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The prevailing paradigm for plasma turbulence associates a unique stationary state with
given equilibrium parameters. We report the discovery of bistable turbulence in a strongly
magnetised plasma with a sheared mean flow. Two distinct states, obtained with identical
equilibrium parameters in first-principle gyrokinetic simulations, have turbulent fluxes
of particles, momentum and energy that differ by an order of magnitude – with the
low-transport state agreeing with experimental observations. Occurrences of the two states
are regulated by the competition between an externally imposed mean flow shear and
‘zonal’ flows generated by the plasma. With small turbulent amplitudes, zonal flows have
little impact, and the mean shear causes turbulence to saturate in a low-transport state.
With larger amplitudes, the zonal shear can (partially) oppose the effect of the mean
shear, allowing the system to sustain a high-transport state. This poses a new challenge for
research that has so far assumed a uniquely defined turbulent state.
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1. Introduction

Turbulence is a common feature of magnetised plasmas, appearing in systems as varied
as the solar wind, astrophysical accretion disks and laboratory plasmas. According to
the most common paradigm for such systems, a unique stationary turbulent state can be
identified given a certain stirring mechanism and a set of equilibrium plasma parameters.
Multistable solutions – for which identical parameters admit distinct turbulent states – are
known to occur in neutral fluids (Snedeker & Donaldson 1966; Burggraf & Foster 1977;
Schmucker & Gersten 1988), where they are associated with bifurcations and hysteretic
behaviour (Shtern & Hussain 1993; Ravelet et al. 2004). Multistability has also been
reported in weakly magnetised systems of charged fluids (Simitev & Busse 2009; Latter
& Papaloizou 2012). In this work, we report the discovery of bistable turbulence in a
strongly magnetised plasma, using direct numerical simulations. We find that bistability
arises in such a plasma through the interplay of two crucial mechanisms: an externally
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FIGURE 1. Dependence of the turbulent ion heat flux on the inverse ion-temperature-gradient
scale length. In the simulations labelled by green ‘+’ signs, the externally imposed mean flow
shear was set to zero. For all other simulations, γE = −0.079. Zonal modes are artificially
zeroed out in simulations labelled by black crosses. The black circle denotes a simulation where
amplitudes decay with time and no saturated turbulent state is observed. The dashed line marks
the temperature gradient below which there is no effective linear instability (〈γ 〉t < 0) in the
presence of mean flow shear.

imposed mean flow shear and self-generated ‘zonal’ flows. Our observations are made in
a toroidal geometry typically encountered in magnetic-confinement-fusion experiments,
although the results may be generalisable to other systems.

Previous studies have already established that sheared flows play an important role
in regulating turbulence. In the absence of an externally imposed mean flow shear, the
plasma is known to generate sheared ‘zonal’ flows spontaneously, contributing to the
saturation of turbulence (Biglari, Diamond & Terry 1990; Dimits et al. 2000; Rogers,
Dorland & Kotschenreuther 2000; Diamond et al. 2005; Colyer et al. 2017; van Wyk
et al. 2017; Ivanov et al. 2020). So far, it is therefore usually assumed that the effect of
zonal flows is to suppress turbulence. When a mean flow shear is imposed, it provides
an additional mechanism for suppressing turbulence. Specifically, the shear in the mean
flow perpendicular to the magnetic field has been found to reduce turbulent fluctuations
(Waelbroeck & Chen 1991; Artun & Tang 1992; Dimits et al. 1996; Synakowski et al. 1997;
Casson et al. 2009; Mantica et al. 2009; Highcock et al. 2010; Barnes et al. 2011; Highcock
et al. 2012; Schekochihin, Highcock & Cowley 2012; van Wyk et al. 2016, 2017). It has
also been shown that the effect of the mean shear weakens away from marginal stability
(Fox et al. 2017; van Wyk et al. 2017).

Here, we find that the transition from turbulent states where the mean shear plays an
essential role to states where it appears to matter only marginally is characterised by a
discontinuous jump in the level of turbulent transport. Most importantly, we show that,
in a region of parameter space near this transition, two distinct turbulent states exist with
identical equilibrium parameters but dramatically different levels of transport. We find that
the presence of strong zonal flows is a feature of higher-transport states – the opposite of
what is usually assumed. The main result is presented in figure 1.

This discovery has important implications for research in nuclear fusion. In experiments,
turbulent fluxes are set by the external injection of particles, heat and momentum
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into the plasma, with profile gradients evolving until a stationary state is reached.
However, because of computational cost, direct numerical simulations only consider a
small fraction of the device’s volume, in which they solve the inverse problem: for
given local equilibrium quantities (e.g. profile gradients), the simulations determine the
associated turbulent fluxes. The flux-to-gradient problem and its inverse can be considered
equivalent if a one-to-one correspondence exists between the turbulent transport and
the equilibrium parameters. Our work shows that this correspondence is not always
one-to-one, which poses a challenge for modelling transport – and thus for designing
future fusion devices. Finally, bistability has some remarkable consequences, such as the
possibility for bifurcations of turbulent transport and gradient-relaxation cycles to develop
(these have previously been considered in the absence of mean flow shear Peeters et al.
2016).

2. Modelling plasmas with a sheared mean flow

We consider equilibrium parameters obtained from a fusion experiment conducted at
the Joint European Torus facility (discharge no. 68448 Siren et al. 2019). The plasma is
confined by magnetic fields that trace out nested toroidal surfaces, with the equilibrium
density and temperature staying constant along the field lines. External heating sources
sustain an ion temperature gradient between the hotter core and the colder edge of
the plasma, which then drives the dominant linear instability (Romanelli 1989; Cowley,
Kulsrud & Sudan 1991). A sheared mean toroidal flow is generated by injecting beams
of neutral hydrogenic atoms into the plasma. The ratio of thermal to magnetic pressure
is small, so the turbulent fluctuations can be assumed electrostatic. We also neglect any
trace impurities in the plasma and only consider two kinetic species – the electrons
and the main deuterium ions. The simulations include collisions, as well as a small
amount of numerical hyperviscosity (Belli 2006). The numerical parameters used for
this work are provided as supplementary material available at https://doi.org/10.1017/
S0022377822000691 alongside the present publication.

The model used for this work is presented in Appendix A. The time evolution of
turbulent fluctuations is described by following the approach of local δf -gyrokinetics
(Catto 1978; Frieman & Chen 1982; Sugama & Horton 1998; Abel et al. 2013). This
approximation relies on the scale separations present in the system by defining an
asymptotic-expansion parameter ρ∗s = ρs/a � 1 for a species s, where ρs is the particle’s
gyroradius around a magnetic field line and a is the minor radius of the device. As
a result, the rapid gyromotion of particles can be averaged out. In this approach, the
kinetic equation and the quasineutrality condition form a closed system of equations for
the fluctuating probability distribution function of charged rings and for the electrostatic
potential ϕ. The system is solved numerically with the code GS2 (Kotschenreuther,
Rewoldt & Tang 1995; Barnes et al. 2009; Highcock 2012) in a filament-like simulation
domain (Beer, Cowley & Hammett 1995) that follows a magnetic field line as it wraps
around the torus. The code then computes the turbulent contributions to the heat and
momentum fluxes exiting the core of the plasma, which we denote by Qs and Πs,
respectively. In the following figures, we normalise Qs to the so-called gyro-Bohm value
QgB = 〈|∇ψ |〉ψniTivth,iρ

2
∗s, where ψ is the poloidal magnetic flux, 〈·〉ψ the average over

a magnetic-flux surface, Ti the ion temperature multiplied by the Boltzmann constant kB,
vth,i = √

2Ti/mi the ion thermal speed and mi the ion mass. The ion temperature gradient
is specified through a/LTi , where LTi is the local e-folding length scale of Ti. Finally,
we denote by γE the rate at which the mean flow is sheared across magnetic surfaces,
normalised by vth,i/a.
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When γE �= 0, linear modes (known as Floquet modes) are advected along the magnetic
field lines, passing through regions of the plasma that are alternately stable (inboard of
the torus) and unstable (outboard) to the ion temperature gradient (Waelbroeck & Chen
1991). As a consequence, their linear growth rate is time dependent with a Floquet period
TF = 2πŝ/γE. Here, ŝ (defined in Appendix A) measures how the twisting of magnetic
field lines around the torus changes with the minor radius. In the following, we denote
the time-averaged growth rate by 〈γ 〉t, and the maximum instantaneous growth rate by
γmax. In this work, the code GS2 was used with an improved algorithm for background
flow shear described in McMillan, Ball & Brunner (2019) and Christen, Barnes & Parra
(2021), although it has been verified that the same conclusions are reached when using the
original algorithm devised by Hammett et al. (2006).

3. Two distinct turbulent states

Near marginal stability, we find that two distinct turbulent states can be obtained
at identical equilibrium parameters. This is shown in figure 1, where saturated values
of Qi/QgB are plotted against a/LTi for a particular value of γE. We find that the
fluxes computed in the low-transport state match the levels of transport observed in the
experiment, while the fluxes computed in the high-transport state differ from it by an order
of magnitude. For equilibrium parameters where the two states exist, it is the initial size of
the fluctuation amplitudes that determines which state is observed in a simulation. While
the impact of initial conditions on gyrokinetic simulations was explored in previous work,
such as Pueschel, Kammerer & Jenko (2008), our work is the first to obtain two distinct,
saturated and finite-amplitude turbulent states with identical equilibrium parameters.
Interestingly, we note that both low-transport and high-transport states can exist above
and below the threshold for linear instability. Previous work had already established this
for a single, finite-amplitude turbulent state sustained either by a linear instability (known
as supercritical turbulence) or by transient linear growth (known as subcritical turbulence
Highcock et al. 2010; Barnes et al. 2011; Schekochihin et al. 2012).

The two states observed here are distinguished by significant differences in the
amplitudes of their turbulent fluctuations and by the spatial structure of the turbulence. In
figure 2, we show a typical snapshot of turbulence in a low-transport state. The contours of
the fluctuating electrostatic potential are plotted in the plane perpendicular to the magnetic
field at the outboard of the torus. The x coordinate measures the distance along the normal
to a magnetic-flux surface and the y coordinate labels the magnetic field lines within the
surface. The simulation is done in the frame moving with the mean flow at x = 0: the
y-component of the mean flow thus has the opposite sign to x. The turbulent eddies feature
a clear tilt as they are being sheared by the mean flow, similarly to Shafer et al. (2012),
van Wyk et al. (2016, 2017) and Fox et al. (2017). In figure 3, we show consecutive
snapshots of turbulence with the same equilibrium parameters as in figure 2, but in
the high-transport state: bands of high-amplitude eddies propagate radially across the
simulation domain, and eddies do not feature any clear tilt. This intermittent high-transport
state is reminiscent of advecting structures reported in McMillan et al. (2009), McMillan,
Pringle & Teaca (2018) and Chandrarajan Jayalekshmi (2020).

4. The role of zonal modes

We find that the presence of ‘zonal’ modes is a crucial distinguishing feature between
the two states. Modes are called zonal when they have no spatial variation other than
in the radial (x) direction. They are linearly stable and cannot be sheared by a toroidal
mean flow, but they can exchange energy with non-zonal modes via nonlinear interactions.
Zonal modes include zonal flows with a shearing rate γZ , which can affect the rest of the
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FIGURE 2. Consecutive snapshots of the turbulence in real space for the low-transport state
where a/LTi = 1.76 and γE = −0.079. In the top panels, the fluctuating electrostatic potential is
plotted at three successive times at the outboard of the torus, in the plane perpendicular to B. In
the bottom panels, the zonal flow is plotted at the same times.

FIGURE 3. Same as figure 2 but for the high-transport state. In the bottom panels, the zonal
shear averaged between the two vertical dashed lines is compared with the externally imposed
mean flow shear.

turbulence in a manner analogous to the mean flow shear γE. The zonal flows are known to
develop through a secondary instability of the modes driven unstable by the temperature
gradient (Rogers et al. 2000; Diamond et al. 2005; Ivanov et al. 2020).

When the amplitudes of zonal modes become large enough, we find that the zonal
shear can compete with, and indeed obviate, the mean flow shear. Such a negation of the
equilibrium shear by a zonal shear was already explored in previous work, e.g. McMillan
et al. (2009, 2018). In the lower panels of figure 3, we plot the zonal flow VZ (∝ ∂ϕZ/∂x
where ϕZ is the zonal part of the potential). We observe radially propagating bands
within which the zonal shear γZ (∝ ∂VZ/∂x) is of the same order of magnitude as the
background shear γE, but carries the opposite sign. In such bands, where the zonal and
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(a)

(b)

FIGURE 4. Root-mean-square zonal shear versus γE for the two turbulent states. High-transport
states are shown in (a), and low-transport states in (b). Black-bordered markers indicate
parameters at which either a high-transport or a low-transport state can be obtained, depending
on the initial size of fluctuation amplitudes. The parameters of the experiment considered here
are shown by a black star in (b). The dashed line marks the temperature gradient as a function of
γE below which turbulence is subcritical (〈γ 〉t < 0).

mean shears oppose each other, non-zonal fluctuations grow faster and feed the zonal
modes nonlinearly, until the system settles in the high-transport state. We also show in
figure 1 that the transport obtained in the complete absence of mean flow shear (green ‘+’
symbols) is much closer to the high-transport states than to the low-transport states.

In low-transport states, zonal modes do not seem to play a crucial role for the turbulent
dynamics: unlike in the high-transport states, no long-lived structures with γZ opposing
γE are observed. Further evidence of the weaker impact of zonal modes in low-transport
states can be seen in simulations where we artificially set zonal modes to zero at every time
step, indicated by black crosses in figure 1. Despite this unphysical truncation introduced
in the system, and independently of the initial condition, a saturated state is obtained that
is – apart from a slight change in the flux – indistinguishable from the low-transport state.

The occurrences of low-transport and high-transport states for a range of mean flow
shear rates are shown in figure 4, where we plot the ratio rms[γZ]/γE. Here, we define the
root mean square of the zonal shear as rms[γZ] =

√
〈ϕ2

Z〉t,x/	
2
x,Z and we denote by 	x,Z the

radial correlation length of the zonal modes, which we define in Appendix B. As a result
of the interplay between the zonal modes and the mean flow, high-transport states are
only obtained when the initial fluctuation amplitudes are sufficiently large, or when the
fluctuation amplitudes become large enough for the zonal shear to start competing with
γE (e.g. when a/LTi is increased or γE is decreased past a certain threshold). Figure 4(a)
confirms that the magnitude of the zonal shear in the high-transport states is comparable
to that of the mean shear and panel (b) indicates that low-transport states only survive
when the zonal shear is much smaller than γE (roughly by an order of magnitude). This
last result could be due to a feedback mechanism whereby even a weak γZ can partially
oppose γE, allowing for larger turbulent amplitudes – and therefore larger zonal modes –
to develop.
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FIGURE 5. Correlation time of turbulent eddies in the low-transport state, high-transport state
and in the absence of a mean flow shear. The vertical dashed line marks the temperature
gradient below which there is no effective instability in the presence of a mean flow shear,
i.e. 〈γ 〉t ≤ 0. In the simulations labelled by green ‘+’ signs, the externally imposed mean flow
shear was set to zero. For all other simulations, γE = −0.079 was used. Considering other γE
values leads to similar results.

5. Two correlation time scales

In a saturated turbulent state, the correlation time of the turbulence can be estimated
from the gyrokinetic equation by τ = [c [ϕNZ]rms /(B	x	y)]−1, where [ϕNZ]rms is the
root-mean-square value of the non-zonal electrostatic potential, 	y is the eddy correlation
length in the y direction (defined in Appendix B), c is the speed of light and B is
the magnetic field strength. For high-transport states, figure 5 shows that τ ∼ 1/γmax,
where γmax is the maximum instantaneous linear growth rate in the presence of flow
shear (close to the linear growth rate in the absence of flow shear). For low-transport
states, 1/γmax < τ < 1/〈γ 〉t, which may suggest that the average linear growth rate plays
a role in setting the saturated turbulent amplitudes in those states. In order for 〈γ 〉t to be
relevant in a turbulent state, eddies must be able to survive longer than a Floquet period,
i.e. τ � TF, as is approximately the case for the low-transport states in figure 5. While the
competition between zonal and mean flow shear is likely a generic feature of magnetised
plasma turbulence, the existence of 〈γ 〉t �= γmax requires toroidicity. Further studies are
needed to determine if these two distinct growth rates are a necessary feature of the bistable
turbulence reported here – and thus if similar bistable states are likely to be found beyond
toroidal plasmas.

6. Consequences of bistability

The bistability reported in this work may lead to the existence of bifurcations. As we
have argued, low-transport states cease to exist when the fluctuation amplitudes increase
past a certain threshold value. If we now consider a plasma in which, instead of being
fixed, the temperature gradient is slowly increasing in time, a discontinuous jump will be
triggered from a low-transport state to the high-transport branch. The same jump can be
triggered by decreasing the mean flow shear in a low-transport state. As shown in figure 4,
we observe that the subcritical low-transport states exist closer to marginal stability in
the (γE, a/LTi) plane than the subcritical high-transport states. We attribute this to the
intermittent nature of the high-transport state associated with the radially propagating
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(a)

(b)

(c)

(d)

FIGURE 6. Dependence of the ion heat flux (a,b) and the momentum-to-heat-flux ratio (c,d) on
the imposed flow shear and the inverse ion-temperature-gradient scale length. The top panels
show results for the high-transport states, the bottom panels for the low-transport states. Dotted
areas in the upper (respectively lower) panels indicate areas where no high-transport (respectively
low-transport) state could be obtained. The grey areas indicate parameter ranges where no
simulations were run. There is a gap between the values of the heat flux obtained in (a) and those
obtained in (b). The path defined by points A, B, C and D gives an example of the successive
stages of a gradient-relaxation cycle, when the heat injected into the plasma corresponds to a
flux within the aforementioned gap.

bands shown in figure 3. Previous work with neutral fluid flows (Faisst & Eckhardt 2004),
accretion disks (Rempel, Lesur & Proctor 2010) and fusion plasmas (Barnes et al. 2011;
Highcock et al. 2011; van Wyk et al. 2017) has indeed shown that the survival of subcritical
turbulence over long times is compromised by rare, large fluctuations. Similarly to the
transition from low to high transport, we argue that subcritical high-transport states can
drop to the low-transport branch if the temperature gradient slowly decreases in time. From
figure 4, we expect that the same transition could be achieved by increasing the mean flow
shear in a subcritical high-transport state.

Existence of bifurcations opens up the possibility for relaxation cycles of the mean
gradients to develop. This hinges on two findings that we show in figure 6. First, we
observe a significant gap between the highest heat flux obtained in low-transport states and
the lowest heat flux obtained in high-transport states. Second, we observe that the ratio of
the turbulent momentum flux to heat flux, Πi/Qi, is almost identical in the low-transport
and high-transport states.

We now consider a thought experiment in which an external power P is injected into
the volume bounded by a given magnetic-flux surface of area S, via a beam of neutral
atoms with energy E. As is argued in Parra et al. (2011), the turbulent heat flux exiting
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the magnetic-flux surface is Qi ∼ P/S, and Πi/Qi ∼ E−1/2vth,i/a. Thus, a given beam
configuration corresponds to a unique pair (Qi,Πi/Qi). We consider an initial situation
where the input power is such that (P,E) corresponds to the levels of turbulent fluxes of
a low-transport state (point A in figure 6). From this initial stationary state, we increase P
by small successive increments, keeping E fixed. In response, the plasma equilibrium will
evolve through a succession of low-transport stationary states with ever larger Qi, but with
Πi/Qi staying constant (along the solid arrow up to point B in figure 6).

Above a certain threshold, we find that there is a range of values of P with no
corresponding solutions for the turbulent fluxes: in figure 6, these are the powers too high
to match the low-transport state at point B, but too low to match the high-transport state
at point C. It is then interesting to ask what will happen to a plasma where the input
power falls into this gap. One (unexciting) possibility is that an actual solution may exist
outside of the region of parameter space explored here, and that the plasma migrates to that
solution. Another (more interesting) possibility would be for the temperature gradient to
continue increasing until the plasma transitions to a high-transport state (jumping from B
to C in figure 6). In this state, the outgoing heat flux is larger than what can be sustained by
the external power input, and the temperature gradient starts to flatten. As a/LTi decreases
(from C to D), the turbulent fluctuations remain too large to allow a transition back to
a low-transport state. Eventually, a/LTi becomes too small for the high-transport state to
survive, and the system transitions back to the lower state (from D to A). The flux is now
too low compared with the power input, so the temperature gradient builds up again, and
the cycle repeats itself. In this scenario, no proper steady state is reached when the input
power falls within a ‘forbidden’ gap, and the temperature gradient and mean flow shear
would experience periodic relaxation cycles.

7. Discussion

We have found that near-marginal turbulence in fusion devices is bistable, and
regulated by the competition between external shear and zonal modes. The existence of
bistability suggests a new approach to long-standing questions around bifurcations and
gradient-relaxation cycles observed in fusion devices (von Goeler, Stodiek & Sauthoff
1974; Wagner et al. 1982; Hastie 1997; Connor 1998). This work also presents a new
challenge for a research area where the prevailing assumption has been a one-to-one
correspondence between plasma parameters and turbulent transport. Further work could
focus on how the extent of the bistable region might be modified, for example by exploring
the effect of collisions on the saturation of zonal modes (Colyer et al. 2017; Weikl et al.
2017). Another avenue of interest may be to determine how bistability manifests itself in
flux-driven gyrokinetic simulations. Experiments could test the existence of bistability in
fusion devices, following a scenario similar to the one described in figure 6. The idea
of relaxation cycles discussed in § 6 could be considered in the context of subcritical
turbulence, where transitions might occur from a situation with no turbulent transport
to a state with a finite level of turbulent transport. Lastly, we note that the details of the
plasma analysed here, such as the exact nature of the drive for turbulence and perhaps
toroidicity, do not appear to be crucial to our understanding of bistable states: the only
requirements we have identified so far are an applied flow shear and the ability of the
plasma to generate zonal flows. Therefore, we expect that similar effects may be observed
in a variety of systems.

Supplementary material

Supplementary material is available at https://doi.org/10.1017/S0022377822000691.
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Appendix A. Gyrokinetic system

In this work, we follow the δf gyrokinetic approach (Catto 1978; Frieman & Chen 1982;
Sugama & Horton 1998; Abel et al. 2013), which relies on the scale separations present in
the plasma to describe the time evolution of turbulent fluctuations. The ratio of gyroradius
to machine size ρ∗s = ρs/a � 1 for species s is used as the asymptotic-expansion
parameter. The minor radius of the device is denoted by a and the gyroradius is given
by ρs = |b̂ × v/Ωs|, where b̂ is the unit vector in the direction of the magnetic field B
and v is the velocity of the particle. The gyrofrequency of the particle is Ωs = eZsB/msc,
where Zs and ms are, respectively, the charge number and mass of the particle, e is the
elementary charge, and c is the speed of light. The amplitudes of the fluctuations are
ordered to be O(ρ∗s) smaller than the corresponding mean quantities. The turbulent time
scale is ordered to be O(ρ2

∗s) shorter than the time scale of the evolution of mean plasma
parameters, but O(ρ−1

∗s ) longer than the Larmor periods of the particles. Moreover, it is
assumed that fluctuations can stretch far along magnetic field lines, but that they only span
a few gyroradii across field lines. The orderings in time and space can be summarised as

d
dt

ln(δfs) ∼ ρ−2
∗s

d
dt

ln(Fs) ∼ O(ρ∗sΩs), (A1)

b̂ · ∇ ln(δfs) ∼ ρ∗s |∇ ln(δfs)| ∼ |∇ ln(Fs)| ∼ O(1/a), (A2)

where δfs is the fluctuating part of the distribution function of particles and Fs is their
mean distribution function (averaged over the turbulent time scales and over the turbulent
length scales across B). Here, d/dt = ∂/∂t + u · ∇ is the convective time derivative with
respect to the mean flow u.

The geometry of the system considered here is typical of magnetic-confinement-fusion
experiments. The plasma is confined in a toroidally shaped magnetic cage. The magnetic
field lines of this cage wind around the torus, tracing out nested toroidal surfaces, known as
magnetic-flux surfaces. The rapid gyromotion about magnetic field lines limits the ability
of charged particles to move across these flux surfaces.
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We focus on plasmas with a mean flow such that ρ∗s � |u|/vth,i � 1, where vth,i =√
2Ti/mi is the ion thermal speed and Ti is the ion temperature multiplied by the

Boltzmann constant kB. In this ‘intermediate-flow’ ordering, we can neglect the centrifugal
force, and the mean flow is purely toroidal (Catto, Bernstein & Tessarotto 1987; Abel et al.
2013): u = ΩφR2∇φ with Ωφ the angular rotation frequency, R the major radius of the
torus and φ the toroidal angle. It follows that the perpendicular and parallel flow shear rates
are related by a geometrical factor, and both can be expressed in terms of the shearing rate
γE = (rψ,0/q0)∂Ωφ/∂rψ |rψ,0 , where the subscript ‘0’ denotes quantities evaluated on the
flux surface of interest, rψ is the half-width of the flux surface at the height of the magnetic
axis and the safety factor q = (2π)−1

∫ 2π

0 dθ(B · ∇φ)/(B · ∇θ)|ψ is the number of toroidal
turns required by a field line to wind once around the torus poloidally. The magnetic shear
appearing in § 2 is defined as ŝ = (rψ,0/q0)∂q/∂rψ |rψ,0 . We further restrict consideration
to cases with low thermal-to-magnetic-pressure ratio (plasma beta) and hence only retain
electrostatic fluctuations. We neglect all effects associated with impurities in the plasma,
and only consider electrons and the main hydrogenic ion species.

After averaging over the rapid gyromotion of particles, the gyrokinetic equation can be
written as

d〈δfs〉Rs

dt
+

(
w‖b̂ + V B,s + V C,s + 〈V E〉Rs

)
· ∇

(
〈δfs〉Rs + eZs〈ϕ〉Rs

Ts
F0,s

)

= 〈C[δfs]〉Rs − 〈V E〉Rs ·
(

RBφ
B

msw‖
Ts

F0,s∇Ωφ + ∇F0,s

)
, (A3)

in (Rs, εs, μs, ϑ) coordinates, where Rs = r − ρs is the particle’s gyrocentre, r is its
position, εs = msw2/2 is its kinetic energy, μs = msw2

⊥/2B its magnetic moment and ϑ
its gyrophase. Here, 〈·〉Rs denotes an average over ϑ at fixed Rs, ϕ is the fluctuating
electrostatic potential, w is the particle velocity relative to u, subscripts ‖ and ⊥
indicate components along and across B respectively, F0,s is a local Maxwellian velocity
distribution, C is the collision operator and Bφ is the toroidal component of B. The drift
velocity due to magnetic curvature and ∇B is V B,s = b̂/Ωs × [w2

⊥∇ ln(B)/2 + w2
‖b̂ · ∇b̂],

and the Coriolis drift velocity is V C,s = (2w‖Ωφ/Ωs)b̂ × (ẑ × b̂) with ẑ the unit vector
in the vertical direction. The nonlinearity in (A3) stems from the fluctuating E × B drift
V E = cb̂/B × ∇ϕ advecting δfs on the left-hand side. Perpendicular flow shear enters via
the convective time derivative, while the drives from the shear in the parallel flow and the
temperature gradient, respectively, enter via the ∇Ωφ and ∇F0,s terms on the right-hand
side. The temperature gradient is specified by the normalised inverse gradient length
a/LTs = −a d(ln Ts)/drψ . The set of equations is closed by the quasineutrality condition

∑
s

Zs

∫
d3w〈〈δfs〉Rs〉r =

∑
s

eZ2
s

Ts

(
nsϕ −

∫
d3w〈〈ϕ〉Rs〉rF0,s

)
, (A4)

where ns is the particle density and 〈·〉r denotes an average over ϑ at fixed particle position.
Fluctuations with no spatial variation other than in the radial direction are known as

‘zonal’ fluctuations, and produce sheared E × B drifts in the y direction. The zonal flow
is given by

VZ = − c
B

|b̂ × ∇rψ |∂ϕZ

∂rψ
, (A5)

where ϕZ is the zonal part of the electrostatic potential. The shear of the zonal flow is
γZ = ∂VZ/∂rψ .
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The system of (A3) and (A4) is solved for δfs and ϕ using the local gyrokinetic code
GS2 (Kotschenreuther et al. 1995; Barnes et al. 2009; Highcock 2012; Christen et al.
2021) in a filament-like simulation domain (known as a flux tube Beer et al. 1995) that
follows a magnetic field line around the flux surface of interest. The flux-surface label
x = (q0/rψ,0Br)(ψ − ψ0) and the field-line label y = (1/Br)(∂ψ/∂rψ)|rψ,0(α − α0) are
used as coordinates across B. The poloidal angle θ serves as the coordinate along B. Here,
Br is a reference magnetic field strength, ψ = ∫ r

0 dr′r′RB · ∇θ is the poloidal magnetic
flux, r is the minor radius of the torus and α = φ − ∫ θ

0 dθ ′(B · ∇φ)/(B · ∇θ)|ψ labels
field lines on a given flux surface. The code computes the turbulent contribution to the
heat and momentum fluxes given by

Qs =
〈∫

d3w
msw2

2
δfsV E · ∇ψ

〉
ψ

, (A6)

Πs =
〈
msR2

∫
d3v (v · ∇φ) δfsV E · ∇ψ

〉
ψ

, (A7)

respectively, with 〈·〉ψ denoting the volume average over the flux tube.

Appendix B. Correlation time and correlation lengths

Given a saturated turbulent state, we estimate the eddy correlation time as being

τ =
[

c
B

[ϕNZ]rms

	x	y

]−1

, (B1)

where 	x and 	y denote the eddy correlation length in the x and y directions, respectively,

and where [ϕNZ]rms =
√

〈ϕ2
NZ〉t,x,y is the root mean square of the non-zonal part of the

electrostatic potential ϕNZ, averaged over time, x and y. The expression (B1) is obtained
from the nonlinear term in the gyrokinetic equation (A3). We then define the two-point
spatial correlation function

Cor[ϕ](δx, δy) = 〈ϕ(t, x, y)ϕ(t, x + δx, y + δy)〉t,x,y

〈ϕ2(t, x, y)〉1/2
t,x,y〈ϕ2(t, x + δx, y + δy)〉1/2

t,x,y

. (B2)

The correlation lengths 	x and 	y are chosen to correspond to the e-folding of Cor[ϕNZ]
along the δx direction (adjusted to match the tilt induced by the flow shear) and the δy
direction, respectively. Typical examples of Cor[ϕNZ] are shown in figure 7. The zonal
correlation length 	x,Z corresponds to the e-folding of Cor[ϕZ] along the δx direction. Note
that the exact definition of the correlation lengths is somewhat arbitrary. Another choice,
that is commonly found in the literature, is to define 	x and 	y as the integral of Cor[ϕNZ]
along the δx and δy axes – which, in our case, yields similar results to the e-folding lengths.

Appendix C. Source code

The version of the GS2 code used for this work is available at https://bitbucket.
org/gyrokinetics/gs2/branch/ndc_branch, with the newest commit at the time of writing
being 0abdcda. The associated version of ‘Makefiles’ necessary for compilation
is available at https://bitbucket.org/gyrokinetics/makefiles/branch/ndc_branch under the
commit ba24979, and the additional ‘utils’ files required to run the code are available
at https://bitbucket.org/gyrokinetics/utils/branch/ndc_branch under the commit 8e41f9a.
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(a) (b) (c)

FIGURE 7. Two-point spatial correlation function for a low-transport state (a), a high-transport
state (b) and a state with no mean flow shear (c). For the three states, a/LTi = 1.76. In (a,b),
γE = −0.079.
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