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Abstract

Random intersection graphs model networks with communities, assuming an underly-
ing bipartite structure of communities and individuals, where these communities may
overlap. We generalize the model, allowing for arbitrary community structures within
the communities. In our new model, communities may overlap, and they have their own
internal structure described by arbitrary finite community graphs. Our model turns out to
be tractable. We analyze the overlapping structure of the communities, show local weak
convergence (including convergence of subgraph counts), and derive the asymptotic
degree distribution and the local clustering coefficient.
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1. Introduction

Communities are local structures that are more densely connected than the network average.
They are present in numerous real-life networks [25], such as the internet, collaboration net-
works, and social networks, and they offer a possible explanation for the frequently observed
high clustering (transitivity) [40, Chapters 7.9, 11].

There are several possible reasons why communities arise, e.g. an underlying geometry
or properties shared by the vertices. We focus on networks with an underlying structure of
individuals and communities that they are part of. While our terminology and examples are
mainly taken from social networks, the model is applicable to any network that builds on some
kind of community structure. Such structures exist in many real-life networks [27, 28], the
most evident example being collaboration networks, like the Internet Movie Database (IMDb)
or the ArXiv. In these examples, the ‘individuals’ are the actors and actresses or the authors,
and the ‘communities’ are the movies or articles they collaborate on. We can also consider a
social network based on communities, where ‘communities’ can represent families, common
interests, workplaces, or cities.
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(a)

(b)

(c)

FIGURE 1. Two models for overlapping communities: RIG and RIGC.

Because of the complexity of real-world networks, they are often modeled using random
graphs [14, 20, 35]. Properties and processes of interest, e.g. distances, clustering, network
evolution, and information or epidemic spreading processes, are studied on the random graph
models to predict their behavior on real-life networks. An underlying community structure such
as the ones mentioned above is modeled using bipartite graphs, where the two partitions corre-
spond to the individuals (people) and the communities (or attributes), and an edge represents
a community membership; see Fig. 1a. The historical random graph model for networks with
community structure is the random intersection graph (RIG) first introduced in [44]. Over the
years, several ways have been introduced to generate the (random) bipartite graph of commu-
nity memberships [12], ranging from independent percolation on the complete bipartite graph
(binomial RIG [21, 37, 44] or inhomogeneous RIG [11, 18]), through pre-assigning the num-
ber of community memberships to each individual and connecting them to uniformly chosen
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communities (uniform RIG [7, 43] or generalized RIG [8, 9, 10, 13, 26]), to pre-assigning the
number of community memberships to each individual as well as the number of community
members to each community, then matching these ‘tokens’ uniformly (i.e., the community
memberships are generated via the bipartite configuration model) [17, 39]. What all of these
models have in common is that once the community memberships are generated, every two
individuals that share a community are connected. As a result, communities do overlap, while
each community is a complete graph (see Fig. 1b), which may not be a realistic assumption for
large communities.

One easy and natural way to go about this is thinning communities [36, 39]; however, this
may not give the full generality we desire. The recently introduced hierarchical configuration
model [33, 34], which extends the household model [2, 3], offers an alternative approach, using
arbitrary communities as building blocks with random connections between the communities,
resulting in non-overlapping communities. In this paper, we aim to bridge the gap: we introduce
a new random graph model, the random intersection graph with community structure (RIGC),
which accommodates arbitrary, yet at the same time overlapping, communities, as long as these
communities are connected; see Fig. 1c.

The RIGC model is flexible in terms of the choice of parameters, ranging from independent
and identically distributed (i.i.d.) random variables to data taken from real-life networks; see
Section 2.4 for a brief discussion. The model also turns out to be analytically tractable. In this
paper, we keep our assumptions as general as possible, and present results on the overlapping
structure and local properties of the model (including local weak convergence, degree structure,
and non-trivial clustering). Its global properties, including the existence and quantification of
the so-called giant component (a unique linear-sized connected component), and percolation
on the RIGC model are studied in the companion paper [32]. In [45], we introduce the model
to a more applied audience and state all results informally and without proof. The proofs in this
paper rely on the connection to the bipartite configuration model that generates the community
memberships. The matching results that we present on the bipartite configuration model are
hence both instrumental to the RIGC and of independent interest.

Outline of the paper. The rest of this paper is organized as follows. In s:RIGC Section 2, we
introduce the random intersection graph with community structure (RIGC), state our results,
and provide a brief discussion. We provide the proofs of our results in Section 3.

Notational conventions. We will consider a sequence of graphs, and consequently a sequence
of input parameters, both indexed by n ∈N. We note that n only serves as the index; it does
not necessarily mean the size or any other parameter of the graph, which allows for the study
of more general (growing) graph sequences. We often omit the dependence on n to keep the
notation light, as long as it does not cause confusion. Throughout this paper, we distinguish
the set of positive integers as Z+ := {1, 2, 3, . . . } and the set of non-negative integers as N=
{0, 1, 2, . . . }. The notions

P−→ and
d−→ stand for convergence in probability and convergence

in distribution (weak convergence), respectively. We write X
d= Y to mean that the random

variables X and Y have the same distribution. For an N-valued random variable X such that
E[X]<∞, we define its size-biased distribution X� and the transform X̃ with the following
probability mass functions (PMFs): for all k ∈N,

P(X�= k)= k P(X= k)/E[X], P(X̃= k)= P(X�− 1= k). (1.1)
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We say that a sequence of events (An)n∈N occurs with high probability (w.h.p.) if
limn→∞ P(An)= 1. For two (possibly) random sequences (Xn)n∈N and (Yn)n∈N, we say that

Xn = oP(Yn) if Xn/Yn
P−→ 0 as n→∞. We write [n] := {1, 2, . . . , n} and denote the indicator

of an event A by 1A. For a graph G, we denote its vertex set by V(G), its size by |G| = |V(G)|,
and its edge set by E(G).

2. Model and results

In this section, we give a formal definition of the RIGC model and present our results on its
local properties, as well as providing a discussion on its applicability.

2.1. Definition of the random intersection graph with communities

First, we give a short, intuitive description of the random intersection graph with communi-
ties (RIGC), followed by a detailed, formal construction. After the parameters are introduced,
the construction happens in two steps. First, we construct the community structure: an underly-
ing bipartite graph that represents the community memberships, from which all the randomness
arises. Then we explain how to derive the RIGC based on the given community structure.

Intuitive model description. The aim of the model is to create a network that uses given
(arbitrary but connected) community graphs as its building blocks, but at the same time allows
them to overlap. We achieve this by thinking of vertices in the community graphs as community
roles that may be taken by the individuals. We represent the community roles as the right-hand
side of an underlying bipartite graph: the set of vertices on the right-hand side of the under-
lying bipartite graph is the disjoint union of the vertices of a set of communities, labeled by
their community number and role within the community. The individuals then are represented
as a distinct set of vertices, forming the left-hand side of the bipartite graph, and we allow
them to take on (possibly several) community roles by assigning them membership tokens.
Each membership token corresponds to one community role taken, and we match membership
tokens with community roles one-to-one, uniformly at random (u.a.r.). That is, each role in
each community is assumed by a unique individual. The total number of membership tokens
given out to individuals has to equal the total number of community roles for this matching to
be possible. Finally, to obtain the RIGCs, we identify each individual with all the community
roles it takes, ‘gluing’ together the community graphs, which introduces overlaps and creates
the (much more interconnected) network.

Parameters. Intuitively, we think of the individuals being placed on the left-hand side and
the communities on the right-hand side, and consequently we sometimes refer to them as l-
vertices and r-vertices, respectively. We denote the set of individuals by Vl= [Nn], where
the number of individuals Nn satisfies Nn→∞ as n→∞. Similarly, we denote the set of
communities by Vr= [Mn], where Mn→∞ is to be defined later.

In this paper, we will encounter three relevant types of degrees, as we work with three
types of graphs: the RIGC model itself, the bipartite graph used to generate its community
memberships, and the community graphs we use as building blocks. The term ‘degree’ is
reserved for the most natural concept, namely, the number of connections of the individual
in the resulting RIGC; we sometimes refer to this notion of degree as ‘projected degree’ (p-
degree) for clarity. On the level of the underlying bipartite graph, the role of ‘degrees’ is taken
by the number of community memberships (for individuals) and the number of community
members (for communities). Hence we introduce the concept of l-degrees and r-degrees (of
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FIGURE 2. An example of the parameters. Individuals form the left-hand side partition Vl, and their l-
degree, i.e., the number of community memberships, is represented by outgoing half-edges. Communities
form the right-hand side partition Vr, and each is assigned an arbitrary connected community graph. As
before, we represent the r-degree, i.e., the number of community members, by outgoing half-edges. In
fact, each half-edge represents a specific vertex (role) in the community graph; thus they are labeled the
same way. In the next step, we assign community memberships (community roles) through a (bipartite)
matching of the half-edges.

l- and r-vertices, respectively), to which we may collectively refer as bipartite degrees (b-
degrees). Within the community graphs, we will refer to the degree of a community vertex as
its community degree (c-degree). We will soon introduce notation for all three types of degree.

As mentioned above, the number of community memberships of an individual v ∈ Vl is
called its l-degree, and we denote it by dl

v . For a community a ∈ Vr, we denote its community
graph by Coma; this graph can be arbitrary as long as it is connected. For convenience, we
introduce the set of possible community graphs H, as the set of (non-empty) simple, finite,
connected graphs. Further, we separately equip each graph with its own fixed labeling, i.e.,
we arbitrarily number the vertices of each graph H ∈H by the set [|H|]. We note that we
allow several communities to have the same community graph. We call the size |Coma| of the
community graph the r-degree of a, denoted by dr

a . We collect the l- and r-degrees and the
community graphs in the vectors dl := (dl

v )v∈Vl, dr := (dr
a )a∈Vr , and Com := (Coma)a∈Vr ,

respectively. Without loss of generality we assume that dl≥ 1 and dr≥ 1 (element-wise) for
each n, as isolated vertices can simply be excluded by adjusting Nn and Mn. Also note that
dr is derived from Com; thus the RIGC is parametrized by the pair (dl,Com). For a visual
representation of the parameters, see Fig. 2.

Community memberships. Recall that the l-degree of v ∈ Vl denotes the number of com-
munity memberships of v; we intuitively think of this as giving dl

v membership tokens to v. We
represent these as dl

v l-half-edges incident to v and label them by

(v, i)i≤dl
v
.

Let us denote the union of all vertices in community graphs by V(Com); we call this the
set of community roles or community vertices. For a community vertex j ∈ V(Coma), we can

https://doi.org/10.1017/apr.2021.12 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.12


1066 R. VAN DER HOFSTAD ET AL.

(a)

(b)
(c)

FIGURE 3. The community projection.

uniquely identify j by the tuple (a,l), where l is the vertex label of j in Coma. Now, similarly as
with individuals, we give each community a∈ Vr dr

a community role tokens, represented by
dr

a r-half-edges incident to a and labeled by (a, l)l≤dr
a
, so that we can represent j ∈ V(Com)

by the r-half-edge (a,l).
Next, we introduce the random matching of membership tokens and community role tokens.

To ensure that the half-edges can indeed be matched, we assume and define

hn :=
∑

v∈Vl

dl
v =

∑
a∈Vr

dr
a . (2.1)

Let �n denote the set of all possible bijections between the l-half-edges

(v, i)i<dl
v ,v∈Vl

and the r-half-edges
(a, l)l≤dr

a ,a∈Vr .

Equivalently, we can think of �n as bijections between the l-half-edges and V(Com), since
each r-half-edge (a,l), l≤ dr

a , a ∈ Vr corresponds to a unique community vertex j ∈ V(Com).
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Let the community memberships be determined by a uniform random bipartite matching
(bipartite configuration) ωn ∼Unif[�n]. In fact, we can produce the uniform bipartite match-
ing ωn sequentially, as follows. In each step, we pick an arbitrary unpaired half-edge, and
match it to a uniform unpaired half-edge of the opposite type (so that we always match one
l-half-edge and one r-half-edge). The arbitrary choices may even depend on the past of the
pairing process, as long as we pair them u.a.r. with one of the remaining half-edges.

Definition 2.1 (The ‘underlying BCM’) Considering the half-edges as tokens to form edges,
the bipartite matching ωn also determines a bipartite (multi)graph, defined as follows. For
each matched pair of an l-half-edge (v,i) and r-half-edge (a,l), add an edge with label (i,l)
between v and a. We call this edge-labeled graph the underlying bipartite configuration model
(BCM). As the edge labels allow us to reconstruct the paired half-edges, the underlying BCM
is an equivalent representation of the bipartite matching ωn, and thus encodes the community
memberships.

Deleting the edge-labels, we obtain a bipartite version of the configuration model, i.e., the
bipartite configuration model with degree sequences (dl, dr).

The ‘community projection’. We now introduce the community projection, i.e., the method of
projecting the community graphs to the individuals and generating the RIGC model, given the
realization of the uniform(ly random) bipartite matching ωn. This procedure is deterministic,
and the only randomness of the model comes from the choice of ωn; thus we can think of the
community projection as an operator P from �n to the space of multigraphs. Alternatively,
since the underlying BCM (see Definition 2.1) provides an equivalent representation of the
bipartite matching ωn, we can think of the projection as an operator that maps the underly-
ing BCM into the RIGC. This operator can be further generalized as an operator mapping
any bipartite graph, which we may interpret as the graph of community memberships, into a
network. We will describe the multigraph RIGC by its edge multiplicities.

Recall that the r-half-edge labeled (a,l) represents the community role (community vertex)
j ∈ V(Coma) with vertex label l, and the l-half-edge (v,i) is one of the membership tokens of
v ∈ Vl. Then, if (v,i) and (a,l) are matched by ωn, this intuitively means one of the community
roles taken by v is j. We denote this by v←� j. Note that each community role j is assigned
to a unique individual v; however, each individual v has dl

v community roles j assigned to
it. We want to ‘identify’ each individual with all community roles taken, and we carry this
out by copying each edge between community roles j1, j2 ∈ V(Coma) (for each community
a) to the individuals v←� j1 and w←� j2. We emphasize that each community edge is copied
individually, even when v=w or when there is already an edge (or more) between v and w;
that is, we allow self-loops and multi-edges (see Section 2.4 for a discussion on multigraphs).

Let us denote the disjoint union of the edges in all community graphs by E(Com); we
refer to this as the set of community edges. Now, we shift perspective to obtain the multiplicity
X(v,w;ωn) of an edge (v,w) (for v,w ∈ Vl) for a given bipartite matching ωn. We can do so by
counting the number of community edges (j1, j2) such that the community roles j1 and j2 are
taken by v and w (in some order); formally,

X(v,w)= X(v,w;ωn) :=
∑

(j1,j2)∈E(Com)

1{v←�j1,w←�j2}∪{v←�j2,w←�j1}. (2.2)

The random intersection graph with communities RIGC(dl,Com) is the random multi-
graph given by the edge multiplicities (X(v,w))v,w∈Vl determined by the uniform(ly random)
bipartite matching ωn.
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2.2. Notation and assumptions

In this section, we introduce the quantities and assumptions that are crucial throughout the
paper.

Bipartite degrees. Throughout this paper, we make use of the following description of the
b-degree sequences. Let Vl

n ∼Unif[Vl] and Vr
n ∼Unif[Vr] denote uniformly chosen l- and

r-vertices respectively, and denote their random degrees by

Dl
n := dl

Vl
n
, Dr

n := dr
Vr

n
. (2.3)

Then the PMF
p(n)

k := |{v∈ Vl : dl
v = k}|/Nn, (2.4a)

for k ∈ Z+, describes the distribution of Dl
n as well as the empirical distribution of dl. Similarly,

we can describe Dr
n and dr by the PMF

q(n)
k := |{a∈ Vr : dr

a = k}|/Mn. (2.4b)

We collect the PMFs in the (infinite-dimensional) probability vectors p(n) = (
p(n)

k

)
k∈Z+ , q(n) =(

q(n)
k

)
k∈Z+ .

The empirical community distribution. Recall that Hdenotes the set of possible community
graphs: simple, connected, finite graphs, each H ∈Hequipped with an arbitrary, fixed labeling
using [|H|] as labels, so that any two community graphs that are isomorphic are labeled in
exactly the same way. For a fixed H ∈H, define

Vr
H := {a∈ Vr : Coma =H}. (2.5)

We introduce the PMF

μ
(n)
H := M−1

n |Vr
H |, μ(n) = (

μ
(n)
H

)
H∈H, (2.6)

so that μ(n) describes the empirical PMF of Com as well as the PMF of ComVr
n

, with Vr
n ∼

Unif[Vr]. For k ∈ Z+, define the (finite) set

Hk := {
H ∈H: |H| = k

}
. (2.7)

Note that since dr
a = |Coma|, q(n) from (2.4b) can be obtained by

q(n)
k =

∑
H∈Hk

μ
(n)
H .

Community degrees and triangles. Let us denote the disjoint union of the vertices in all com-
munity graphs by V(Com); we refer to this as the set of community roles. To a community role
j ∈ V(Com) we assign the vector (dc

j , �
c
j ), where dc

j denotes the degree of j in its community
graph and �c

j denotes the number of triangles that j is part of within its community graph.
Let Jn ∼Unif[V(Com)] denote a community role chosen u.a.r. Note that the community that
Jn is part of is chosen in a size-biased fashion, and then a vertex in that community is chosen
uniformly at random. Define the random vector (Dc

n , �
c
n ) := (dc

Jn
, �c

Jn
), keeping in mind that

its coordinates are dependent. Define the PMF

�
(n)
(k,t) := 1

hn

∑
j∈V(Com)

1{(dc
j ,�

c
j )=(k,t)}, �(n) := (

�
(n)
(k,t)

)
k∈Z+,0≤t≤(k2), (2.8)
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so that �(n) describes the joint distribution of (Dc
n , �

c
n ) as well as the empirical distribution of(

dc
j , �

c
j

)
j∈V(Com).

Projected degrees. For v ∈ Vl, its (random) projected degree, i.e. its degree in the RIGC, is
by definition given in terms of the edge multiplicities (see (2.2)) as

dpv =p-deg(v) := X(v, v)+
∑

w∈Vl

X(v,w)= 2X(v, v)+
∑

w∈Vl,w�=v

X(v,w). (2.9)

However, it is more intuitive to look at p-deg(v) in terms of the community roles taken by v.
Recall that each community edge incident to some j such that v←� j is added between v and
some other vertex; thus j contributes c-deg(j) to the degree of v. Then

p-deg(v)=
∑

j : v←�j

dc
j . (2.10)

Analogously to Dl
n , with Vl

n ∼Unif[Vl] as before, we define

Dp
n := p-deg(Vl

n ). (2.11)

Recall that p-deg(v) is random for each v ∈ Vl, since ωn is random. Thus, Dp
n has two sources

of randomness: Vl
n and ωn. We denote the random empirical cumulative distribution function

(CDF) of Dp
n by

Fp
n (x)= Fp

n (x;ωn) := 1

Nn

∑
v∈Vl

1{p-deg(v)≤x} =: P
(
Dp

n ≤ x
∣∣ωn

)
, (2.12)

where P( · |ωn) denotes the conditional probability with respect to ωn.

Assumptions. Recall (2.3), (2.4), and (2.6). We can now summarize our assumptions on the
model parameters, in particular, the conditions under which our results hold.

Assumption 2.2 The conditions for the empirical distributions are summarized as follows:

(A) There exists a random variable Dl with PMF p such that p→ p(n) pointwise as n→∞,
i.e.,

Dl
n

d−→Dl. (2.13)

(B) E[Dl] is finite, and as n→∞,

E[Dl
n]→E[Dl]. (2.14)

(C) There exists a PMF μ on H such that μ(n)→μ pointwise as n→∞.
(1) Consequently, since q(n)

k =
∑

H∈Hk
μ

(n)
H , with the finite set Hk from (2.7), there

exists a random variable Dr with PMF q such that q(n)→ q pointwise as n→∞, or
equivalently,

Dr
n

d−→Dr. (2.15)

(D) E[Dr] is finite, and as n→∞,

E[Dr
n ]→E[Dr]. (2.16)
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Remark 2.3 (Consequences of Assumption 2.2) We note the following:

(i) By its definition in (2.1), hn =NnE[Dl
n]=MnE[Dr

n ]. By Assumption 2.2(B,D),

Mn/Nn =E[Dl
n]/E[Dr

n ]→ E[Dl]/E[Dr] =: γ ∈R+. (2.17)

(ii) Since �(n) (see (2.8)) can be obtained from μ(n), Assumption 2.2(C) also implies that
there exists a random variable (Dc, �c) with PMF � such that �(n)→ � pointwise as

n→∞, or equivalently, (Dc
n , �

c
n )

d−→ (Dc, �c).

(iii) Assumption 2.2(A,B) imply that dl
max := maxv∈Vl dl

v = o(hn). This implication is
proved for a similar setting in [29, Exercise 6.3]. Similarly, the conditions (C1,D) imply
that dr

max := maxa∈Vr dr
a = o(hn).

Remark 2.4 (Random parameters) The results in Section 2.3 below remain valid when the
sequence of parameters (dl,Com) (resp., (dl, dr)) is itself random. In this case, we require
that Nn→∞ and Mn→∞ almost surely, and we replace Assumption 2.2(A–D) (resp.,

Assumption 2.2(A,B,C1,D)) by the conditions p(n) P−→ p pointwise, E[Dl
n | dl]

P−→ E[Dl],

μ(n) P−→μ pointwise (resp., q(n) P−→ q), and E[Dr
n | dr]

P−→ E[Dr], where we assume the
limiting PMFs p and μ (resp., q) to be deterministic. For a similar setting in the configura-
tion model, see [29, Remark 7.9 on ‘regularity of random degrees’], where this is spelled out
in more detail.

Note that analogously to Remark 2.3(i), under the conditions of Remark 2.4, Mn/Nn
P−→ γ .

2.3. Results

In this section, we state our results on local properties of the RIGC. The main result is
the local weak convergence (LWC) of the RIGC (defined shortly), which is equivalent to the
convergence of subgraph counts (neighborhood counts). LWC also implies the convergence of
degrees and local clustering, and provides some insight into the overlapping structure of com-
munities. We use the following notions throughout this section. Recall that Vl

n ∼Unif[Vl]
denotes an l-vertex chosen u.a.r., and P( · |ωn) denotes conditional probability with respect
to ωn. Let EVl

n
[ · |ωn] denote the corresponding conditional expectation, that is, empirical

averages for a given ωn.

Local weak convergence. First, we give a brief definition of LWC to state our results. We give
a much more detailed introduction to the concept in Section 3.1.

Definition 2.5 (Rooted (multi)graph, rooted isomorphism, and neighborhood)

(i) We call a pair (G,o) a rooted (multi)graph if G is a locally finite, connected (multi)graph
and o is a distinguished vertex of G.

(ii) We say that two multigraphs G1 and G2 are isomorphic if there exists a bijection
ϕ : V(G1)→ V(G2) such that for any v,w∈ V(G1), the number of edges between v,w
in G1 equals the number of edges between ϕ(v), ϕ(w) in G2.

(iii) We say that the rooted (multi)graphs (G1, o1)� (G2, o2), are rooted isomorphic if there
exists a graph-isomorphism between G1 and G2 that maps o1 to o2.
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(iv) For some r ∈N, we define Br(G, o), the (closed) r-ball around o in G or r-neighborhood
of o in G, as the subgraph of G spanned by all vertices of graph distance at most r from
o. We think of Br(G, o) as a rooted (multi)graph with root o.

Definition 2.6. (Local weak convergence in probability) Let (Gn)n∈N with size |Gn| P−→∞
be a sequence of random (multi)graphs, and let Un |Gn ∼Unif[V(Gn)]. By |Gn| P−→∞, we
mean that for all K ∈R+, P(|Gn| ≥K)→ 1 as n→∞. Let (R, o) denote a random element
of the set of rooted (multi)graphs, which we call a random rooted (multi)graph. We say that

(Gn,Un) converges to (R, o) in probability in the LWC sense, and write (Gn,Un)
P-loc−→ (R, o),

if for any fixed rooted (multi)graph (G,o) and r ∈N,

P
(
Br(Gn,Un)� Br(G, o)

∣∣ Gn
)

:= 1

|Gn|
∑

u∈V(Gn)

1{Br(Gn,u)�Br(G,o)}

P−→ P
(
Br(R, o)� Br(G, o)

)
.

(2.18)

We also say that (R, o) is the local weak limit in probability of (Gn,Un).

We can now state our first main result on the LWC of the RIGC model.

Theorem 2.7. (Local weak convergence of the RIGC) Consider RIGCn =RIGC(dl,Com)
under Assumption 2.2. Then, with Vl

n ∼Unif[Vl], as n→∞,

(
RIGCn, Vl

n

) P-loc−→ (CP, o), (2.19)

where (CP, o) is a random rooted graph with distribution as specified in Section 3.3.

The proof of Theorem 2.7 is completed in Section 3.3. The local weak limit generalizes
random clique trees, which are shown to be the local weak limit of RIGs (see e.g. [38]). Our
construction replaces the cliques by arbitrary connected graphs and is slightly more involved,
hence Section 3.3. In the following, we present some corollaries of Theorem 2.7.

Degrees. Recall (2.11) and (2.12). We define the random variable Dp and its distribution
function

Dp d=
Dl∑
i=1

Dc
(i), Fp(x) := P

(
Dp≤ x

)
, (2.20)

with Dl from Assumption 2.2(A), and Dc
(i) are i.i.d. copies of Dc from Remark 2.3(ii).

Corollary 2.8. (Degrees in the RIGC) Consider RIGC(dl,Com) under the conditions of
Theorem 2.7. Then, as n→∞,

∥∥Fp
n − Fp

∥∥∞ = sup
x∈R

∣∣Fp
n (x)− Fp(x)

∣∣ P−→ 0, (2.21)

and consequently,

Dp
n

d−→Dp. (2.22)

Corollary 2.8 is almost a direct consequence of Theorem 2.7. Pointwise convergence in
probability of the empirical CDF follows directly; however, the convergence of the sup-norm
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requires a proof that we provide in Section 3.4.1. We remark that Corollary 2.8 can alternatively
be proved independently through a first and second moment method under weaker conditions.

In particular, Assumption 2.2(C) can be replaced by Dc
n

d−→Dc. Let us also note that while
(2.22) is more intuitive, (2.21) is a stronger statement. Indeed, (2.21) implies that the random
empirical degree distribution, i.e., the observed degree sequence, is close to its theoretical limit
w.h.p.

Clustering. We proceed by studying the clustering in the RIGC, in particular focusing on
local clustering. For an arbitrary individual v ∈ Vl, let �p(v) denote the (random) number of
triangles that v is part of in the RIGC. Here we also include degenerate triangles, where one or
more vertices are the same, and count triangles with multiplicity, i.e., all possible ways we can
choose the three edges. We define the local clustering at v as

Cl(v) := �p(v)(p-deg(v)
2

) , (2.23)

with the convention that Cl(v) := 0 whenever p-deg(v)< 2. Define the empirical local
clustering coefficient ζn := Cl(Vl

n ) and denote its random empirical CDF by

Fζn (x)= Fζn (x;ωn) := 1

Nn

∑
v∈Vl

1{Cl(v)≤x} = P
(
ζn ≤ x

∣∣ωn
)
. (2.24)

We introduce

ζ
d=

( Dl∑
i=1

�c
(i)

)/(∑Dl

i=1 Dc
(i)

2

)
, Fζ (x) := P(ζ ≤ x), (2.25)

where (Dc
(i), �

c
(i)) are i.i.d. copies of the random vector (Dc, �c) from Remark 2.3(ii) and are

independent of Dl (see Assumption 2.2(A)).

Corollary 2.9. (Local clustering in the RIGC) Consider RIGC(dl,Com) under the conditions
of Theorem 2.7. Then, as n→∞,

‖Fζn − Fζ‖∞ = sup
x∈R

∣∣Fζn (x)− Fζ (x)
∣∣ P−→ 0. (2.26)

In particular, ζn
d−→ ζ and thus the average local clustering converges:

E
[
ζn

]→E[ζ ]. (2.27)

Analogously to Corollary 2.8, Corollary 2.9 is almost a direct consequence of Theorem 2.7.
Pointwise convergence in probability of the empirical CDF follows directly; however, the con-
vergence of the sup-norm requires a proof that we provide in Section 3.4.1. We note that in
fact Corollary 2.9 still holds if we replace Assumption 2.2(C) by the conditions in Assumption
2.2(C1) and Remark 2.3(ii). The intuition behind Corollary 2.9 is that triangles typically arise
within one community; that is, triangles containing edges from different communities make
a negligible contribution as the model size grows. This is due to the ‘locally tree-like’ struc-
ture of the underlying BCM (see Proposition 3.2 below). We remark that under our general
conditions, we cannot establish that the local clustering scales inversely with the degree (as in
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e.g. [9, 39]); however, the inverse degree serves as an upper bound for the clustering. In the
following, we establish when the model has positive asymptotic clustering.

Corollary 2.10 (Condition for positive asymptotic clustering) Under the conditions of
Corollary 2.9, the asymptotic average clustering E[ζ ] is positive if and only if P

(
�c≥ 1

)
> 0,

with �c from Remark 2.3(ii).

Proof of Corollary 2.10. Note that P
(
�c≥ 1

)
> 0 happens exactly when the assigned com-

munities are not μ-almost surely triangle-free with μ from Assumption 2.2(C); i.e., μH > 0
for at least one H ∈H such that H contains at least one triangle. Clearly, this is a necessary
condition, but also sufficient, as it implies that any vertex has a positive probability to be part
of a triangle and have bounded degree at the same time. �

Another measure of clustering is the so-called global clustering coefficient, defined as three
times the total number of triangles in the graph divided by the total number of connected triples
(paths of length 2, often called ‘wedges’); formally,

Clglob := 3�p
total∑

v∈Vl

(p-deg(v)
2

) = ∑
v∈Vl�p(v)∑

v∈Vl

(p-deg(v)
2

) . (2.28)

Note the relation with the local clustering coefficient defined in (2.23) as the ratio of �p(v)
and

(p-deg(v)
2

)
; in (2.28), we instead consider the ratio of the sum of these quantities over all

individuals. Also note that we can think of the global clustering coefficient as the ratio of the
averages of �p(v) and

(p-deg(v)
2

)
,

Clglob=
1

Nn

∑
v∈‘Vl�p(v)

1
Nn

∑
v∈Vl

(p-deg(v)
2

) , (2.29)

while the average local clustering is given by the average of the ratios of the same quantities,

E
[
Cl(Vl

n )
∣∣ωn

]= 1

Nn

∑
v∈Vl

Cl(v)= 1

Nn

∑
v∈Vl

�p(v)(p-deg(v)
2

) . (2.30)

While the global clustering coefficient and average local clustering coefficient embrace similar
concepts, their behaviors are different. By [38, Corollary 4.4], in addition to LWC, convergence
of the global clustering coefficient requires the stronger condition of

E
[
(p-deg(Vl

n ))2
∣∣ωn

]=E
[
(Dp

n )2
∣∣ ωn

] P−→ E
[
(Dp)2],

which can be reduced to E
[
(Dl

n)2
]→ E

[
(Dl)2

]
and E

[
(Dc

n )2
]→E

[
(Dc)2

]
(by Corollary 2.8).

Under these conditions, Clglob converges in probability to the ratio of expectations of the
numerator and denominator of ζ in (2.25), i.e.,

Clglob
P−→E

[ Dl∑
i=1

�c
(i)

]/
E

[(∑Dl

i=1 Dc
(i)

2

)]
, (2.31)

which in general is different from the limiting average local clustering E[ζ ].

The overlapping structure. Next, we turn our attention to the overlapping structure of the
communities, which is one of the main motivators for the RIGC model. By an overlap, we mean
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two or more communities having one or more individuals in common. From this definition, it
is clear that the internal structure of the communities does not play a role in the overlapping
structure; thus the following discussion applies to the RIG model as well. By the construction
of the model, i.e. the inclusion of individuals in several communities, it is clear that overlaps
are present. We will study first the number of overlaps, and later the typical size of the overlaps
as well. Let us introduce some notation. For v ∈ Vl and a ∈ Vr, we say that v is part of Coma

and write v←� Coma if v←� j for some j ∈ Coma. Let us denote the size of the overlap between
a, b∈ Vr, a �= b, by

O(a, b) :=
∑

v∈Vl

1{v←�Coma}∩{v←�Comb}. (2.32)

We define the set of communities overlapping with the community a as

N(a) := {b∈ Vr : b �= a, O(a, b)≥ 1}. (2.33)

For k ∈Z+, we introduce the set of unordered pairs of (at least) k-fold overlapping communi-
ties:

Lk =L
(n)
k := {{a, b}: a, b∈ Vr, a �= b, O(a, b)≥ k

}
. (2.34)

Note that Lk ⊇Lk+1 for all k ∈Z+ and L1 contains all overlapping pairs, regardless of the size
of overlap they share. Recall that Vr

n ∼Unif[Vr], and further recall that P( · |ωn) denotes the
conditional probability with respect to ωn and E[ · |ωn] denotes the corresponding conditional
expectation. We can now state our result on the number of overlaps.

Proposition 2.11. (Number of overlaps) Consider RIGC(dl,Com) under Assumption 2.2. In
addition, assume that, as n→∞,

E
[
(Dl

n)2]→ E
[
(Dl)2]<∞. (2.35)

Then, as n→∞, the average number of communities overlapping with a ‘typical’ one
converges:

2|L1|
Mn
=E

[|N(Vr
n )| ∣∣ ωn

] P−→ E[Dr]E[D̃l]. (2.36)

Note that (2.35) ensures that E[D̃l]<∞, so the right-hand side of (2.36) is finite. We prove
Proposition 2.11 in Section 3.4.2 using LWC. Intuitively, (2.36) asserts that a typical commu-
nity Vr

n overlaps with constantly many others, and thus the number of overlapping pairs of
communities is linear in the total number of communities.

Next, we assert that the ‘typical’ overlap size is 1; we call this the single-overlap prop-
erty. There are several ways to interpret what the ‘typical overlap’ means, leading to slightly
different statements, as follows.

Theorem 2.12. (Single-overlap property) Consider RIGC(dl,Com) under Assumption 2.2.
Then the single-overlap property holds, in the following ways:

(i) Vertex perspective. For a uniform individual Vl
n ∼Unif[Vl], the communities that Vl

n
is part of w.h.p. overlap only at Vl

n . Formally, as n→∞,

P
(∃{a, b} ∈L2 : Vl

n ←� Coma, Vl
n ←� Comb

∣∣ωn
) P−→ 0. (2.37)
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(ii) Community perspective. For a uniform community Vr
n ∼Unif[Vr], the communities

that Vr
n overlaps with w.h.p. share only a single individual with Vr

n . Formally, as n→
∞,

P
(∃b ∈N(Vr

n ) : O(Vr
n , b)≥ 2

∣∣ωn
) P−→ 0. (2.38)

(iii) Global perspective. Assume additionally the condition (2.35), and let {An, Bn} ∼
Unif[L1] denote a pair of communities chosen u.a.r. from among all distinct pairs
of overlapping communities. Then w.h.p. their overlap is one individual. Formally, as
n→∞,

P
(
O(An, Bn)≥ 2 |ωn

)= |L2|
/|L1| P−→ 0. (2.39)

We complete the proof in Section 3.4.2 but discuss the statement now. The extra sec-
ond moment condition (2.35) in Theorem 2.12(iii) suggests a substantial difference from
Parts (2.12)–(2.12). Indeed, Parts (2.12)–(2.12) establish local properties and follow directly
from LWC, which is not true for Part (2.12). The difficulty is in relating the choice of the
pair (An, Bn)∼Unif

[
L1

]
to the choice of a single uniform vertex (and further choices in its

neighborhood). This problem is nontrivial and further regularity is required. Also note that
Proposition 2.11 requires the same second moment condition for E[D̃l] to be finite that is used
in identifying the asymptotics for |L1|, that is, the denominator in (2.39). In the underlying
BCM (see Definition 2.1), |L1| is the number of pairs of communities that are at graph dis-
tance 2; however, the fluctuations of this quantity are an open problem in the case when the
variance of the degrees diverges.

Relationship with the ‘passive’ random intersection graph. The overlapping structure may
be represented as a graph on Vr by adding an edge between a pair of communities for each
individual they are both connected to. This leads to a ‘dual’ RIG, defined on the communities,
that is sometimes referred to as the ‘passive model’ in the literature [26]. The sizes of the
overlaps O(a, b) and the number of overlapping pairs |L1| can be seen as the edge multiplicities
and total number of edges in the passive model, respectively; in particular, 2|L1|/Mn gives
the average degree. Note that in this regard, applying Theorem 2.12 with the roles of left-
hand side and right-hand side reversed (and also replacing (2.35) by E[(Dr

n )2]→ E[(Dr)2]<
∞ in Theorem 2.12(ii)) provides some insight on the number of multi-edges in the ‘active’
RIG (with complete graph communities) on the l-vertices. In turn, this provides an upper
bound for the number of multi-edges in the RIGC model as well, but obtaining a lower bound
is nontrivial: since the communities are not complete graphs, the fact that two individuals
are together in several communities does not necessarily mean that they are connected by
multiple edges, and finer properties of the measure μ (see Assumption 2.2(C)) come into play.
It further complicates the situation that if we condition on having several communities that
both individuals are part of, we also introduce a bias to the b-degrees involved.

2.4. Discussion on the random intersection graph with communities

In this section, we discuss the relationship of our model to other network models and shed
light on possible applications and their limitations.

Parameter choices. Working with prescribed parameters provides a wide range of applica-
bility. As Corollaries 2.8 and 2.9 suggest, the degree distribution and clustering of the RIGC
model are tunable to match our observations of real-world networks; however, the choice of
dl and Com is hard to infer. One way of obtaining these parameters explicitly is through
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community-detection algorithms [22, 23]. For theoretical research, one may be interested in
generating the input parameters randomly; we give two examples of this. A simple idea is
to use i.i.d. random variables with distribution Dl and Com to generate the sequences dl

and Com, respectively. However, the parameters must satisfy (2.1). If both Var(Dl)<∞ and
Var(Dr)<∞, we can use the algorithm proposed by Chen and Olvera-Cravioto in [16] to gen-
erate the sequences dl, Com in such a way that the sums of the l- and r-degrees are equal,
while the entries are asymptotically independent. While the algorithm in [16] was designed for
the directed configuration model, it is straightforwardly applicable to the BCM.

Our second example is generating a matching pair of dl and dr in a dependent way through
a bipartite version of the generalized random graph [15], or a Norros–Reittu model [41]. Once
dr is given, we have to generate Com in a compatible way, i.e., such that the community sizes
are indeed the r-degrees. Assumption 2.2(C) that there exists a family of conditional measures

μH|k = P
(
Coma �H | dr

a = |Coma| = k
)
, μ·|k = (μH|k)H∈Hk, (μ·|k)k∈Z+, (2.40)

that describe the conditional distribution of community graphs for each given community size.
In fact μH|k =μH/qk, with μ and q from Parts (C) and (C1), respectively, of Assumption 2.2.
(We note that because of this relation, under Assumption 2.2(C1), the implication is reversible,
i.e., the existence of (μ·|k)k∈Z+ implies Assumption 2.2(C).) Thus we can generate each Coma

according to the measure μ·|dr
a
, all independently of each other.

Overlaps. The motivation behind RIGs is to generate overlapping communities, which is
clearly satisfied by Proposition 2.11. However, Theorem 2.12 asserts the single-overlap prop-
erty of the RIGC and RIG graphs, which limits the applicability of these models. For example,
they may not be a good fit for scientific collaboration networks, where the same authors often
collaborate on several papers and with several other collaborators. However, the RIGC may be
used for social networks when the different communities of the same person tend to be sep-
arate: their family members, their colleagues, their sports club friends, etc., typically do not
know each other.

On the other hand, the single-overlap property may be used to optimize community detec-
tion; for example, consider the C-finder algorithm based on the clique percolation method [19,
42], which we explain briefly. A k-clique in a graph is a complete subgraph on k vertices, and
we call two k-cliques adjacent if they share k− 1 vertices. A component in k-clique perco-
lation is a maximal set of vertices that are connected through a chain of adjacent k-cliques.
We remark that such components may overlap, as long as the intersection does not contain a
(k− 1)-clique; the simplest case is when the overlap has fewer than k− 1 vertices. The C-finder
algorithm outputs such components as possibly overlapping communities in the network. Now
suppose each community of the RIGC is 3-clique connected, i.e., built up from edge-adjacent
triangles. Due to the single-overlap property of the RIGC, a typical community will be a com-
ponent of 3-clique percolation by itself, i.e., no other communities will be 3-clique adjacent to
it, allowing detection with great accuracy. Thus, such an RIGC works very well in conjunction
with the C-finder algorithm, either in first generating the RIGC and then detecting its commu-
nities, or in running C-finder on the dataset for which one wishes to use the RIGC as a null
model.

We believe that we can also use the clique percolation approach to make the RIGC a better
fit than the traditional RIG for collaboration networks, in particular for scientific collaboration
networks of authors and the papers they collaborate on. Rather than considering each paper as
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its own community, which leads to cliques with a typical overlap size larger than one, we can
instead merge cliques with more than a single overlap into one community, which, in fact, uses
the components of clique percolation as communities. Then we can think of each community
as the collaboration network of a subcommunity of authors who often collaborate with one
another, and the collaboration network as a network with hierarchical structure.

Multigraphs. The usual criticism that the configuration model receives is that it may produce
a multigraph, and this happens w.h.p. in the case when the degrees have infinite (asymptotic)
variance [29, Chapter 7]. As the RIGC uses a BCM in its construction, we are bound to deal
with multigraphs on the level of community memberships, and possibly on the level of the
projection as well. One classical remedy is to condition the graph on simplicity; it is however
outside the scope of this paper to study this conditional measure (which we conjecture is non-
uniform) or to study whether the simplicity probability remains bounded away from 0 as the
graph size grows. Another classical approach applied to the configuration model is erasure,
and analogously, we can define the erased RIGC by removing self-loops and collapsing multi-
edges into a simple edge, i.e., redefining the edge multiplicites from (2.2) as X′v,v = 0 and
X′v,w = 1{Xv,w≥1}. A different way of erasing would be to erase multiple edges in the underlying
BCM, but note that such erasure does not ensure that the resulting RIGC is a simple graph;
multi-edges may still arise from two individuals being part of two (or more) communities
together. Hence erasing directly in RIGC is the natural/better choice. In this paper, however,
we choose to study the RIGC as a multigraph, and argue that we do not see the effect of this in
the local behavior; indeed, subject to Theorem 2.7, the local weak limit of the RIGC is simple
(a distribution on rooted simple graphs). This means that a typical individual will w.h.p. not
see a self-loop or multi-edge in its finite neighborhood. Based on this observation, our results
extend to the erased RIGC without any modification.

3. Proofs

In this section, we prove the above results. For this purpose, we first provide a more detailed
overview of the concept of LWC in Section 3.1. We then prove LWC for the RIGC as a con-
sequence of the LWC of the underlying BCM, as has been done for other RIG models. Finally
we include the proofs of our further results. For some of these results, we include a sketch of
the proof here, and the more rigorous albeit tedious details can be found in an extended version
of this paper [31].

3.1. Preliminaries: marked graphs and local weak convergence

In order to prove our results, we first introduce the concepts that we rely on in our proof,
the most central one being local weak convergence (LWC), a notion of convergence for sparse
graph sequences. The usefulness of LWC comes from the fact that numerous properties of
the finite graph(s) can be determined or approximated based on the limiting object alone [6,
24]. As its name suggests, LWC describes the graph from a local point of view; indeed, in
Definition 2.6, we have defined LWC in probability in terms of convergence of frequencies of
graph neighborhoods. We cover some of the theory behind the notion of LWC, in fact in a more
general setting of marked graphs, which we also define shortly. The theory of LWC presented
is partially based on [1, 4, 5] and [30, Chapter 2], but generalized and tailored to our needs.
We start by defining marked graphs.
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Marked graphs. Marks provide a general framework for indicating additional information
on the edges and/or vertices of a (multi)graph, such as edge weights, edge directions, graph
coloring, etc. In our case, we use marks to include edge labels of the underlying BCM,
as well as indicate the community graphs assigned to each r-vertex. We formally define
marked (multi)graphs below. For simplicity, we will simply write graphs. Keep in mind that
edges between the same pair of vertices receive marks separately and may have different
marks.

Let G denote the set of all locally finite (multi)graphs on a countable (finite or countably
infinite) vertex set. Let the set of marks Mbe an arbitrary countable set that contains the special
symbol ∅, which is to be interpreted as ‘no mark’. A marked graph is a pair (G, �), where� is
the mark function that maps elements of G into M; in particular, for v ∈ V(G), �(v) ∈M, and
for e ∈ E(G), �(e)∈M2. It is common to associate two marks to each edge, with one mark
associated to each endpoint, which is often interpreted as associating separate marks to the two
directions of a bi-directed edge. Since we work with the BCM, it is more useful to think of the
marks as being associated to the half-edges that form the edge. We denote the set of graphs
with marks from the mark set M by G(M).

We remark that any graph in G (which we may refer to as the set of unmarked graphs,
for clarity) can be turned into a marked graph by assigning the ‘no mark’ symbol ∅ to
each vertex and half-edge; thus, results and definitions formulated for marked graphs apply
straightforwardly to (unmarked) graphs.

Rooted marked graph, isomorphism, and r-neighborhood. We now generalize Definition
2.5 to marked graphs.

(i) Choose a vertex o in a marked graph (G, �) to be distinguished as the root; if G is not
connected, we restrict ourselves to the connected component of o, and denote the rooted
marked graph by (G, �, o).

Denote the set of rooted marked graphs by Go(M). We call a random element of Go(M) a
random rooted marked graph.

(ii) We say that the rooted marked graphs (G1, �1, o1) and (G2, �2, o2) are isomorphic, and
denote this by (G1, �1, o1)� (G2, �2, o2), if there is a graph-isomorphism between
them that also maps root to root and preserves marks. When there are multiple edges
between the same pair of vertices, we require that there be the same number of edges
with any given mark between the corresponding pairs of vertices in the two graphs.

(iii) The (closed) ball Br(G, �, o) can be defined analogously to the unmarked graph ball
(Definition 2.5(iv)), by restricting the mark function to the subgraph as well.

Distance and topology. We are now ready to define a metric on Go(M). For two ele-
ments (G1, �1, o1), (G2, �2, o2) ∈ Go(M), we define the largest radius r such that the
r-neighborhoods of the roots are isomorphic:

rmax :=

⎧⎪⎪⎨
⎪⎪⎩
−1 if �1(o1) �=�2(o2),

+∞ if (G1, �1, o1)� (G2, �2, o2),

sup
{
r ∈N : Br(G1, �1, o1)� Br(G2, �2, o2)

}
otherwise.

(3.1)
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We then define the distance between the rooted marked graphs as

dloc
(
(G1, �1, o1), (G2, �2, o2)

)
:= 2−rmax ∈ [0, 2]. (3.2)

The distance dloc is a metric on the isomorphism classes of Go(M), which turns this space into
a Polish space, i.e., a complete, separable metric space (see [1] or [30, Theorem A.6]).

Local weak convergence of deterministic graphs. Let (Gn, �n)n∈N, (Gn, �n) ∈ G(M), be
a sequence of (deterministic) finite marked graphs such that |Gn|→∞. For each n, let
Un be a vertex of Gn chosen u.a.r., and consider the measures defined by (Gn, �n,Un) on
(Go(M), dloc). We will define the LWC of (Gn, �n)n∈N as the weak convergence of the above
measures, which can be defined in the standard way. Let (R, deucl) denote the Polish space of
the real numbers equipped with the Euclidean distance, and introduce the set of test functionals

�= {ϕ : Go(M)→R : ϕ is bounded and continuous}. (3.3)

We remark that a special case of continuous functionals are those that only depend on a finite
neighborhood of the root. We say that (Gn, �n,Un)n∈N converges in the LWC sense to a (pos-

sibly random) element (G, �, o)∈ Go(M), denoted by (Gn, �n,Un)
loc−→ (G, �, o), if for all

ϕ ∈�, as n→∞,
E
[
ϕ(Gn, �n,Un)

]→E
[
ϕ(G, �, o)

]
. (3.4)

This statement is equivalent (see e.g. [30, Theorem 2.6]) to the convergence of neighborhood
counts; that is, the following statement is an equivalent definition of LWC: for any r ∈N and
any fixed (G′, �′, o′)∈ Go(M), as n→∞,

P
(
Br(Gn, �n,Un)� Br(G′, �′, o′)

)→ P
(
Br(G, �, o)� Br(G′, �′, o′)

)
. (3.5)

Local weak convergence of random graphs. We now generalize Definition 2.6 for marked
graphs (simultaneously generalizing (3.5) for random graphs). Let (Gn, �n)n∈N, (Gn, �n) ∈
Go(M), be a sequence of (finite) random marked graphs such that |Gn| P−→∞, and let
Un | (Gn, �n)∼Unif[V(Gn)] be a uniformly chosen vertex. Let P

( · ∣∣ (Gn, �n)
)

denote con-
ditional probability with respect to the marked graph (i.e., the free variable is Un). We say that
(Gn, �n,Un)n∈N converges in probability in the local weak sense to a (possibly) random ele-

ment (G, �, o)∈ Go(M), and write (Gn, �n,Un)
P-loc−→ (G, �, o), if the empirical neighborhood

counts converge in probability, i.e., if for any fixed r ∈N and fixed (G′, �′, o′) ∈ Go(M), as
n→∞,

P
(
Br(Gn, �n,Un)� Br(G′, �′, o′)

∣∣ (Gn, �n)
)

:= 1

|Gn|
∑

u∈V(Gn)

1{Br(Gn,�n,Un)�Br(G′,�′,o′)}

P−→ P
(
Br(G, �, o)� Br(G′, �′, o′)

)
. (3.6)

We can also generalize (3.4) for an equivalent definition (again, see e.g. [30, Theorem 2.12]
for a proof of the equivalence) of LWC in probability. Let E

[ · ∣∣ (Gn, �n)
]

denote condi-
tional expectation corresponding to the conditional probability measure P

( · ∣∣ (Gn, �n)
)
. Then

(Gn, �n,Un)
P-loc−→ (G, �, o) exactly when for all test functionals ϕ ∈� (see (3.3)),

E
[
ϕ
(
Br(Gn, �n,Un)

) ∣∣ (Gn, �n)
] P−→E

[
ϕ
(
Br(G, �, o)

)]
. (3.7)
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Extensions. We remark that there exist other notions of LWC for random graphs. Almost sure
LWC can be defined by replacing the convergence in probability by almost sure convergence
in (3.6). LWC in distribution is defined as

P
(
Br(Gn, �n,Un)� Br(G′, �′, o′)

)→ P
(
Br(G, �, o)� Br(G′, �′, o′)

)
, (3.8)

where we note the lack of conditioning on the left-hand side. In this paper, we use LWC in
probability, as it is not too restrictive while being strong enough to imply asymptotic indepen-
dence of the neighborhoods of two uniformly chosen vertices. Such asymptotic independence
is not guaranteed by LWC in distribution; see e.g. [30, Section 2.3.1] for a discussion of the
differences between these notions.

Remark 3.1 (Different root distributions) In certain cases, it is meaningful and interesting to
study the convergence of subgraph counts around a vertex Wn chosen according to a non-
uniform distribution, for example size-biased by degree or chosen within a (large enough)
subset of vertices. Our motivation is to restrict the choice of the root to one partition of the
BCM. In the following, for a random vertex Wn with an arbitrary distribution on V(Gn),

we shall write (Gn, �n,Wn)
P-loc−→ (G, �, o) to mean that the neighborhood counts around Wn

converge, i.e., for all r ∈N and all (G′, �′, o′) ∈ Go(M), as n→∞,

P
(
Br(Gn, �n,Wn)� Br(G′, �′, o′)

∣∣ (Gn, �n)
) P−→ P

(
Br(G, �, o)� Br(G′, �′, o′)

)
. (3.9)

3.2. Local weak convergence of the underlying bipartite configuration model

Analogously to classical RIGs, we approach LWC of the RIGC via the LWC of the under-
lying BCM; see Definition 2.1 in Section 2.1. Without the community graphs assigned to each
community and the edge labels encoding the assigned community roles, the LWC of the BCM
follows from known results that we recall shortly. To formally state the LWC of the BCM, we
first define the limiting object.

Recall Dl and Dr from Parts (A) and (C1), respectively, of Assumption 2.2, and also recall
(1.1). We define a discrete-time branching process BPl with a single root 0 in generation
0. The offspring of any two individuals are independent but not identically distributed. The
root has offspring Dl, every other individual in even generations has offspring distributed as
D̃l, and every individual in odd generations has offspring distributed as D̃r. We denote the
resulting family tree by (BPl, 0), which we think of as a rooted (unmarked) tree: the family
tree is obtained by adding edges between each individual and all its offspring. Then we have
the following result.

Proposition 3.2 Consider BCMn = (BCM(dl, dr) under Assumption 2.2 (A,B,C1,D) and

recall Vl
n ∼Unif[Vl]. Then, in the generalized meaning of the notion

P-loc−→ from Remark 3.1,

(BCMn, Vl
n )

P-loc−→ (BPl, 0). (3.10)

Proof. The statement follows from the proof of [38, Theorem 3.1(iv)]. �

The referenced proof uses a very precise coupling argument of a breadth-first search explo-
ration of the graph and an appropriate branching process. In an extended version of this paper
[31], we provide our alternative proof, in which we apply a first and second moment method
to the neighborhood counts.
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By symmetry, a statement analogous to Proposition 3.2 holds for Vr
n ∼Unif[Vr]. Define

the branching process BPr analogously to BPl, with the roles of l and r reversed. That is, the
root 0 has offspring Dr, every other vertex in even generations has offspring D̃r, and every
vertex in odd generations has offspring D̃l. Then

(BCMn, Vr
n )

P-loc−→ (BPr, 0), (3.11)

where
P-loc−→ is again meant in the generalized sense of Remark 3.1. From (3.10) and (3.11), we

can also obtain the local weak limit of the BCM with a uniform root Vb
n ∼Unif[Vl∪ Vr].

We define a mixing variable s and a mixture of BP family trees BPs as follows:

P(s= l)= 1/(1+ γ ), P(s= r)= γ /(1+ γ ), (3.12a)

(BPs, 0)
d= 1{s=l}(BPl, 0)+ 1{s=r}(BPr, 0). (3.12b)

Then, by (3.10), (3.11), Definition 2.6, and Remark 3.1,

(BCMn, Vb
n )

P-loc−→ (BPs, 0), (3.13)

where
P-loc−→ now applies in the original sense of Definition 2.6.

3.3. Local weak convergence of the random intersection graph with communities

In this section, we prove the LWC of the RIGC. We start by constructing the limiting object
(CP, o). The notation is inspired by the fact that (CP, o) is the ‘community projection’ (see
Section 2.1) of a random rooted marked tree (BPl, �

p, 0) defined below, in the same way
that the RIGC is the ‘community projection’ of the underlying BCM. It is then not surpris-
ing that (BPl, �

p, 0) is the local weak limit of the underlying BCM, including the community
graphs, which we represent as a marked graph (formally introduced below). The limiting object
(BPl, �

p, 0) is obtained from the BP family tree (BPl, 0), introduced in Section 3.2, by equip-
ping it with a mark function �p defined shortly. In the following, we give a formal definition
of these objects, starting with the marked graph representation of the underlying BCM.

The underlying BCM as a marked graph. We introduce the mark function �c on BCM
to represent the community graphs and the assignment of community roles. Recall the set
of possible community graphs H and the ‘no mark’ symbol ∅. Let the set of marks be
Mp := H∪Z+ ∪ {∅, l}. We mark each v ∈ Vl by l =:�c(v) and each a∈ Vr by its
community graph Coma =:�c(a). Recall that an edge of the underlying BCM formed by
l-half-edge (v,i) and r-half-edge (a,l) is labeled by (i,l); we also mark this edge by the tuple
(i,l). We refer to (BCM, �c) as the community-marked BCM, and we note that it encodes all
information necessary for constructing the RIGC. Indeed, the community graphs are given as
the marks of r-vertices, and edge-marks encode the assigned community roles: if l-vertex
v is connected to r-vertex a by an edge marked (i,l), we know that v takes on the com-
munity role of the vertex with label l in Coma. Thus the community projection operator of
Section 2.1 can be naturally redefined as P̂ : (BCM, �c) �→RIGC. For some v ∈ Vl, we write
P̂ : (BCM, �c, v) �→ (RIGC, v) for the rooted version of the projection.

The local weak limit of the underlying BCM. We now introduce the marked BP family tree
(BPl, �

p, 0). Recall (BPl, 0) from Section 3.2; conditionally on this (possibly infinite) BP
family tree, we now define the random mark function �p, using the set of marks Mp from
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above. We mark vertices in even generations by land vertices in odd generations by a random
H ∈H, determined as follows. Recall the family of conditional measures (μ· | k)k∈Z+ from
(2.40), and let us denote the degree of a∈ V(BPl) by da. Independently of everything else,
we mark a according to the measure μ· | da . This determines the marks on the vertices of BPl.
Now we describe the marks on the edges of BPl. We mark each edge e by a random tuple
(i, l) ∈ (Z+)2, and we determine i and l separately. (In particular, the two numbers in each tuple
marking an edge are independent of each other, but are not independent of everything else.)
Denote the endpoint of e in an even generation by v and the endpoint in an odd generation by
a, where v and a intuitively correspond to an l- and r-vertex, respectively. We think of i and
l as the marks of the l- and r-half-edges incident to v and a, respectively. For any vertex u,
we mark families of half-edges incident to u in a dependent way, so that each mark in [du] is
used once, but independently of all other families. For u �= 0, we first mark the half-edge that
is part of the edge connecting u to its parent, by a uniformly chosen mark K ∼Unif[du]. Since
(BPl, 0) is a BP family tree, we may assume the children of each individual are ordered, which
provides an ordering for those half-edges incident to u that are part of edges connecting u to
its children. We mark these half-edges by the remaining marks [du] \ {K} in increasing order.
For the root 0, we mark all its half-edges by [d0] in increasing order, analogously.

This defines the law of �p conditionally on (BPl, 0), and consequently the joint law
(BPl, �

p, 0).

Proposition 3.3 Consider the underlying BCM represented as a marked graph (BCMn, �
c)

under Assumption 2.2, and recall that Vl
n ∼Unif[Vl]. Then, in the generalized sense of

P-loc−→
from Remark 3.1,

(BCMn, �
c, Vl

n )
P-loc−→ (BPl, �

p, 0). (3.14)

Proof. The statement follows analogously to Proposition 3.2, by generalizing the proof of
[38, Theorem 3.1(iv)]. The breadth-first search exploration of the marked graph can be cou-
pled to the marked branching process, by extending the coupling of the degrees to include the
marks. More specifically, we have to couple the following three quantities in the BP to the
corresponding ones in the graph exploration: Dl for the root; the joint distribution of D̃l and
K for other vertices in even generations; the joint distribution of D̃r, H, and K for vertices in
odd generations. By the empirical convergence assumed in Assumption 2.2, the error of this
coupling vanishes as n→∞. We omit further details. �

The local weak limit of the RIGC. Recall that in representing the underlying BCM as a
marked graph, we also reinterpreted the community projection P̂ : (BCM, �c, v) �→ (RIGC, v)
acting on a rooted, suitably marked bipartite graph. (Note that this operation is well-defined
even when this bipartite graph is infinite, as each community graph is inserted by a local
operation.) Hence we can define (CP, o) as the community-projection P̂ of (BPl, �

p, 0)
defined above, analogously to random clique trees in [38]. It follows from the construction
that (CP, o) is a simple, locally finite rooted graph with countable (possibly infinite) vertex set
V(CP)= {v ∈ BPl, v is in an even generation}. We obtain the following insight on the overlap-
ping structure of the communities: each vertex v ∈ V(CP) is part of exactly dv communities;
however, by the tree structure of BPl, any two of these communities share only v as a common
vertex, i.e., the proposed local weak limit CP has the single-overlap property.

We now prove the LWC.

Proof of Theorem 2.7. We show that Theorem 2.7 follows from Proposition 3.3. For some
r ∈N and v ∈ Vl, consider the neighborhood Br(RIGC, v) (see Definition 2.5). We first argue
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that this neighborhood is fully determined by B2r+1(BCM, �c, v). We show that any vertex
in Br(RIGC, v) and any community containing an edge in Br(RIGC, v) is at distance at most
2r+ 1 from v in the underlying BCM. Consider a vertex u or an edge e in Br(RIGC, v), and
construct the shortest possible chain of incident edges and vertices connecting it to v: either
v= v0, e0, v1, e1, . . . , ek−1, vk = u, or v= v0, e0, v1, e1, . . . , ek−1, vk, ek = e. (The length of a
chain is the total number of elements in it.) The chain is the longest possible when we consider
an edge e between vertices that are both at distance r from v. In this case, the shortest chain
is v= v0, e0, v1, e1, . . . , ek−1, vr, er = e, with length 2r+ 2. Let ai denote the community that
ei is part of; then the endpoints vi and vi+1 must be members of community ai. Hence, in the
underlying BCM, vi and vi+1 are both neighbors of ai. That is, vertices that are neighbors in the
RIGC are second neighbors in the BCM. Hence we have a (not necessarily self-avoiding) path
v= v0, a0, v1, a1, . . . , ak−1, vk = u or v= v0, a0, v1, a1, . . . , ak−1, vk, ak � ek in the underly-
ing BCM. Because of the correspondence between ei and ai, the number of b-vertices in the
path in the BCM is the same as the length of the chain in the RIGC. We have already estab-
lished that this length is at most 2r+ 2; hence the number of edges along the path in the BCM,
i.e., the graph distance between its endpoints, is at most 2r+ 1. This implies that, indeed,
B2r+1(BCM, �c, v) fully determines Br(RIGC, v).

From now on, we consider the graph sequences BCMn and RIGCn, and we use a tightness
argument to prove that the convergence of neighborhood frequencies of B2r+1(BCMn, �

c, Vl
n )

implies the convergence of neighborhood frequencies of Br(RIGC, Vl
n ). We now establish this

tightness and an appropriate truncation, so that we can rely on a finite subset of possible neigh-
borhoods in our proof. Theorem 3.3 implies that degrees are tight in the random graph sequence
Br(BCMn, �

c, Vl
n ), as follows. Recall the limit (BPl, �

p, 0) from Section 3.2. By construc-
tion, all degrees in BPl are distributed as either Dl, D̃l, or D̃r (see (1.1) and Assumption
2.2(A,C1)). By Assumption 2.2, these random variables are almost surely finite; hence the
maximal degree in Br(BPl, �

p, 0) is almost surely finite. Note that for any K ∈Z+, the func-
tional 1{maximal degree in r-ball>K} is bounded and continuous in the metric space (Go, dloc) (see
Section 3.1). Thus by (3.4) and Proposition 3.3,

P
(
max

{
b-deg(v) : v ∈ Br(BCMn, �

c, Vl
n )

}
>K

∣∣ωn
)

P−→ P
(
max

{
b-deg(v) : v ∈ Br(BPl, �

p, 0)
}
>K

)
,

(3.15)

where the right-hand side vanishes as K→∞, as we have shown that the maximal degree in
the r-ball is almost surely finite. Hence for any ε > 0, there exists K =K(ε, r) ∈Z+ such that

P
(
max{b-deg(v) : v ∈ B2r+1(BPl, �

p, 0)}>K
)
<ε/6, (3.16a)

P
(
max{b-deg(v) : v ∈ B2r+1(BCMn, �

c, Vl
n )}>K

∣∣ωn
)
<ε/3 w.h.p. (3.16b)

Consider some (H, o)∈ Go that is a possible outcome of Br(RIGC, Vl
n ). Denote by X the set of

all possible outcomes (G, �G, o) of the random graph B2r+1(BCMn, �
c, Vl

n ). Further, denote
by Y the subset of all (G, �G, o)∈X such that the r-ball in their P̂-projection is (H,o).
That is, Br(RIGC, Vl

n )� (H, o) exactly when B2r+1(BCM, �c, Vl
n )� (G, �G, o) for some

(G, �G, o)∈ Y. Similarly, Br(CP, o)� (H, o) exactly when B2r+1(BPl, �
p, 0)� (G, �G, o)

for some (G, �G, o)∈Y. Thus, to prove Theorem 2.7, it is sufficient to show that∑
(G,�G,o)∈Y

P

(
B2r+1(BCM, �c, Vl

n )� (G, �G, o)
∣∣∣ ωn

)
P−→

∑
(G,�G,o)∈Y

P

(
B2r+1(BPl, �

p, 0)� (G, �G, o)
)

.
(3.17)
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We prove this using the above truncation. With K =K(ε, r) above, denote the subset of
elements in Ywhere the maximal degree is at most K by

Y(≤K) :=
{

(G, �G, o) : max{b-deg(v) : v ∈ (G, �G, o)} ≤K
}
, (3.18)

and let Y(>K) := Y\ Y(≤K). Define X(≤K) and X(>K) analogously: all elements of X

where the maximal degree is at most K and larger than K, respectively. Note that Y(≤K)⊆
X(≤K) is finite; hence by Proposition 3.3, the sum over this finite set converges:∑

(G,�G,o)∈Y(≤K)

P

(
B2r+1(BCM, �c, Vl

n )� (G, �G, o)
∣∣∣ωn

)

P−→
∑

(G,�G,o)∈Y(≤K)

P

(
B2r+1(BPl, �

p, 0)� (G, �G, o)
)

.
(3.19)

We bound the tail of the left-hand side of (3.17) as∑
(G,�G,o)∈Y(>K)

P

(
B2r+1(BCM, �c, Vl

n )� (G, �G, o)
∣∣∣ωn

)

≤
∑

(G,�G,o)∈X(>K)

P

(
B2r+1(BCM, �c, Vl

n )� (G, �G, o)
∣∣∣ωn

)

= P
(
max{b-deg(v) : v ∈ B2r+1(BCMn, �

c, Vl
n )}>K

∣∣ωn
)
< ε/3 w.h.p.,

(3.20)

by (3.16b). Analogously, the tail of the right-hand side of (3.17) can be bounded as∑
(G,�G,o)∈Y(>K)

P

(
B2r+1(BPl, �

p, 0)� (G, �G, o)
)

≤
∑

(G,�G,o)∈X(>K)

P

(
B2r+1(BPl, �

p, 0)� (G, �G, o)
)

= P
(
max{b-deg(v) : v ∈ B2r+1(BPl, �

p, 0)}>K
)
< ε/6,

(3.21)

by (3.16a). Note that (3.19) implies that the difference between the finite sums is at most ε/2
w.h.p. Combining this observation with (3.20) and (3.21) via the triangle inequality implies that
(3.17) holds. Since we have previously reduced Theorem 2.7 to this statement, this concludes
the proof of Theorem 2.7. �

3.4. Proofs of further results on the random intersection graph with communities

We now provide the proofs of our results on the local properties of the RIGC model as
consequences of LWC. Namely, we prove the convergence of the degree and local clustering
coefficient and study the overlapping structure in Sections 3.4.1 and 3.4.2, respectively.

3.4.1 Degrees and clustering. Recall the definition of (CP, o), the local weak limit of the
RIGC, as the P̂-projection of (BPl, �

p, 0) from Section 3.3. By this construction, it is clear
that Dp (see (2.20)) and ζ (see (2.25)) respectively describe the degree and local clustering
coefficient of o ∈CP. Further recall the empirical degree Dp

n (see (2.11)–(2.12)) and empirical
local clustering ζn (see (2.24)–(2.25)). Since

(RIGCn, Vl
n )

P-loc−→ (CP, o),
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it is intuitive that Dp
n

d−→Dp and ζn
d−→ ζ . We complete the formal proof of the stronger

statements (2.21) and (2.26) below.

Proof of Corollaries 2.8 and 2.9. We show that pointwise convergence of the empirical
CDFs follows directly from Theorem 2.7, by the following reasoning. Recall that P( · |ωn)
denotes conditional probability with respect to ωn and E[ · |ωn] denotes the corresponding
conditional expectation. Further, denote by Po and Eo the probability measure of (CP, o) and
the corresponding expectation. For arbitrary fixed x ∈R, we define the functionals

ϕx, ψx : Go→{0, 1}, ϕx(G, o) := 1{deg (o)≤x}, ψx(G, o) := 1{Cl(o)≤x}. (3.22)

Clearly, both functionals are bounded and only depend on a finite neighborhood of o; thus they
are continuous in the metric space (Go, dloc) (see Section 3.1). Note that we can express the
(empirical) CDFs from (2.12), (2.20), (2.24), and (2.25), respectively, as

Fp
n (x)=E

[
ϕx(RIGCn, Vl

n )
∣∣ωn

]
, Fp(x)=Eo

[
ϕx(CP, o)

]
,

Fζn (x)=E
[
ψx(RIGCn, Vl

n )
∣∣ ωn

]
, Fζ (x)=Eo

[
ψx(CP, o)

]
.

(3.23)

Theorem 2.7 asserts that (RIGCn, Vl
n )

P-loc−→ (CP, o); thus, using the equivalent definition of
LWC in probability (3.7), for any fixed x ∈R, as n→∞,

Fp
n (x)

P−→ Fp(x), Fζn (x)
P−→ Fζ (x). (3.24)

That is, indeed, the empirical CDF of degrees and local clustering coefficient converge in
probability pointwise. This can be strengthened to the convergence in sup-norm in (2.21) and
(2.26) by a truncation argument. The details can be found in the extended version of this
paper [31]. �
3.4.2. The overlapping structure. In this section, we prove Proposition 2.11 and Theorem 2.12
on the typical number and size of overlaps in the RIGC model. Theorem 2.12(i)–(ii) follows
easily from Theorem 2.7 by counting 4-cycles through the root. For a detailed argument, we
refer the interested reader to the extended version of this paper [31]. We do provide the proof of
Proposition 2.11 and Theorem 2.12(iii), which rely on the additional second moment condition
(2.35) and require a slightly different approach. We make use of the following notation. Recall
that Vl

n ∼Unif[Vl], Vr
n ∼Unif[Vr], and Vb

n ∼Unif[Vl∪ Vr]. Further recall that P( · |ωn)
denotes conditional probability with respect to ωn (i.e., conditionally on the graph realization),
and E[ · |ωn] denotes the corresponding conditional expectation (i.e., partial average over the
choice of the uniform vertex).

Sketch of proof of Proposition 2.11. As before, we reduce Proposition 2.11 to LWC. Thus,
we define the functional ϕ on Go (see Section 3.1 for the notation) that counts the number of
vertices at graph distance 2 from the root; i.e., for (G, o) ∈ Go,

ϕ(G, o) := |∂B2(G, o)|. (3.25)

Recall (2.32)–(2.33). We can rewrite the left-hand side of (2.36) as

2|L1|
Mn
=E

[|N(Vr
n )| ∣∣ωn

]=E
[
ϕ(BCMn, Vr

n )
∣∣ωn

]
. (3.26)
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Recall (BPr, 0) from Section 3.2 and note that

E
[
ϕ(BPr, 0)

]=E[Dr]E[D̃l], (3.27)

which is exactly the proposed limit of (3.26). The proof can now be completed by applying
Proposition 3.3 and (3.4) as before; however, some technical difficulties arise. Namely, the
functional ϕ is not bounded, so a truncation argument is necessary. The technicalities of this
truncation argument are included in the extended version of this paper [31]. This concludes the
proof of Proposition 2.11. �

Proof of Theorem 2.12(iii). Recall O(a, b) and Lk from (2.32)–(2.34). By Proposition 2.11,
|L1| is of order Mn; thus, to show that |L2|/|L1| = oP(1), it is sufficient to prove that |L2| =
oP(Mn), which we carry out via a first moment method. We compute

2E
[|L2|

]=E

[ ∑
a,b∈Vr

a �=b

1{O(a,b)≥2}
]
=

∑
a,b∈Vr

a �=b

P
(
O(a, b)≥ 2

)
. (3.28)

With some K to be chosen later, we split the sum∑
a,b∈Vr

a �=b

P
(
O(a, b)≥ 2

)= ∑
a,b∈Vr

a �=b
dr

a≤K

P
(
O(a, b)≥ 2

)+ ∑
a,b∈Vr

a �=b
dr

a>K

P
(
O(a, b)≥ 2

)
. (3.29)

We start by bounding the first term. Recall that v←� Coma denotes the event that v takes a
community role in Coma. For individuals v1, . . . , vk and communities a1, . . . , al, denote the
event that all k individuals are in all l communities by

{{v1, . . . , vk} ⊗←− � {Coma1, . . . ,Comal}
}

:= ∩i≤k ∩j≤l {vi←� Comaj}. (3.30)

Further recall dl
v and dr

a from Section 2.1 and hn from (2.1). By the union bound, we obtain

P
(
O(a, b)≥ 2

)= P
(∃v,w ∈ Vl, v<w : {v,w} ⊗←− � {Coma,Comb}

)
≤ 1

2

∑
v,w∈Vl

v�=w

P
({v,w} ⊗←− � {Coma,Comb}

)

≤
∑

v,w∈Vl

v�=w

dr
a (dr

a − 1)dr
b (dr

b − 1)dl
v (dl

v − 1)dl
w(dl

w − 1)

2 ·hn(hn − 1)(hn − 2)(hn− 3)

(3.31)

by counting the suitable versus the available choices of half-edges. Using (1.1), (2.3), and the
fact that hn =E[Dl

n]Nn by Remark 2.3(i), we have

∑
v∈Vl

dl
v (dl

v − 1)

hn
= 1

Nn

∑
v∈Vl

dl
v (dl

v − 1)

E[Dl
n]
= E

[
Dl

n(Dl
n − 1)

]
E[Dl

n]
=E

[
D̃l

n

]
. (3.32)
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Since hn→∞ as n→∞, we have that 2hn(hn − 1)(hn− 2)(hn − 3)≥h4
n for n large

enough; thus, combining (3.31)–(3.32), we obtain

P
(
O(a, b)≥ 2

)≤ dr
a (dr

a − 1)dr
b (dr

b − 1)

h2
n

∑
v,w∈Vl

dl
v (dl

v − 1)

hn

dl
w(dl

w − 1)

hn

≤ dr
a (dr

a − 1)dr
b (dr

b − 1)

h2
n

(
E[D̃l

n]
)2.

(3.33)

Then, using the condition dr
a ≤K, the definition of dr

max from Remark 2.3(iii), and the fact that
hn =∑

b∈Vr dr
b by definition, we have

∑
a,b∈Vr

a �=b
dr

a≤K

P
(
O(a, b)≥ 2

)≤ (
E[D̃l

n]
)2 ∑

a,b∈Vr

a �=b
dr

a≤K

dr
a (dr

a − 1)dr
b (dr

b − 1)

h2
n

<
(
E[D̃l

n]
)2

K2Mn

∑
b∈Vr

dr
b (dr

max − 1)

h2
n

≤ (
E[D̃l

n]
)2

K2Mn
dr

max

hn
.

(3.34)

We continue by bounding the second term in (3.29), where dr
a >K. Using Markov’s inequality,

we obtain an alternative bound for the probability

P
(
O(a, b)≥ 2

)≤E
[
O(a, b)

]
/2. (3.35)

Taking expectation in (2.32) and again using (3.32), we have

E
[
O(a, b)

]= ∑
v∈Vl

P
(
v
⊗←− � {Coma,Comb}

)≤ ∑
v∈Vl

dr
a dl

v (dl
v − 1)dr

b

hn(hn − 1)
= dr

a dr
b

hn − 1
E[D̃l

n].

(3.36)
Combining (3.35)–(3.36), and using that

∑
b∈Vr dr

b =hn ≤ 2(hn − 1) for n large enough, we
get

∑
a,b∈Vr

a �=b
dr

a>K

P
(
O(a, b)≥ 2

)≤ E[D̃l
n]

2

∑
b∈Vr

dr
b

hn − 1

∑
a∈Vr

dr
a>K

dr
a ≤E[D̃l

n]
∑

a∈Vr

dr
a1{dr

a>K}. (3.37)

Combining (3.29), (3.34), and (3.37), we have

2 E
[|L2|

]
Mn

≤ (
E[D̃l

n]
)2

K2 dr
max

hn
+E[D̃l

n]
1

Mn

∑
a∈Vr

dr
a1{dr

a>K}

= (
E[D̃l

n]
)2

K2 dr
max

hn
+E[D̃l

n]E[Dr
n1{Dr

n>K}].
(3.38)

We show that E
[|L2|

]
/Mn→ 0 by showing that it can be made arbitrarily small for n large

enough. Fix an arbitrary ε > 0; we will choose first K, then n, so that the obtained upper
bound is smaller than ε. Under the second moment condition (2.35), E[D̃l

n]→ E[D̃l]<∞;
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thus (E[D̃l
n])n∈N is bounded. By Assumption 2.2(D), (Dr

n )n∈N is uniformly integrable; thus we
can choose K =K(ε) large enough so that for all n large enough,

E[D̃l
n]E[Dr

n1{Dr
n>K}]≤ ε. (3.39)

Again using that (E[D̃l
n])n∈N is bounded, and further that K is now fixed and dr

max/hn→ 0 by
Remark 2.3(iii), we conclude that for n large enough,

(
E[D̃l

n]
)2

K2 dr
max

hn
≤ ε. (3.40)

Therefore, for n large enough, E
[|L2|

]
/Mn ≤ ε, which is equivalent to E

[|L2|
]= o(Mn).

By Markov’s inequality, |L2| = oP(Mn), which combined with Proposition 2.11 implies
|L2|/|L1| = oP(1). This concludes the proof of Theorem 2.12(iii). �
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