−ξ)fh (̄t− ξ) dξ d̄t

+|A21(λ
∗)|K

∫ ∞

0

eRe λ∗(t−t̄)

∫ 0

−∞
e−(μv+cv)(̄t−ξ)fv (̄t− ξ) dξ d̄t

]
=:

ε

|Δ′(λ∗)|Θ(t)

with Θ(t) defined as the expression in the large square brackets. By Fatou’s lemma, and

using that Re λ∗ < 0,

lim sup
t→∞

∫ ∞

0

eRe λ∗(t−t̄)

∫ 0

−∞
e−μh (̄t−ξ)fh (̄t− ξ) dξ d̄t

�

∫ ∞

0

(
lim sup
t→∞

eRe λ∗(t−t̄)

)∫ 0

−∞
e−μh (̄t−ξ)fh (̄t− ξ) dξ d̄t = 0

and similarly for the other integral. It follows that, as t → ∞, Θ(t) → |A11(λ
∗)| +

|A21(λ
∗)| + |A31(λ

∗)| and therefore that Θ(t) is bounded. Moreover, Θ(t) does not depend

on the initial data. The quantity K does depend on ε, but K approaches a finite limit as

ε → 0, since φ(0) = 0. Thus Θ(t) is bounded independently of both the initial data and ε,

for sufficiently small ε, and thus we have a bound for Ih(t) of the form

Ih(t) � Īh(t) � kε

as originally claimed. �

4 Discussion

The parameter from which we can gain the most useful insight is R0, defined by (3.16).

According to the predictions of the linearised theory, small introductions of disease will

be eradicated if R0 < 1. The quantity R0 depends on a number of model parameters

and, as is common, it depends more sensitively on some of these parameters than others.

Moreover, in practice, only some of them are within our control.

The parameter cv , the per-capita crushing rate, features four times in expression (3.16)

in all, comprising three explicit appearances plus an indirect appearance via S0
v , which

depends on cv . Note that S0
v decreases as cv increases for realistic choices of the function

bv(·). We can have R0 < 1 either by taking cv sufficiently small or sufficiently large. In the

former case eradication occurs because it is only crushed lice that transmit LBRF. In the

latter case, it is because sufficient indiscriminate crushing of all (not just infectious) lice

can eradicate LBRF by eradicating the whole lice population. However, the conclusions

that can be drawn from these observations are likely to be of limited value. One would

assume that there is a wish to eradicate the lice themselves, not just the LBRF they

transmit, but eradication of the whole lice population by the sole means of encouraging
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crushing seems ill advised, since it would effectively also encourage scratching. On the

other hand, avoiding crushing eradicates LBRF, because only crushed lice transmit it, but

this approach lets the lice live. A strategy of lice control with a minimum of crushing

would seem promising, and thus we now turn our attention to the parameter μv .

Excluding cv it would appear that, of all the parameters we might expect to be able

to control, R0 is most sensitive to the parameter μv that accounts for the death of

lice (susceptible, exposed and infectious) not attributable to crushing. The parameter μv
features three times in (3.16) in all, when we recall that S0

v depends on μv . For realistic

choices of bv(·), S0
v decreases as μv increases. Since transmission of LBRF to a human

involves the death of the louse, in practice, lice need to be present in large numbers to

sustain the disease and thus reducing S0
v is highly desirable. Also, the Laplace transform

term f̂v(μv + cv), in the numerator of (3.16), decreases as μv increases. All three influences

of μv on R0 have the effect of decreasing R0 as μv is increased. The main implication is that

we should kill lice without crushing them. It is known that the use of insecticides, general

improvements in hygiene and measures such as discarding infected clothes or bedding

(or washing them above 60◦C) are effective measures. Note that they will also have the

effect of increasing μb by removing the infected body fluids of the crushed lice, and an

increase in μb has a decreasing effect on R0 similar (and additional) to the effect on R0 of

an increase in μv . This ability to substantially reduce R0 in simple and inexpensive ways

no doubt explains why LBRF is uncommon nowadays.

A further measure that reduces R0 is improved access to treatment, although R0 is less

sensitive to ν (the per-capita recovery rate from LBRF) than to the parameter μv just

discussed.

A final implication of the formula (3.16) for R0 comes from the presence of the product

βvhβhv , which will be proportional to the square of the biting rate. The biting rate is not

featured explicitly in our model in this paper but will be one of a product of parameters

(including, inter alia, the probability that a bite actually transmits disease) that make up

each transmission coefficient (each β parameter), so that R0 is proportional to the square

of the biting rate. This is a standard property of mathematical models of insect-borne

diseases and highlights the importance of any measure that reduces biting.
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