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This paper numerically investigates the effects of a harmonic volume forcing of
prescribed frequency on the turbulent pipe flow at a Reynolds number, based on bulk
velocity and pipe diameter, of 5900. The thickness of the Stokes layer, resulting from
the oscillatory flow component, is a small fraction of the pipe radius and therefore
the associated vorticity is confined within a few wall units. The harmonic forcing
term is prescribed so that the ratio of the oscillating to the mean bulk velocity (β)
ranges between 1 and 10.6. In all cases the oscillatory flow obeys the Stokes analytical
velocity distribution while remarkable changes in the current component are observed.
At intermediate values β = 5, a relaminarization process occurs, while for β = 10.6,
turbulence is affected so much by the harmonic forcing that the near-wall coherent
structures, although not fully suppressed, are substantially weakened. The present study
focuses on the analysis of the time- and space-averaged statistics of the first- and
second-order moments, vorticity fluctuations and Reynolds stress budgets. Since the
flow is unsteady not only locally but also in its space-averaged dynamics, it can be
analysed using phase-averaged and time-averaged statistics. While the former gives
information about the statistics of the fluctuations about the mean, the latter, postponed
to a subsequent paper, shows how the mean is affected by the fluctuations. Clearly, the
two phenomena are connected and both of them deserve investigation.

Key words: pipe flow boundary layer, wave–turbulence interactions

1. Introduction
Many engineering problems are characterized by flow unsteadiness determined by

a harmonic-like time-varying forcing superposed onto a stationary component; these
flows are usually referred to as pulsating or pulsatile flows. Examples of relevant
applications concern biological flows (pulmonary ventilation or blood flow in aortic
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and coronary arteries) and environmental flows (flow over the ocean bed or sediment
transport in coastal water).

The oscillatory component of motion may be generated artificially by a rotating
or popped valve, like those present in variable-displacement pumps, or it may result
from an interaction problem. The steady or current flow is usually associated with a
stationary pressure forcing. In fact, despite their great environmental and biomedical
relevance, little is known about the physics of pulsating turbulent flows, even in simple
geometries. One reason for this is the enhanced complexities yielded by the oscillatory
component of motion, which increases the relevant similarity parameters from one (in
the case of steady flow) to three (Akhavan, Kamm & Shapiro 1991).

Several theoretical studies on plane Poiseuille flow (Grosch & Salwen 1968; Herbert
1972; Hall 1975; von Kerczek 1982) have shown that a periodic flow modulation
may stabilize the mean flow, depending on the amplitude and the frequency of the
modulation itself. Hall (1975) and von Kerczek (1982) agree on the destabilizing effect
on the plane Poiseuille flow at very high frequencies, while at intermediate frequencies
the conclusions are not so neat (Grosch & Salwen 1968; von Kerczek 1982). Singer,
Ferziger & Reed (1989) describe results from a direct numerical simulation (DNS) of
the flow in a plane channel with imposed periodic unsteadiness, and indicate that the
sinusoidal pulsations provide a stabilizing effect at all but very low frequencies.

The available literature on the stability of pulsating pipe flows is more limited. Tozzi
& von Kerczek (1986) have shown that low-frequency oscillatory Hagen–Poiseuille
flow is slightly more stable to axisymmetric disturbances than the steady flow.
More importantly, the highly inflectional instantaneous velocity profiles do not lead
to instantaneous instability, even for very low-frequency oscillation. Fedele, Hitt &
Prabhub (2005), using a set of eigenfunctions derived from the long-wave limit of the
Orr–Sommerfeld equation in the Galerkin expansion, found that the flow structures
corresponding to the largest energy growth are toroidal vortex tubes. They are
stretched by the shear stress of the mean flow so that a maximum energy growth
occurs initially. The flow perturbation subsequently decays in time owing to viscous
effects.

Experimental studies on the stability of pulsatile pipe flows are due to Gilbrech
& Coombs (1963) and Sarpkaja (1966). Their investigations indicate that both the
amplitude and frequency of the pulsation increase the critical Reynolds number as
long as local flow reversal does not occur. Laminar to turbulent transition studies
on pulsatile pipe flows were experimentally carried out by Yellin (1966), Ramaprian
& Tu (1980), Shemer & Kit (1984), Shemer (1985) and Stettler & Hussain (1986).
Yellin (1966) first introduced the concept of relaxation time to interpret the effects of
a periodic component superposed onto the mean flow, and demonstrated that neither
the mean nor the instantaneous Reynolds number provided a sufficient criterion for
determining the laminar to turbulent transition boundary. He also showed, through
the relaxation time concept, that slowly oscillating flows of large amplitude tend to
suppress or destroy the turbulence downstream of the disturbance source. The study
of Ramaprian & Tu (1980), dealing with transitional pipe flows at low Reynolds
numbers, indicated that flow pulsations increase the critical Reynolds number. The
occurrence and extent of laminarization was, however, found to depend on factors
such as the intermittency of turbulent puffs in the mean quasi-steady flow and the
frequency of oscillation. Shemer (1985) concluded that the transition phenomenon is
primarily governed by the instantaneous Reynolds number. Stettler & Hussain (1986)
performed an intensive experimental study and provided a three-dimensional map of
stability–transition regimes, suggesting that transition in pipes is mainly associated
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with plugs of turbulence that can grow or shrink in size. The measurements of
Lodahl, Sumer & Fredosoe (1998) showed that the laminar to turbulent transition
boundary is influenced by large values of the oscillating amplitude and frequency. The
results of the DNS of Tuzi & Blondeaux (2008), obtained in a pipe characterized by
small superficial wall imperfections, are in qualitative agreement with those of Lodahl
et al. (1998). Discrepancies were attributed to the different level of flow perturbations
present in the experimental apparatus with respect to those introduced in the numerical
simulation by the wall imperfections.

There is a wealth of literature available on turbulent pulsating flows in circular
pipes and channels, and many combinations of the governing parameters have been
investigated (Ramaprian & Tu 1980, 1983; Tu & Ramaprian 1983; Shemer, Wygnanski
& Kit 1985; Mao & Hanratty 1986; Tardu & Binder 1993; Mao & Hanratty 1994;
Tardu, Binder & Blackwelder 1994; Lodahl et al. 1998; Scotti & Piomelli 2001; Zou,
Liu & Lu 2006; Bhaganagar 2008; Blel et al. 2009; He & Jackson 2009).

Here, and in the following, by current-dominated regime we refer to flow conditions
characterized by a small value of the oscillatory to mean velocity ratio (typically
less than one), while in the wave-dominated case the above ratio is usually larger
than one. Most, if not all, of the available contributions are concentrated on the
current-dominated regime, while only a limited number of studies have dealt with the
wave-dominated regime. This is unfortunate because both regimes enjoy specific flow
features and are therefore equally interesting. Moreover, it has been experimentally
shown by Lodahl et al. (1998) that, in a small region of the parameter space of the
wave-dominated regime, the cycle-averaged wall shear stress may be smaller than that
of the current component alone. In some cases this phenomenon may be quantitatively
considerable, so that there are valid scientific motivations to further elaborate on the
reasons for its genesis. In Lodahl et al. (1998) it is argued that the above behaviour
is related to the occurrence of a reverse transition generated by the suppression of
turbulence associated with the oscillatory mean shear, whenever the latter is in the
laminar state. Results based on a large-eddy simulation (LES) (Manna & Vacca
2005, 2007) suggested that, in the above-mentioned cases, the averaged wall shear
stress reduced while the turbulence survived at all times within the oscillating period.

The main objective of the present contribution is to provide, in the clean context
offered by data from a spectrally accurate DNS, a detailed analysis of the previously
described flow conditions. In the absence of any parametrization and/or measurement
uncertainties, the complex interaction between the unsteady forcing and the fluctuating
components of turbulence can be assessed.

On account of the flow periodicity, one might ask whether it should be analysed
by time- and space-averaged statistics or by considering its phase-dependent dynamics.
In the authors’ opinion, both problems are relevant, and they certainly deserve an
accurate investigation. Nevertheless, since there are several aspects of the mean flow
that are not yet fully understood (like the already mentioned anomalous behaviour of
cycle-averaged wall shear stress of the combined flow), it seems wise to perform the
study of the time- and space-averaged flow before investigating the phase-dependent
dynamics. Indeed, it will be shown that the first kind of analysis yields interesting
and counterintuitive results that will be used as a springboard to analyse the phase-
averaged statistics in a forthcoming paper.

This paper is organized as follows. In § 2 the flow problem is formulated
and the relevant dimensionless parameters detailed. The numerical method and the
computational aspects are described in § 3, while § 4 analyses the time- and space-
averaged statistics of the first- and second-order moments, vorticity fluctuations and
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Reynolds stress budgets. Conclusions are drawn in § 5. At the end of the paper an
Appendix is given with the analysis of the invariants of the Reynolds stress and
vorticity anisotropy tensors that further confirms the findings of § 4.

2. Problem formulation and background
We consider the incompressible pulsating flow through a circular pipe with diameter

D = 2R and axial length Lz driven by a time-varying harmonic body force of
prescribed mean, amplitude and frequency. The resulting flow is characterized by a
volume-averaged velocity consisting of a steady component Ub and a harmonically
time-varying one, with amplitude Uo and pulsation ω = 2π/T , T being the oscillation
period. The forcing term is designed so that appropriate values of the dimensionless
governing parameters are achieved. Pulsating flows are fully characterized by three
dimensionless parameters, and one of the first choices is due to Yellin (1966):

Reb = UbD

ν
, Ω = R

δ
, β = Uo

Ub
, (2.1)

where δ =√2ν/ω is the Stokes layer thickness, with ν the kinematic viscosity and Ω
the Stokes number. Other triplets are also possible:

Reb = UbD

ν
, Ωt = ωD

uτ
,

Um

Ub
, Ramaprian & Tu (1983), (2.2)

Rec = UcD

ν
, ω+ = 2

δ+2 ,
Um

Uc
, Tardu & Binder (1993), (2.3)

Reb, Reω = U2
m

(ων)
,

Um

Ub
, Lodahl et al. (1998), (2.4)

with Uc the mean centreline velocity and Um the maximum value of the oscillatory
flow at the centre of the pipe, and the superscript + indicates the inner variables
scaling, based on the space- and time-averaged friction velocity uτ .

Nearly the entire literature has dealt with pulsating pipe or channel flows with
β values less than one (current-dominated regime) (Ramaprian & Tu 1980, 1983;
Tu & Ramaprian 1983; Shemer & Kit 1984; Shemer 1985; Mao & Hanratty 1986;
Stettler & Hussain 1986; Tardu & Binder 1993; Tardu et al. 1994; Mao & Hanratty
1994; Scotti & Piomelli 2001; Bhaganagar 2008; He & Jackson 2009). In this regime,
assuming a constant value of Reb, there is some consensus that the driving frequency
largely controls the flow features, and one possible classification is based on the
turbulent Stokes number Ωt (Ramaprian & Tu 1983). Interpreting Ωt as the ratio of
two characteristic length scales, namely the pipe radius R and the turbulent length
δt = (2νt/ω)

1/2, with νt the eddy viscosity in the outer layer assumed proportional to
uτR, it may be argued that the turbulent Stokes number is a measure of the relative
wall distance up to which unsteady vorticity penetrates the core flow. It is worth noting
that Ωt is considerably smaller than the laminar Stokes number for a given frequency,
and the ratio between them (Ωt/Ω) decreases as the Reynolds number increases, since
it can be shown that the following relation holds (Ramaprian & Tu 1983):

Ωt = 8
Ω2

Reτ
, (2.5)

with Reτ = uτD/ν.
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Following Ramaprian & Tu (1983) five main regimes can be defined based on the
value of Ωt. In the type I or quasi-steady regime (Ωt 6 10−1), the flow behaves as a
steady flow and there will be neither velocity overshoot nor phase lag of the ensemble-
averaged quantities compared to the steady values obtained with a corresponding time
constant pressure gradient. The turbulent structure does change within the oscillating
period, but it can be described as a sequence of steady states, since at all times
turbulence can relax to the local (in time) equilibrium.

The type II or low-frequency regime (10−1 6 Ωt 6 1) exhibits appreciable
differences from the quasi-steady behaviour all across the pipe diameter, although
the time mean flow will not be significantly different from that obtained with a quasi-
steady analysis. The turbulence structure is not modified by the flow unsteadiness
and it remains quasi-steady since the oscillation frequency f does not interact with
the characteristic turbulent bursting frequency fburst . This issue has been investigated
by Mizuchina, Maruyama & Shiozaki (1973), who provided for the lower, mean
and upper values of the bursting frequency approximate power-law correlations, in a
moderate Reynolds number range.

The type III or intermediate-frequency regime (1 6 Ωt < 10) is characterized by
some interaction between the imposed unsteadiness and the turbulent structure. The
latter will be affected, the changes being more pronounced as the oscillation frequency
is increased. Also the turbulent equilibrium conditions will break down during part
of the cycle and, as for the previous two regimes, the time mean flow does not
significantly differ from the quasi-steady one, especially at the low end of the
frequencies.

In the type IV or high-frequency regime (Ωt ∼ O(10) or higher), the imposed
oscillation strongly interacts with the turbulent bursting process at the wall, and the
turbulent structure is substantially altered. The time mean radial distribution of all
quantities will differ from the corresponding quasi-steady one, sometimes through the
appearance of inflection points in the near-wall region. Time-varying flow quantities
will undergo significant changes in a near-wall thin layer while a solid-body-like
oscillation condition will occur elsewhere. The turbulent structure will exhibit a
remarkable departure from the equilibrium conditions in a small fraction of the pipe
radius close to the wall, while it remains practically frozen in the outer part of the
shear layer, where it shows an essentially flat streamwise velocity profile.

For Ωt ∼ 102 (rapid oscillation or type V regime), the interaction between the
imposed oscillation and the turbulent structure will be very strong, although confined
to a very thin near-wall layer. Very little information is available in this regime.

A somewhat different route was proposed by Ronneberger & Ahrens (1977) and
Binder & Kueny (1981), who introduced the so-called Stokes–Reynolds number δ+

as the leading controlling dimensionless parameter. As discussed in detail in Tardu &
Binder (1993), the δ+ parameter defines the boundary above which the shear wave
generated at the wall reaches the asymptotic outer value before turbulence can play
an appreciable role in the momentum transfer. This is the so-called high-frequency
regime occurring for δ+ < 10. The experiments of Tardu & Binder (1993) have shown
a progressive departure from the Stokes solution at larger values of δ+. There is
no contradiction between the regime definition of Ramaprian & Tu (1983) and that
of Tardu & Binder (1993), since the δ+ < 10 boundary falls in the type IV regime
previously recalled, provided that the Reynolds number Reb is in the 104 to 5 × 104

range.
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Another classification, based on the turbulent Stokes length δ+t , now defined in terms
of an effective viscosity ν + νt,

δ+t =
uτ
ν

√
2(ν + νt)

ω
, (2.6)

has been introduced by Scotti & Piomelli (2001). The authors used an eddy viscosity
concept for νt (νt = κuτδt, κ being the von Kármán constant) to derive the following
expression for the turbulent Stokes length:

δ+t = δ+
κδ+

2
+
√

1+
(
κδ+

2

)2
 . (2.7)

In the quasi-steady regime, occurring when δ+t � R+ (R+ being the pipe radius in
wall units), the turbulence has time to relax to the local (in time) equilibrium (Binder,
Tardu & Vezin 1995).

In the low-frequency regime, which occurs whenever δ+t ∼ R+, the entire flow is
affected by the unsteadiness in the inner region of the flow. Production and dissipation
may become out of phase with respect to each other, and, if β is large enough,
relaminarization can occur.

For δ+t < R+/2, the intermediate regime is defined, and in the region y+ > 2δ+t , y
being the distance from the wall, turbulence is frozen and advected as a plug flow.

At high frequencies (10 < δ+t < 20), the Stokes layer thickness is comparable to
or smaller than the viscous sublayer, so that accurate results from both experiments
or simulations are difficult to collect. At even higher frequencies (δ+t < 10), we enter
the very high-frequency regime, and there is experimental evidence indicating that the
modulation of the fluctuation of the wall shear stress deviates from the Stokes value.
A possible explanation relies on the occurrence of resonance conditions between the
forcing and the coherent structure bursting frequencies. The available data seem to
indicate a moderate consensus on this matter. Uncertainties may be attributed, among
other reasons, to the Reynolds number and geometry dependence of the bursting
frequency (Luchik & Tiederman 1987; Tardu & Binder 1993; Scotti & Piomelli 2001).

The studies discussed above refer to those cases characterized by values of β
smaller than one, that is, an oscillating velocity smaller than the mean one. The
available literature in the wave-dominated regime is rather limited; the only study we
are aware of is that of Lodahl et al. (1998), whose experimental analysis covered
a large part of the dimensionless parameter space (see table 1 and figure 1). The
laminar to turbulent transition was shown to occur at a Reynolds number Reb larger
than the critical value in the combined flow case, depending on the (Reω,Ω) pair.
The ensemble-averaged turbulent profiles behave differently for different regimes. The
space- and time-averaged wall shear stress of the combined motion was found to be
smaller than, equal to or larger than the steady current value alone. The increase in the
wave-dominated regime when the oscillating component is in the turbulent state may
reach a factor of four. A reduction may take place when the oscillating component is
in the laminar regime. For a fixed oscillating frequency (with Ω larger than 10), the
shape of the boundary separating laminar from turbulent conditions in the Reb–Reω
plane looks like a hook (see figures 1 and 6 of Lodahl et al. 1998). More specifically,
superposing an oscillating component for Reb < Reb,tr, Reb,tr being the transitional
value in the absence of oscillation (Reb,tr ∼ 2300), the flow remains laminar until Reω
reaches the transitional value in the absence of current (Reω,tr ∼ 105). For Reb > Reb,tr,
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WD2
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CD
104
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104 10 5103

FIGURE 1. Laminar to turbulent transition boundary (dashed line) and available data for high-
frequency regime (Ω > 10).©, Shemer & Kit (1984); B, Tardu & Binder (1993); �, Lodahl
et al. (1998); C, Scotti & Piomelli (2001); O, He & Jackson (2009); •, present calculations.

Author Geometry Methods Reb Reω Ω β

Shemer & Kit
(1984)

Pipe Exp. 3.6× 103 to
9.0× 103

3.3 to
2.1× 102

18–56 0.08

Tardu &
Binder (1993)

Channel Exp. 1.5× 104 4.9× 103 to
8.7× 104

13–54 0.34–0.73

Lodahl et al.
(1998)

Pipe Exp. 0 to
1.6× 105

7.9× 103 to
1.3× 105

25–53 3–30

Scotti &
Piomelli
(2001)

Channel LES 1.3× 104 2.3× 103 to
2.0× 104

25–80 0.76–0.86

He & Jackson
(2009)

Pipe Exp. 7.0× 103 to
10.5× 103

2.4× 102 to
6.3× 103

10–32 0.2–0.47

TABLE 1. Previous studies in the high-frequency regimes.

laminar conditions can only occur if Reω1 < Reω < Reω2; the difference between
Reω2 and Reω1 reduces when Reb increases, and vanishes at Reb/Reb,tr ∼ 3.5 with
Reω/Reω,tr ∼ 0.7. As the oscillation frequency is reduced, the hook shape of the
boundary tends to disappear, and for Ω ∼ 3 a nearly square boundary shape is
observed.

The cases available in the literature, reported in figure 1, show that no investigations
were carried out in the neighbourhood of the region inside which a reverse transition
process occurs (Lodahl et al. 1998). This is the main motivation for the present
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Acronym Reb Reω Ω β

CD 5939 1.6× 103 53.0 1.0
WD1 5730 3.9×104 53.0 5.0
WD2 5460 1.6× 105 53.0 10.6

TABLE 2. Run matrix.

paper, and specifically we wish to investigate, via DNS, the three flow conditions
identified by the (Reω,Reb) pairs defined in table 2. To the authors’ knowledge this
is the first time in which the flow has been analysed keeping Reb (approximately)
constant and varying Reω for a range wide enough to cross all the boundaries of the
laminar–turbulent transitions curve.

All pulsating cases are characterized by the same Stokes layer thickness, that is, by
a constant Ω value. Conversely, for nearly equal bulk Reynolds number, the oscillating
Reynolds number Reω is increased by a factor 100, crossing both the lower and
upper branches of the hook-like boundary (see figure 1). The increase of Reω can
be interpreted as a a direct consequence of the increase in the oscillating velocity
component, since the forcing frequency is kept unchanged. By doing so, we investigate
both wave- and current-dominated flow conditions. For the sake of comparison, a
steady simulation has also been carried out at Reb = 5920 and it is denoted by ST.

3. Numerical method and computational set-up
The governing equations are the three-dimensional incompressible Navier–Stokes

equations, whose dimensional form is

∂u
∂t
+N (u)=−∇P+L (u)+S , (3.1)

with

∇ ·u= 0, (3.2)

where P = p/ρ, p and ρ being the pressure and the fluid density, respectively.
Equations (3.1) and (3.2) have been integrated in a circular pipe of diameter
D and length Lz. The velocity components of u in cylindrical coordinates are
u = (uz, ur, uθ)

t = (u, v,w)t, in the axial (streamwise), radial and azimuthal directions,
respectively. The differential operators N (u) = (u · ∇)u and L (u) = ν1u represent
the convective and diffusive terms. In the present flow, the source term S is given by
S = (Sz, 0, 0)t with

Sz = S0[1+ α cos(ωt)]. (3.3)

The triplet (S0, α, ω) has been assigned so as to obtain the dimensional parameters
given in table 2. Owing to the nonlinear dependence of the velocity field upon the
body force S , it is impossible to specify a priori a triplet yielding a precise value
of the dimensionless parameters appearing in table 2. Furthermore, the reduction of
the time-averaged wall shear stress, which may be interpreted as a mean flow rate
increase for a fixed value of (S0, α, ω), makes the problem set-up even more complex.
In the present study, the actual mean flow rate and the associated value of β have
been obtained by modifying the initial provisional values estimated via the theoretical
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Blasius correlations. This explains the slight scatter in the dimensionless parameters in
table 2.

The numerical solution of (3.1) and (3.2) has been carried out using a pressure
correction scheme and a pseudo-spectral multi-domain technique. In what follows
we only briefly summarize the solution technique – additional details can be found
in Manna & Vacca (2009). A full description of the numerical method is available
in Manna & Vacca (1999). We uncouple the velocity field and the pressure at
each time step using a standard time splitting technique (Van Kan 1986) and, to
enhance the stability restriction related to the near-wall gradients, we discretize
implicitly the diffusive terms in the prediction step, while the convective part,
written in skew-symmetric form, and the source term are treated explicitly. Since
we deal with unsteady flows, we require overall second-order time accuracy, that is,
a Crank–Nicolson scheme for the viscous term and an Adams–Bashforth scheme for
the remaining ones. The variables and the derivatives appearing in the differential
operators of (3.1) and (3.2) are represented in truncated Fourier series in the axial
and azimuthal homogeneous directions, while Chebyshev expansion is used in the
inhomogeneous radial one. The axis singularity is dealt with using a special innovative
procedure based on the use of Gauss–Radau collocation points, which automatically
satisfies the pole condition. The multi-domain technique based on patching interfaces
provides additional flexibility, in terms of both computational efficiency and near-wall
resolution. The elliptic kernel enjoys the efficiency of an analytic expansion of the
harmonic extension. Further details about the accuracy and efficiency of the method,
together with several benchmarks for the validation of the numerical procedure, are
given in Manna & Vacca (1999).

Numerical results have been obtained in a domain whose dimensionless axial length
lz = Lz/R has been set equal to 12 for the steady (ST) and current-dominated (CD)
simulations and to 28 for the wave-dominated ones (WD1 and WD2), in order to
account for the elongation of the near-wall coherent structures, which usually takes
place when the wall shear stress for identical Reynolds number reduces (Orlandi &
Fatica 1997; Quadrio & Sibilla 2000). A posteriori analysis of the computed data
has shown that the adopted pipe length is sufficient for the streamwise velocity
autocorrelation function to drop to zero (figure 2). Indeed, in the WD2 case, all
curves decrease less rapidly than in the other cases, and the rate of decay of the
autocorrelation for the radial velocity component becomes the slowest for y+ > 350.
The reason for this slow decay is well evidenced by the comparison of figures 3–5,
where instantaneous snapshots, in inner coordinates, of the radial velocity component
show the streamwise elongation of the near-wall turbulent structures.

The computational domain has been radially split into seven subdomains (Nsub = 7),
each having Nr = 12 and Nθ = 192 modes in the radial and azimuthal directions,
respectively. The number of Fourier modes in the axial direction has been set to
Nz = 192 in the steady and current-dominated simulations. To preserve the resolution
in the axial direction, the number of modes in the wave-dominated regime has been
increased to Nz = 450. The radial distribution of subdomain widths in the radial
direction has been devised to enhance the wall-layer resolution; the radial width
distribution of the seven subdomains, given in percentage of the radius, is as follows:
2, 3, 5, 8, 13, 24, 45 %. Using the computed values of the space- and time-averaged
friction velocity uτ = √S0R/2, in table 3 we give the relevant details associated with
the spatial discretization, whose controlling parameters are also provided.
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FIGURE 2. Velocity spatial correlations in the streamwise direction for (a) ST case, (b) CD
case and (c) WD2 case. ——, streamwise component; — · —, radial component; – – – –,
azimuthal component. All the correlations have been computed at a distance of y+ = 6 from
the wall.

Acronym Nsub (Nz × Nr × Nθ ) l+z 1z+ (R1θ)+ y+w =1r+min

ST 7 (192× 12× 192) 2398 9.4 6.6 0.081
CD 7 (192× 12× 192) 2359 9.3 6.5 0.080
WD1 7 (450× 12× 192) 3008 6.7 3.5 0.044
WD2 7 (450× 12× 192) 4479 10.0 5.3 0.065

TABLE 3. Computational domain grid parameters.

The grid resolution, comparable to that of Eggels et al. (1994), Orlandi & Fatica
(1997) and Quadrio & Sibilla (2000), satisfies the severe DNS requirements and
ensures the quality of the collected data.

The ST, CD and WD2 cases have been obtained starting from the LES fields of
Manna & Vacca (2007), which have been interpolated on denser grids. For the WD2
case, a mapping procedure through a set of intermediate grids of appropriate sizes has
been applied to account for the necessity to increase the computational domain length.
The procedure used to obtain the WD1 case is described later.

Numerical results for the statistically steady case have been obtained by processing
50 statistically independent fields separated in time by 0.1 dimensionless units D/uτ .
In order to assess the convergence of the results, some statistics have been computed
using only the first half of the samples (spanning only 2.5D/uτ time units) and the
results for the root mean square (r.m.s.) velocity fluctuations and the Reynolds stresses
have shown a maximum deviation of 3 % with respect to the same quantities computed
using the whole dataset (covering 5D/uτ time units). A similar quality of agreement

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

12
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.129


256 M. Manna, A. Vacca and R. Verzicco

800

1600

2400

800 1600 24000
–0.913

–0.692

–0.471

–0.251

–0.030

0.297

0.517

0.738

0.959

1.189

FIGURE 3. Instantaneous snapshot in inner coordinates of radial velocity component
contours for the ST case at a distance of y+ = 6 from the wall.

has been observed when the spacing of the samples was doubled to 0.2D/uτ . The
data collection was started only once a constant time- and space-averaged wall shear
stress and a linear total shear stress radial distribution were achieved. All quantities are
space-averaged in the homogeneous z and θ directions. In the pulsating cases a total of
50 cycles have been collected, each consisting of eight fields evenly spaced over the
period.

Representative figures for the CPU requirement of the runs are given for the CD
case: the simulation required slightly less than 1 GB of RAM memory and, using a
1t+ = 1.7× 10−5, it needed about 150 single-core equivalent hours per period.

In what follows, we shall denote with an overline the space- and time-averaged
quantities, with a tilde the phase- and space-averaged quantities, and with a prime the
perturbation from their time averages.

Table 4 compares several mean flow properties for the steady pipe flow with those
reported by Eggels et al. (1994), Orlandi & Fatica (1997) and Quadrio & Sibilla
(2000). The displacement (δ∗) and the momentum (θ∗) thicknesses and the shape factor
(H) are defined as

δ∗(D− δ∗)= 2
∫ R

0

(
1− u(r)

Uc

)
r dr, (3.4a)

θ∗(D− θ∗)= 2
∫ R

0

(
1− u(r)

Uc

)
u(r)

Uc
r dr, H = δ

∗

θ∗
. (3.4b)
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FIGURE 4. Instantaneous snapshot in inner coordinates of radial velocity component
contours for the CD case at a distance of y+ = 6 from the wall and at three-quarters of
the oscillating period.

The agreement between the DNS data and the experiments (obtained using a single-
wire anemometer) is good. In particular, the percentage change of the skin friction
coefficient with respect to the Blasius value CB

f = 0.079Re−0.25 is within one per cent,
for all but one case.

Figure 6 compares the mean velocity profile and the turbulent intensities in inner
coordinates with those of Eggels et al. (1994). Once again, the agreement is very good,
especially considering the differences in the Reynolds number (Re = 5300 in Eggels
et al. (1994) versus Re= 5920 in the present study) and the streamwise length (lz = 10
versus lz = 12) of the domain. At these low Reynolds numbers, the deviation of the
velocity profile from the theoretical distribution u+ = (1/κ) ln(y+) + B (with κ = 0.41
and B = 5.5) is expected and is similar to that observed in several experiments and
simulations (Barenblatt 1993a,b; Eggels et al. 1994; Orlandi & Fatica 1997; Zagarola
& Smits 1998).

4. Results
We begin the analysis of the pulsating cases by comparing some global quantities

with the steady flow counterparts (table 5). Let us first discuss the WD1 case,
which falls inside the hook-like line in the Rec–Reω plane of figure 1. This line
defines the region in which the experiments of Lodahl et al. (1998) predict the
occurrence of laminar flow conditions at a bulk Reynolds number larger than Reb,tr.
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FIGURE 5. Instantaneous snapshot in inner coordinates of radial velocity component
contours for the WD2 case at a distance of y+ = 6 from the wall and at three-quarters of
the oscillating period.

Present Eggels et al. (1994) Orlandi &
Fatica (1997)

Quadrio &
Sibilla (2000)

DNS Exp. DNS DNS DNS

Uc/Ub 1.30 1.31 1.31 1.31 1.31
Ub/uτ 14.81 14.73 14.79 14.41 14.24
Uc/uτ 19.24 19.40 19.31 18.87 18.63
(Cf −
CB

f )/C
B
f (%)

1.24 0.52 −0.42 1.99 4.42

Rec 7689 7350 6950 6400 6419
Re 5920 5600 5300 4900 4900
Reτ 200 190 180 170 172
δ∗/R 0.123 0.128 0.127 — —
θ∗/R 0.068 0.070 0.078 — —
H = δ∗/θ∗ 1.80 1.83 1.86 — —

TABLE 4. Global mean properties for steady turbulent flow.

The data reported in table 5 are in excellent agreement with the laminar values (e.g.
δ∗/R= 0.293, θ∗/R= 0.087, H = 3.36), therefore supporting the experimental findings
of Lodahl et al. (1998). It should be noted that the WD1 case has been obtained
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FIGURE 6. (a) Mean velocity profiles and (b) mean turbulent intensities. ——, present
results; – – – –, Eggels et al. (1994); · · · · · ·, u+ = (1/0.41) ln(y+) + 5.5; — ·—, u+ = y+.
The coordinate y is defined as y= 1− r/R and y+ is the same quantity expressed in wall units.

starting from a field of the WD2 case (therefore turbulent) and allowing it to relax
to the new dynamic condition. In more detail, applying a procedure similar to the
one used to obtain CD and WD2, the parameter α of (3.3) appearing in the forcing
term S of (3.1) has been modified so that the Rec–Reω pair would fall in the laminar
region of figure 1. After a long transient (of several hundred oscillating periods)
characterized by a monotonic decrease of the volume-averaged turbulent kinetic energy,
the large- and small-scale structures disappeared and the flow relaminarized. Looking
at table 5, we note for the CD and WD2 cases that, while the ratio between the
centreline and bulk velocities Uc/Ub is very close to the value for the steady pipe
flow, the quantities Uc/uτ and Ub/uτ are seen to increase from 2 to 16 % in the CD
and WD2 cases, respectively. This phenomenon reflects the reduction of the space-
and time-averaged wall shear stress, which reaches a remarkable −25 %, compared to
either Blasius or Colebrook–White values, in the WD2 case. In the CD simulation, a
similar tendency is also observed. The displacement and momentum thicknesses show
negligible variations in the CD case, while appreciable changes occur in the WD2 case,
and this is reflected by the shape factor H that increases by about 11 %. Recalling
that the laminar value is 3.36, we obtain confirmation of the occurrence of some wall
shear stress reduction as well as modification of the shape of the velocity profile. If we
consider the effect of the oscillating velocity modulation to be negligible and apply the
criterion based on turbulent Stokes number Ωt (Ramaprian & Tu 1983) to characterize
the flow conditions CD and WD2, we could conclude that both simulations are very
close to the type V regime (i.e. rapid oscillation regime, Ω+t ∼ 100), while according
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Acronym ST CD WD1 WD2

Uc/Ub 1.30 1.30 1.99 1.32
Ub/uτ 14.81 15.10 26.67 17.07
Uc/uτ 19.24 19.65 53.11 22.55
(Cf − CB

f )/C
B
f (%) 1.24 −2.59 −69.02 −25.29

(λ− λCW)/λCW (%) 2.34 −1.53 −68.71 −24.67
Rec 7689 7728 11412 7183
Re 5920 5939 5730 5460
Reτ 200 197 107 160
δ∗/R 0.123 0.123 0.291 0.128
θ∗/R 0.068 0.068 0.087 0.064
H 1.80 1.81 3.34 2.00
Um/Ub — 0.99 5.15 10.81
δ+ — 3.71 2.03 3.02
δ+t — 7.48 3.04 5.42
Ωt — 57.1 104.5 70.2

TABLE 5. Mean flow properties.

to Tardu & Binder (1993) both cases belong to the very high-frequency regime (i.e.
δ+ < 10). Adopting the criterion of the turbulent penetration length δ+t of Scotti
& Piomelli (2001), both simulations fall into the very high-frequency regime (i.e.
δ+t < 10).

The radial distribution of the time-averaged mean velocity is reported in inner
coordinates in figure 7, for all β values. As already discussed earlier, the flow in the
WD1 case is laminar, with a parabolic shape, and this can be clearly appreciated by
the near-wall velocity profile of figure 7. In the current-dominated case, the profile
essentially collapses onto that of the steady distribution. This is a non-trivial result,
since the amplitude of the velocity oscillation is such that flow reversal occurs close
to the wall. The somewhat surprising insensitivity of the mean flow profile to the
imposed oscillations, in the case β < 1, is controversial; in fact, the experimental
data of Tu & Ramaprian (1983) (i.e. β = 0.15, f+ = 1.0 × 10−3 and β = 0.64,
f+ = 1.4 × 10−4) show that, for oscillating frequencies comparable to or larger than
the turbulent bursting frequency (f+burst = 3.3 × 10−3; Blackwelder & Haritonidis 1983),
a definite deviation of the time-averaged distribution from the steady one occurs.
Moreover, for frequencies and amplitudes within that range, the time-averaged velocity
obtained by the quasi-steady approximation is nearly indistinguishable from the
steady one. More recently, both experimental (Brereton, Reynolds & Jayaraman 1990;
Tardu et al. 1994) and numerical (Scotti & Piomelli 2001) data have suggested the
insensitivity of the mean flow to the imposed oscillation regardless of the closeness to
the bursting frequency. While the data of Brereton et al. (1990) and Scotti & Piomelli
(2001) closely follow the logarithmic distribution, those of Tardu et al. (1994) show a
consistent upward shift in the wall layer, regardless of the oscillating frequency.

In the present simulations, the oscillating case with β = 10.6 still shows a
logarithmic region with a slope 1/κ (κ = 0.41) that essentially equals the steady
value, although an upward shift is observed. This shift, and the consequent increase of
the viscous sublayer thickness, is typical of drag reducing flows (see e.g. Choi 1989;
Quadrio & Sibilla 2000; Ptasinski et al. 2003).
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FIGURE 7. Mean velocity profiles. ——, ST case; — ·—, CD case; · · · · · ·, WD1 case;
– – – –, WD2 case.

Figure 8 shows, in inner coordinates, the radial distribution of the r.m.s. values of
the fluctuating velocity components rms(u′), rms(v′) and rms(w′). The same figure
reports the streamwise turbulent intensities for the channel geometry of Tardu et al.
(1994) (experiments: at Rec = 1.70 × 104, δ+ = 8.1 and Um/Uc = 0.64) and Scotti &
Piomelli (2001) (LES: at Rec = 1.45 × 104, δ+ = 4.4 and Um/Uc = 0.75), compared
with the steady DNS data of Moser, Kim & Mansour (1999) (at Rec = 1.58 × 104).
The data clearly show that, in the current-dominated very high-frequency regime,
there is no effect of the forcing on the time-averaged diagonal components of the
Reynolds stresses, independently of the geometry (pipe versus channel) and in a
small envelope of the Reynolds number (Rec = 7.73 × 103 versus Rec = 1.58 × 104).
This insensitivity in the very high-frequency regime has already been experimentally
documented in channels (Tardu et al. 1994) and pipes (Hwang & Brereton 1991),
while at lower frequencies a trend towards higher values can be observed (Tardu et al.
1994; Scotti & Piomelli 2001). As pointed out by Tardu et al. (1994), the insensitivity
of the mean turbulence quantities in the high-frequency regime conflicts with the
measurements of Mizushina, Maruyama & Hirasawa (1975) and Tu & Ramaprian
(1983), the discrepancies being attributed to the occurrence of the already mentioned,
though controversial, resonance condition between the oscillatory forcing and turbulent
bursting frequency.

The above picture changes quite substantially in the β = 10.6 case. The streamwise
turbulent intensity exceeds the steady value up to y+ ∼ 60, while the opposite happens
elsewhere. Conversely, the radial and azimuthal components are reduced everywhere.
Unfortunately, there are neither experimental nor numerical data with which to
compare our results. Using outer scaling (results not shown), the uniform reduction
of the radial and azimuthal components all across the pipe radius is confirmed, while
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FIGURE 8. Mean turbulent intensities. ——, ST case; — ·—, CD case; — ·—, WD2 case.
· · · · · ·, DNS channel data of Moser et al. (1999); ©, LES channel data of Scotti & Piomelli
(2001); �, experimental channel data of Tardu et al. (1994).

the streamwise intensity does not differ from the steady one up to y∼ 0.3 and reduces
in the bulk. The difference between the two representations is a direct consequence of
the wall shear stress reduction. The fact that the turbulent intensities have been altered
all across the pipe radius is somewhat surprising in view of the tiny Stokes (turbulent)
layer thickness δ = R/53 (δt ∼ R/30).

Figure 9(a) presents the turbulent and viscous shear stresses, normalized by the
wall friction velocity, in outer coordinates, while in figure 9(b) the percentage
contribution of turbulent shear stress to the total one is detailed. As before, in the
current-dominated simulation, neither viscous nor turbulent stresses differ appreciably
from the steady distribution. Conversely, in the wave-dominated regime, important
changes are visible. In particular, the dimensionless distance from the wall, where the
viscous stress equals the turbulent one, increases from `c ∼ 0.065 to `c ∼ 0.12. For
comparison, in the same figure twice the turbulent Stokes length `t = 2δt = 2δ+t /Reτ is
shown for the wave-dominated case (`t = 0.068). The turbulent Stokes length for the
current-dominated case is not reported, since it differs slightly from the WD2 value
(`t = 0.076). It is worth noting that the turbulent penetration length `t nearly coincides
with `c of the CD case, while `c exceeds `t by nearly a factor of 1.8 in the WD2
case. In other words, the fractional contribution of the turbulent stress to the total
one is smaller than 16 % at y = `t. Indeed, we are witnessing a thickening of the
viscous sublayer and associated buffer layer modification, which was already pointed
out while discussing the mean velocity profiles. The expected decoupling between
the inner (y < `t) and outer layers, representing a characteristic feature of the very
high-frequency regime, does not occur in the presence of large-amplitude oscillations,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

12
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.129


Pulsating pipe flow with large-amplitude oscillations 263

Total

Turbulent

Viscous

(b)

(a)

0.2

0.5

0.8

1.0

0.25 0.500

y

0.2

0.5

0.8

1.0

0.25 0.500

Sh
ea

r 
st

re
ss

es
C

on
tr

ib
ut

io
n 

(%
)

FIGURE 9. (a) Viscous and turbulent shear stresses and (b) percentage contribution of
turbulent shear stress to the total one. ——, ST case; — ·—, CD case; – – – –, WD2 case.

since the outer layer is not frozen and feels the effects of the unsteady forcing up to
y∼ 0.3.

Figure 10 shows the structure parameter (SP), i.e. the ratio of the shear stress to
twice the turbulent kinetic energy K. Recalling that, under the equilibrium assumption,
this parameter equals 0.15, we note that both ST and CD simulations show a quasi-
equilibrium layer of ∼70 wall units starting from y+ ∼ 70, using an uncertainty band
of ±10 %. These data agree with the high-frequency results of Scotti & Piomelli
(2001), also obtained in the current-dominated regime. At higher amplitudes, the
structure parameter reduces everywhere. Adopting the aforementioned 10 % criterion,
the near-equilibrium layer shifts towards the wall (y+ ∼ 60) and reduces in size (∼20
wall units).

In figure 11 vorticity fluctuations (enstrophy) normalized by the mean wall shear
stress ω′iν/u

2
τ are shown. In the steady and current-dominated simulations, minor

differences in the azimuthal vorticity component appear for y+ < 20. For y+ > 50,
all components collapse onto a single curve. The streamwise component exhibits
a local maximum and minimum, a fact that has been attributed to the streamwise
vortices in the wall region (Moser & Moin 1984). The location of the local maximum
(minimum) corresponds, statistically, to the average location of the centre (edge) of
the streamwise vortices. In agreement with the DNS data of Kim, Moin & Moser
(1987), the average locations of the centre and the edge of the streamwise vortices
are y+ωz,max = 20 and y+ωz,min = 5. The corresponding strengths are 0.15 and 0.10 u2

τ/ν.
In the wave-dominated case, again the vorticity distributions nearly collapse onto
a single curve for y+ > 50, while in the wall region remarkable differences exist.
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FIGURE 10. Structure parameter (SP). For curves, see figure 9.
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FIGURE 11. R.m.s. vorticity fluctuations. For curves, see figure 9.

In particular, while the azimuthal and radial components exceed the corresponding
CD values, the streamwise one shows some reduction and new extrema locations,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

12
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.129


Pulsating pipe flow with large-amplitude oscillations 265

Acronym Pcur Posc Ptot

ST 0.0091 — 0.0091
CD 0.0088 0.0175 0.0263
WD1 0.0028 0.4836 0.4864
WD2 0.0068 2.2386 2.2454

TABLE 6. Dimensionless cycle-averaged power.

i.e. y+ωz,min = 1.5 and y+ωz,max = 32. The increase in the ω′θ and ω′r distributions is an
outcome of the adopted inner scaling representation, and more specifically of the wall
friction reduction discussed earlier. Outer scaling indicates a reduction of all vorticity
components. The wall value of ω′z halves with β, a phenomenon that can be associated
with the modification in the splatting mechanism discussed later.

The above-mentioned change in the positions of the streamwise vorticity extrema
suggests a nearly double radial extent of the streamwise vortices, a fact that entails a
reduction in the turbulence production mechanism as dictated by the near-wall streaks
dynamics. Outer scaling confirms the above results.

When analysing the dimensionless power required to drive the overall flow,

P(t)= ρSz(t)Lzσub(t)

ρu3
bσ

= Sz(t)Lzub(t), (4.1)

σ being the pipe cross-sectional area, it turns out that the cycle-averaged values
increase with β, irrespective of the flow state (laminar, transitional or turbulent)
characterizing the current part. In table 6 the quantities

Ptot = P(t)= Pcur + Posc = S0Lz

U2
b

+ S0Lz

U3
b

cos(ωt)(ub(t)− Ub) (4.2)

are given for all cases.
While Pcur reduces with β in the turbulent cases (CD and WD2), reaching its

minimum when the reverse transition process is completed (WD1), the oscillating part
overwhelms the corresponding current value, so that the trend of their sum reflects the
oscillating one. In the present set-up, the oscillating part increases nearly quadratically
with β. Indeed, in all cases, the oscillating flow obeys the Stokes solution

Us = Um Re

[
i

(
J0(i3/2

√
2r/δ)

J0(i3/2
√

2Ω)
− 1

)
eiωt

]
, (4.3)

where J0 is the Bessel function of the first kind of order zero (Abramowitz & Stegun
1972), i is the imaginary unit and Re[ · ] is the real part of the argument. This is
clearly shown by figure 12, in which the amplitude and the phase of the streamwise
velocity component are compared with the Stokes solution (4.3). The amplitude and
phase of the computed data are obtained by selecting the first mode of the n-truncated
Fourier series in the time domain:

〈u〉 = u+ Aũ cos(ωt +Φũ)+
n∑

i=2

Aũi cos(ωt +Φũi). (4.4)
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FIGURE 12. Streamwise velocity profiles, showing (a) amplitude (Aũ) and (b) phase lag with
respect to the centreline value (Φũ − Φũc). ——, Stokes solution (4.3); — ·— and ©, CD
case; · · · · · · and �, WD1 case; – – – – and 4, WD2 case.

This shows that the increase of the oscillation amplitude for a given frequency has
a definite impact on the features of the current flow; conversely, there is no effect
on the velocity distribution of the oscillating part, i.e. the flow appears to be one
way coupled. While the first result has already been documented both experimentally
(Tardu et al. 1994) and numerically (Scotti & Piomelli 2001), to the best of our
knowledge the latter is new. In a slightly different flow, similar findings have been
reported by Quadrio, Ricco & Viotti (2009) and Viotti, Quadrio & Luchini (2009).

With the idea of characterizing the organized structures associated with the bursting
events, we present in figure 13 the contribution to the Reynolds stress (mainly u′v′)
from each quadrant as a function of the wall distance in inner coordinates (Wallace,
Ecklmann & Brodkey 1972; Willmarth & Lu 1972), for all cases. The sign of the
radial component has been changed, in order to use the customary terminology to
refer to ejections as events pertaining to the second quadrant, and sweeps to the fourth
one. The data of the β = 1 case confirm the dominance of the ejection events (second
quadrant) away from the wall and of the sweep events close to the wall (fourth
quadrant, y+ 6 15) characterizing the steady flow. In the WD2 case, the well-known
dominance of the sweeps in the wall region is reduced, so that the contributions of the
second and fourth quadrants to the shear stress are roughly the same (see figure 13c),
while for y+ > 20 no major differences with respect to the CD case are observed. It
should be remarked that the magnitude of the quantities reported in figure 13 is not a
direct measure of the intensity of each event, because they are normalized by the local
turbulent shear stress, which in the WD2 case reduces considerably.
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FIGURE 13. Quadrant analysis of velocity fluctuations. (a) ST case; (b) CD case; and
(c) WD2 case.

In what follows we present the time-averaged transport equations for the normal
stresses, which are formally written as

P+ T + D+Π − ε = 0, (4.5)

where P, T, D, − ε and Π denote production, turbulent transport, viscous diffusion,
dissipation rates and velocity pressure gradient, respectively. Incidentally, let us recall
that the individual terms appearing in (4.5) come from the application of the time-
averaging operator to the phase-locked quantities. They are given by the following:

u′2-budget −2〈u′v′〉d〈u〉
dr︸ ︷︷ ︸

P

−1
r

∂(ru′2v′)
∂r︸ ︷︷ ︸

T

+ 1
Re

1
r

∂

∂r

(
r
∂u′2

∂r

)
︸ ︷︷ ︸

D

+ 2p′
∂u′

∂z︸ ︷︷ ︸
Π

− 2
Re

[(
∂u′

∂r

)2

+ 1
r2

(
∂u′

∂θ

)2

+
(
∂u′

∂z

)2
]

︸ ︷︷ ︸
−ε

= 0; (4.6)

v′2-budget −1
r

∂(rv′2v′)
∂r

+ 2
r
v′w′2︸ ︷︷ ︸

T

+ 1
Re

[
1
r

∂

∂r

(
r
∂v′2

∂r

)
+ 2

r2
(w′2 − v′2)

]
︸ ︷︷ ︸

D

−2v′
∂p′

∂r︸ ︷︷ ︸
Π

− 2
Re

[(
∂v′

∂z

)2

+
(
∂v′

∂r

)2

+ 1
r2

(
∂v′

∂θ

)2
]

︸ ︷︷ ︸
−ε

= 0; (4.7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

12
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.129


268 M. Manna, A. Vacca and R. Verzicco

PD

T

Unb

P
D

T

Unb

(b)

(a)

0

–0.6

–0.3

0.3

0.6

0

1.0

0.5

–0.5

–1.0
0 20 40 60 80

0 20 40 60 80

–

–

Gain

Loss

Gain

Loss

FIGURE 14. Streamwise velocity fluctuation energy budget. ——, ST case; — ·—, CD case;
and – – – –, WD2 case.

w′2-budget −1
r

∂(rv′w′2)
∂r

− 2
r
v′w′2︸ ︷︷ ︸

T

+ 1
Re

[
1
r

∂

∂r

(
r
∂w′2

∂r

)
− 2

r2
(w′2 − v′2)

]
︸ ︷︷ ︸

D

+ 2
r

p′
∂w′

∂θ︸ ︷︷ ︸
Π

− 2
Re

[(
∂w′

∂z

)2

+
(
∂w′

∂r

)2

+ 1
r2

(
∂w′

∂θ

)2
]

︸ ︷︷ ︸
−ε

= 0. (4.8)

The terms P, T, D, ε and Π appearing in (4.6)–(4.8) are presented in inner
coordinates in figures 14, 16 and 17. The distributions of the various terms in these
budgets in the ST case agree well with those of Eggels et al. (1994) and Orlandi &
Ebstein (2000).

In figure 14(a) the budget of u′2 shows that, for y+ > 30, the production is equally
balanced by dissipation and pressure transport, the latter tending to make the flow
isotropic. Approaching the wall, the turbulent transport and viscous diffusion rates
again become positive (producing terms) at y+ ≈ 8 and y+ ≈ 5, respectively. In that
region, the dissipation rate and viscous diffusion are the leading terms, which balance
each other at the wall. The current-dominated case is very similar to the steady
one, except for minor differences in the P and ε terms for y+ < 15. As discussed
later, some of the above differences may be explained in terms of the effects of
the unsteady modulation of the shear stress. In the β = 10.6 case (see figure 14b),
the largest differences occur in the first 30 wall units. First production (dissipation)
increases (decreases) considerably with respect to the ST case for y+ < 15 (y+ < 30),
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FIGURE 15. Radial distribution of production terms, for the (a) CD case and (b) WD2 case:
· · · · · ·, Pc; — ·—, Po; – – – –, P; and ——, production in the steady case.

reaching a maximum (minimum) at y+ ∼ 7. While the peak production value is nearly
doubled, its location is displaced towards the wall direction, and it is balanced by
a local minimum in the dissipation. Unlike the ST case, where the −ε minimum
occurs at the wall, in the WD2 case the presence of a minimum far from the wall is
observed. The latter is closely related to the already mentioned large increase in the P
term, a phenomenon peculiar to the rapid oscillation (type V) regime, and connected
with the interaction between the large-amplitude unsteady forcing and the shear stress
modulation. To prove the above claim, we decompose the production term as

P= Pc + Po =−2u′v′
du

dr
− 2ũ′v′

dũ

dr
, (4.9)

which follows from the P definition accounting for

〈 · 〉 = · + ·̃ and ·̃ = 0, (4.10)

and report in figure 15 the individual contributions and the overall production terms,
for both current- and wave-dominated cases. As the data clearly show, in the WD2
case the rate of production of turbulent energy Po by ũ′v′ is present in the first 20 wall
units and is dominant for y+ < 10. The rate of production of turbulent energy Pc by
u′v′ is similar to the production term in the steady case, with a displacement of ∼5
wall units in the maximum position and a slight amplitude reduction. This agrees well
with the increased extent of the quasi-streamwise vortices suggested by the streamwise
vorticity distribution (see figure 11).
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FIGURE 16. Radial velocity fluctuation energy budget. For curves, see figure 14.

Acronym P+
c P+

o P+

ST 0.114 — 0.114
CD 0.111 0.004 0.115
WD2 0.117 0.076 0.193

TABLE 7. Volume-averaged turbulent kinetic energy productions.

For y+ < 10, the Po term exceeds the steady value by an amount nearly equal to
the −ε term, and therefore the viscous diffusion, which has to balance the dissipation
at the wall, changes accordingly. In the CD case, the contribution of the Po term
is negligible, as shown by the slight differences in the production term distribution
between the CD and the ST cases. Table 7 reports the following integral quantities:

P+ =P+
c +P+

o =
1
V

∫
V

P+c dV + 1
V

∫
V

P+o dV, (4.11)

representing the volume-averaged productions, with V = πR2Lz the computational
volume.

The total production P+ increases with the oscillation up to 69.4 % in the WD2
case, while P+

c is nearly constant. It is worth noting that an outer coordinate
representation of the quantities reported in table 7 shows that, while the increase
of Po is retained, Pc reduces by ∼16 %.
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FIGURE 17. Azimuthal velocity fluctuation energy budget. For curves, see figure 14.

The velocity pressure gradient Π is one order of magnitude smaller than the leading
term (P) and will be discussed later.

The budget of v′2, shown in figure 16, suggests that the velocity pressure gradient
term is dominant and it mainly balances the dissipation rate for y+ > 70, in both ST
and CD cases. In the wall region, the turbulent transport T is producing (consuming)
for 5 6 y+ 6 25 (for 25 6 y+ 6 70). For y+ < 5 and y+ > 70, T is again a production
term. In the WD2 case, Π , T and −ε are seen to decrease slightly in magnitude; their
peak values are displaced towards the core region by 10 wall units. Figure 17 reports
the budget of w′2. For y+ > 4, the dissipation rate is balanced by the velocity pressure
gradient, which is the leading production term, in both CD and ST cases. Approaching
the wall, Π decays and D becomes increasingly important and attains its maximum
at the wall. The turbulent transport term is small compared to the other terms. In the
WD2 case, similarly to the v′2 budget, a reduction of the peak and a displacement
towards the pipe axis are observed.

We now return to the analysis of the velocity pressure gradient, which can be
decomposed into the pressure strain Φ and pressure diffusion Ψ terms:

u′2-budget Π =Φzz + Ψzz = 2p′
∂u′z
∂z
+ 0, (4.12)

v′2-budget Π =Φrr + Ψrr = 2p′
∂u′r
∂r
− 2

∂
(
p′u′r
)

∂r
, (4.13)

w′2-budget Π =Φθθ + Ψθθ = 2
r

p′
(
∂u′θ
∂θ
+ u′r

)
− 2

p′u′r
r
. (4.14)
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FIGURE 18. Radial distribution of pressure strain terms. For curves, see figure 14.

The pressure strain terms Φzz, Φrr and Φθθ , which govern the energy exchange
among the three components of the turbulent kinetic energy, are shown in figure 18,
in inner coordinates. Following the notation of Hinze (1975), a negative (positive)
sign of, say, Φzz denotes a loss or transfer (gain) of energy from the streamwise
component to the other components. While the production due to the shear only exists
in the streamwise component, the two other components gain energy through this
redistribution process. The current-dominated case (see figure 18a) does not differ
from the steady one, showing a net transfer of energy from the streamwise component
of turbulent velocity fluctuation to the cross-stream components, except very close to
the wall. On the other hand, in the first 12 wall units, there is large energy transfer
from the radial component to the streamwise and azimuthal ones; an analogous effect
is referred to as ‘splatting’ by Moin & Kim (1981). The splatting effect is connected
to sweep events carrying high-speed fluid to the wall and thus produces flow patterns
similar to those of a jet impinging on the wall. Increasing β from 1 to 10.6 results
in the appreciable changes reported in figure 18(b), for y+ < 50. The reduction of
Φzz entails a reduced energy transfer from the u′z

2 component to the radial and
azimuthal ones. Very close to the wall, this phenomenon is magnified and leads to
an anisotropy enhancement, as documented through the distribution of the second
invariant of vorticity and Reynolds stress (see figure 25 of the Appendix). The pressure
strain term Φrr also undergoes appreciable changes, for y+ < 30. Most evident is the
displacement towards the pipe core of both the negative peak and the zero-point value,
which agrees well with the altered splatting mechanism observed while discussing the
Q2 events in the quadrant analysis and the wall value of ω′z.

Figures 19 and 20 report four instantaneous realizations of the velocity vector fields
made dimensionless with the bulk velocity in a cross-plane with a phase interval
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FIGURE 19. Instantaneous velocity vector fields in a cross-plane in outer coordinates (CD
case).

of 90◦, for the CD and WD2 cases, respectively. For the sake of ease of representation,
the vector field has been interpolated on a single-domain coarser mesh. Disregarding
the phase variation of the velocity vector field and concentrating on the differences
between the corresponding images of figures 19 and 20, it can be easily inferred that
both the number and strength of the vortical structures are considerably reduced when
β is increased. Furthermore, the size of the quasi-streamwise vortices appears to be
larger in the β = 10.6 case, a fact that has already been documented in the statistical
sense. Figures 21 and 22 represent the counterparts of figures 19 and 20 reporting the
streamwise fluctuations, made dimensionless with the bulk velocity. Again, there is a
clear indication that the number of quasi-streamwise vortices is reduced while their
size appears to increase with β.

Taken collectively, figures 19–22 support the idea that the magnitude of the
oscillation has a definite impact on the size and strength of the streaks, a fact that
will be clarified in the forthcoming paper, where the focus will be upon the analysis of
their changes in phase space.

5. Conclusions
Direct numerical simulations of pulsating pipe flow in the high-frequency regime

have been analysed. Both current- and wave-dominated flow conditions with a
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FIGURE 20. Instantaneous velocity vector fields in a cross-plane in outer coordinates (WD2
case).

fixed Stokes number have been considered. The dimensionless parameters have been
selected to cover a region of the state space where a previous experimental study has
documented interesting features. The data have been collected from fully resolved
DNSs carried out with a spectral Chebyshev algorithm for the inhomogeneous
(radial) direction and blended Fourier decomposition for the homogeneous (axial
and azimuthal) ones. Four flow conditions characterized by different values of the
oscillating and bulk velocity amplitude ratio β have been considered. When β

is increased from 1 to 5, a turbulent to laminar reverse transition process occurs.
This phenomenon, which has already been experimentally observed through a global
parameter study by Lodahl et al. (1998), has been confirmed by the present work.
A further increase of β up to 10.6 leads again to turbulent conditions of the mean
flow accompanied by a remarkable reduction of the cycle-averaged friction coefficient
compared to the steady value. The mean velocity profile shows a logarithmic region
with a slope essentially equal to the corresponding steady one, but characterized by
an upward shift, a consequence of an increase in thickness of the viscous sublayer.
Conversely, it has been shown that the oscillating flow obeys the Stokes solution
and therefore the flow appears to be one way coupled. The radial distributions of
the mean normal stress components shed light on a different split of the individual
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FIGURE 21. Instantaneous contours of streamwise velocity fluctuations in outer coordinates
in a cross-plane (CD case).

contributions compared to the non-pulsating case at the same bulk Reynolds number.
Likewise, in the wall layer, a considerable reduction of the structure parameter is
observed. The radial distribution of the streamwise vorticity fluctuation suggests a
nearly double radial extent of the streamwise vortices, a fact that entails a reduction
in the turbulence production mechanism as dictated by the near-wall streaks dynamics.
The latter has been altered through a reduced contribution of sweeps in the first 20
wall units. The streamwise velocity fluctuation budget showed a remarkable change
of the production and dissipation terms in the buffer layer and below, an effect
of the interaction between the large-amplitude unsteady forcing and the shear stress
modulation. The analysis of the diagonal components of the pressure strain tensor
controlling the energy exchange among the three components of the turbulent kinetic
energy suggested an alteration in the transfer of energy from the streamwise to the
radial and azimuthal components. Likewise, close to the wall, appreciable changes in
the splatting mechanism are observed. The above results taken collectively indicate an
enhanced turbulence anisotropy in a region of the wall layer extending at least up to
30 wall units.
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FIGURE 22. Instantaneous contours of streamwise velocity fluctuations in outer coordinates
in a cross-plane (WD2 case).

This paper has been completely devoted to the analysis of the time- and
space-averaged features, since within this context the authors have already found
many interesting physical phenomena whose comparison with the statistically steady
turbulent pipe flow has turned out to be instructive. In addition, the wealth of data
presented and analysed can be considered as a benchmark for those researchers aiming
at validating new numerical procedures or novel measurement techniques against
accurate and reliable data.

Although this study was focused only on the time- and space-averaged statistics,
the authors are aware that, owing to the periodic nature of the flow, a phase-averaged
analysis is also necessary in order to fully unravel the flow dynamics. This additional
investigation is being carried out and will be the topic of a forthcoming paper.
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Appendix. Invariant analysis
In this appendix we further elaborate on the large anisotropy of the wall layer, by

examining the Reynolds stress and vorticity anisotropy tensors, respectively defined as

bij = u′iu′j
2κ
− δij

3
, vij = ω

′
iω
′
j

ω′2
− δij

3
, (A 1)

where ω′2 = ω′iω′i is the mean square vorticity or the mean square enstrophy. In
figures 23 and 24 the computed second and third invariants of the two tensors

IIb =− 1
2 bijbji, IIv =− 1

2vijvji, (A 2)

IIIb = 1
3 bijbjkbki, IIIv = 1

3vijvjkvki (A 3)

are shown, for all simulations, in the Lumley triangle defined by the limiting values
of (A 2) and (A 3) and constituting the anisotropy invariant map (AIM) (Lumley &
Newman 1977). These limiting values satisfy the following conditions:

isotropic turbulence III = 0, −II = 0,

axisymmetric turbulence A≡
1
2 III

(− 1
3 II)

3/2 =±1,

two-component turbulence G≡ 27III + 9II + 1= 0,
one-component turbulence III = 2

27 , −II = 1
3 .

(A 4)

While the two-component state appears as a straight line in the AIM, there are
two branches defining the axisymmetric turbulence, namely disc-like (the turbulence
is pulled out in two directions and is squeezed in the other direction; Ab = 1 and
Av = −1) and rod-like (the turbulence may be represented by elongated vortical
structures; Ab =−1 and Av = 1) (Lee & Reynolds 1985). Even though the AIMs carry
information only about the turbulence components (componentiality) and therefore do
not contain information about the dimensionality of the turbulence, they are useful
tools to better characterize the energy-producing events in the near-wall region where
anisotropy is maximum (Reynolds & Kassinos 1995). In the Lumley plane, the degree
of anisotropy is associated with changes in the −II invariant, a non-negative quantity,
whereas the nature of the anisotropy is indicated by variations of the III invariant
(Oyewola, Djenidi & Antonia 2004).

As already noted from the analysis of other statistical quantities, the ST and CD
cases do not differ much from each other. In the near-wall region, the turbulence
has, as expected, two dominant components and the computed data closely follow
the G = 0 line. Starting from the wall, the anisotropy invariants of both tensors point
towards the right top cusp describing one-component turbulence. As shown in table 8,
the wall distance where the (III,−II) pair reaches a maximum for the Reynolds stress
(vorticity) anisotropy tensor is found to be y+ ∼ 8 and y+ ∼ 7 in the ST and CD cases
(y+ ∼ 3 and y+ ∼ 2). Afterwards, for both tensors, the III and −II invariants start
to decrease and approach the right boundary, actually reaching it for the vorticity at
y+ ∼ 4. Moving further away from the wall, the (IIIb,−IIb) pair tends monotonically
to the origin, i.e. to the isotropic state. Conversely, the (IIIv,−IIv) pair first reaches the
bottom left boundary at y+ ∼ 24 and then arrives at the near bottom cusp region.
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Wall values Point of maximum anisotropy
y+wall (III,−II)b (III,−II)v y+b (III,−II)b y+v (III,−II)v

β = 0 0.08 (0.02, 0.16) (0.02, 0.16) 8.2 (0.04, 0.24) 2.8 (0.04, 0.22)
β = 1 0.08 (0.02, 0.18) (0.02, 0.18) 7.3 (0.05, 0.25) 2.3 (0.04, 0.23)
β = 10.6 0.06 (0.07, 0.31) (0.07, 0.31) 3.6 (0.07, 0.32) 0.55 (0.07, 0.31)

TABLE 8. Wall (left) and maximum anisotropy (right) values.
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FIGURE 23. Anisotropy-invariant map of the Reynolds stress tensor. For curves, see figure 9.

The WD2 data considerably differ from those for ST and CD in three main respects.
First, in the near-wall region, the amplitude of the oscillation increases the anisotropy,
as evident from the closeness of the first grid point to the upper right cusp in the WD2
case (see figures 23 and 24 and table 8). Second, for both tensors, the −II maximum
values occur at a distance closer to the wall and are much closer to the one-component
limit (0.07, 0.33) as shown in table 8.

Finally, in the buffer region and above, there is an appreciable tendency to a
more anisotropic behaviour documented by the increased −II values, independently
of the wall distance, as β increases up to 10.6. The above argument is shown on
a quantitative basis by the −II distributions in the wall-normal direction presented
in figure 25, in inner coordinates. The data have been normalized with the one-
component turbulence value AI = II/II1D, so that the closeness to unity of AI is
a measure of the one-dimensionality of the turbulence; likewise, an isotropic state
corresponds to AI = 0. Information buried in figure 25, taken collectively, supports
the fact that the main effect of the amplitude of the oscillation for a fixed frequency
consists of an enhanced turbulence anisotropy in a region of the wall layer extending
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FIGURE 24. Anisotropy-invariant map of the vorticity tensor. For curves, see figure 8.
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FIGURE 25. Radial distributions of the anisotropy index AI: (a) Reynolds stress tensor; and
(b) vorticity tensor. For curves, see figure 9.
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at least up to 30 wall units for both tensors and therefore far beyond the Stokes
layer thickness δ+ = 3. These changes alter the contribution to the total turbulence
production described by the various events connected to the Reynolds shear stress,
as already discussed § 4. This remarkable anisotropy increase is common to many
drag reducing flows, such as turbulent channel and boundary layer flows, as reported
by Frohnapfel et al. (2007), who showed through the analysis of a few datasets of
experimental and numerical nature that the turbulence anisotropy increases and tends
to the one-component limit in the near-wall region. The same trend is observed when
the Reynolds number is reduced.
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