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Three-dimensional (3-D) wake transition for flow past a diamond cylinder is investigated
numerically. Detailed 3-D direct numerical simulations (DNS) show that the wake
is represented by mode A with global vortex dislocations for Reynolds numbers
Re = 121–150, followed by a mode swapping between modes A and B for Re = 160–210
and increasingly disordered mode B for Re ≥ 220. In the mode swapping regime, different
characteristics of the dislocation and non-dislocation periods are revealed by decomposing
flow properties (e.g. the root-mean-square lift coefficient) into the values corresponding
to the dislocation and non-dislocation periods. Such decomposition helps to explain some
major differences observed for the cases of a diamond and a circular cylinder. In addition to
DNS, Floquet stability analyses are conducted to identify the 3-D wake instability modes
of a diamond cylinder up to Re = 300. Phase-averaged base flow is used to eliminate the
quantitative uncertainties induced by the aperiodic secondary vortex street of the base flow.
Interestingly, a subharmonic instability mode is identified at Re ≥ 285, whereas mode B
is absent. The origin of the subharmonic mode is explained. The disagreement between
the DNS and the Floquet analysis regarding the existence of mode B and the subharmonic
mode is also explained. It is found that the natural 3-D flow involves complex interactions
between the streamwise and spanwise vortices, as well as between the 3-D wake transition
and the two-dimensional base-flow transition, which excite mode B and suppress the
subharmonic mode.

Key words: wakes, vortex instability, vortex streets

1. Introduction

Steady incoming flow past a smooth and nominally two-dimensional (2-D) bluff body
has been a classical problem in fluid mechanics. Commonly used bluff bodies include
cylinders with circular and square cross-sectional shapes, for which the flow is governed
by a single dimensionless parameter, i.e. the Reynolds number Re (= UL/ν), defined based
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on the incoming flow velocity (U), the length scale of the cylinder perpendicular to the
incoming flow (L) and the kinematic viscosity of the fluid (ν). For a circular cylinder,
the length scale is the diameter of the cylinder, commonly denoted D. For a square
cylinder, the length scale depends on the flow incidence angle. For a square cylinder
aligned with the four sides perpendicular and parallel to the incoming flow, which is
commonly referred to as a square cylinder with zero flow incidence/attack angle (e.g.
Tong, Luo & Khoo 2008; Sheard, Fitzgerald & Ryan 2009; Yoon, Yang & Choi 2010) or
simply a square cylinder (e.g. Robichaux, Balachandar & Vanka 1999; Sohankar, Norberg
& Davidson 1999; Blackburn & Lopez 2003), the length scale is the side length of the
cylinder, commonly also denoted D. On the other hand, for a square cylinder aligned with
all four sides 45 ° to the incoming flow, i.e. with an incidence angle α = 45 ° and commonly
referred to as a diamond cylinder, the length scale, commonly denoted h (e.g. Sheard et al.
2009; Yoon et al. 2010), is

√
2 times the side length of the cylinder. To be consistent with

previous studies, the present study uses the terms ‘square cylinder’ and ‘diamond cylinder’
for the cases with α = 0 ° and 45 °, respectively.

Three-dimensional (3-D) wake transitions for a circular and a square cylinder have been
studied extensively in the literature through physical experiments, linear/nonlinear stability
analyses and direct numerical simulations (DNS). With the increase in Re, a few wake
transition regimes appear.

(i) At Re ∼ 190 for a circular cylinder (Barkley & Henderson 1996; Williamson 1996)
and Re ∼ 165 for a square cylinder (Sheard et al. 2009; Choi, Jang & Yang 2012;
Park & Yang 2016), the wake transitions from two- to three-dimensional through
the mode A instability that originates in the primary vortex cores (Williamson
1996; Leweke & Williamson 1998; Thompson, Leweke & Williamson 2001). The
mode A instability is subcritical in nature and contains a small hysteresis loop
(Henderson & Barkley 1996; Henderson 1997; Akbar, Bouchet & Dušek 2011). The
mode A streamwise vortices display an out-of-phase sequence (Williamson 1996)
and a relatively large spanwise wavelength/period of ∼4D for a circular cylinder
(Barkley & Henderson 1996) and ∼5D for a square cylinder (Choi et al. 2012; Park
& Yang 2016). The ordered mode A structure is unstable over time and will evolve
spontaneously into a more stable pattern with vortex dislocations (Williamson 1996).
For Re ∼ 190–230 for a circular cylinder (Williamson 1996) and Re ∼ 165–185 for a
square cylinder (Jiang, Cheng & An 2018a), the fully developed wake is represented
by the pattern of mode A with vortex dislocations.

(ii) Over Re ∼ 230–265 for a circular cylinder (Williamson 1996; Barkley, Tuckerman
& Golubitsky 2000; Sheard, Thompson & Hourigan 2003) and Re ∼ 185–210 for a
square cylinder (Jiang et al. 2018a), the wake transitions gradually from the pattern
of mode A with vortex dislocations to mode B. The mode B instability differs from
the mode A instability in that it originates in the braid shear layer region (Williamson
1996; Leweke & Williamson 1998; Thompson et al. 2001) and is supercritical in
nature (Henderson 1997). The mode B streamwise vortices display an in-phase
sequence (Williamson 1996) and a relatively small spanwise wavelength/period of
∼0.8D for a circular cylinder (Barkley & Henderson 1996) and ∼1.1D for a square
cylinder (Choi et al. 2012; Park & Yang 2016).

(iii) At Re ∼ 265 for a circular cylinder (Williamson 1996; Barkley et al. 2000;
Sheard et al. 2003) and Re ∼ 210 for a square cylinder (Jiang et al. 2018a), the
pattern of mode A with vortex dislocations disappears, beyond which the mode B
structures become increasingly disordered, such that the wake becomes increasingly
turbulent/chaotic. In particular, for a circular cylinder a critical condition is observed
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Wake transition of a diamond cylinder

at Re ∼ 265, where the mode B structures are particularly ordered, and a local peak or
trough is observed for a number of flow properties, e.g. the base pressure coefficient
and the Strouhal number (Williamson 1996).

An equally important case to the square cylinder is the diamond cylinder. Among the
range of flow incidence angles, the square and diamond cylinders are the two special cases
where the cross-sectional shape of the cylinder is symmetric about the wake centreline.
In addition, at an Re corresponding to the wake transition from two- to three-dimensional,
the 2-D wakes of both cylinders possess the Z2 spatio-temporal symmetry, i.e. spatial
reflection of the flow about the wake centreline after time evolution of every half-vortex
shedding period (Blackburn & Sheard 2010; Yoon et al. 2010). Consistently, over the range
of flow incidence angles, the cases of square and diamond cylinders correspond to local
minima of Re for the onset of 3-D (specifically mode A) wake instability (Sheard et al.
2009; Yoon et al. 2010), i.e. the square and diamond cylinders are locally most unstable to
the 3-D instability.

However, the 3-D wake transition process of a diamond cylinder is far less studied
than that of a square or circular cylinder. The most well-understood aspect for a
diamond cylinder is the onset of three-dimensionality, which is identified as the mode
A instability at the critical Re (Recr) with the corresponding most unstable spanwise
wavelength (λcr) of (Recr, λcr/h) = (116, 4.0) by Sheard et al. (2009) and (120, 4.2) by
Yoon et al. (2010) through Floquet stability analysis, and Recr = 127 ± 2 by Tong et al.
(2008) through physical experiments. Beyond Recr, Floquet analysis has been routinely
adopted in the literature in identifying additional instability modes in the cylinder wake.
However, for a diamond cylinder the 2-D base flow becomes aperiodic at Re >∼ 140, which
inhibits the application of Floquet analysis to higher Re values for the identification of
additional instability modes other than mode A (Sheard et al. 2009). Alternatively, limited
experimental and 3-D DNS cases (Tong et al. 2008; Yoon, Yang & Choi 2012; Jiang
et al. 2018b) shed light on the wake structures beyond Recr. Tong et al. (2008) conducted
physical experiments and identified a further wake transition from the mode A regime
(with vortex dislocations) to the mode B regime at Re = 190. Yoon et al. (2012) performed
3-D DNS at a few Re values and observed ordered mode A structures at Re = 150,
disordered mode A structures at Re = 200 and hardly identifiable structures at Re = 250.
Jiang et al. (2018b) performed 3-D DNS and observed mode B structures at Re >∼ 200.

However, the wake structures reported by the above-mentioned studies do not agree
well, and it is unclear whether the wake transition from mode A to mode B is a sudden or
a gradual process.

In light of the earlier works, the present study aims at investigating in detail the wake
transition process of a diamond cylinder based on 3-D DNS with a fine increment of Re of
10. A particular focus will be the gradual wake transition from mode A to mode B and the
corresponding variations in the hydrodynamic forces.

The present study is also motivated by the aperiodicity of the base flow for a diamond
cylinder and the consequent limitation to the Floquet stability analysis (Sheard et al. 2009).
As will be shown in § 3.5, the aperiodicity of the base flow arises from the transition from
the primary (Kármán) vortex street to the secondary vortex street within the relatively near
wake (e.g. within 15D downstream of the cylinder for Re ≥ 200). Therefore, interactions
between the 3-D wake transition and the 2-D base-flow transition may be expected for
the case of a diamond cylinder. Similar cases involving the base-flow transition relatively
close to the cylinder include a thin rectangular cylinder (Saha 2007), a thin elliptical
cylinder (Thompson et al. 2014), a triangular cylinder (Ng et al. 2016), etc. In contrast,
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for the cases of circular and square cylinders, the base flows over the 3-D wake transition
regimes do not transition to the secondary vortex street within at least 50D downstream
of the cylinder (e.g. Jiang & Cheng 2019), such that the 3-D wake transition and the 2-D
base-flow transition are decoupled.

In the present study, the diamond cylinder serves as a representative case in investigating
the interactions between the 3-D wake transition and the 2-D base-flow transition. In
addition to the 3-D DNS, Floquet analysis is employed in providing a more thorough
understanding of the interactions. The Floquet analysis will be conducted with caution,
where the aperiodicity of the base flow will be tackled by particular measures.

2. Numerical model

2.1. Numerical method
DNS were conducted in this study in solving the flow around a diamond cylinder. The
governing equations are the continuity and incompressible Navier–Stokes equations

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
, (2.2)

where (x1, x2, x3) = (x, y, z) are the Cartesian coordinates, ui is the velocity component
in the direction xi, t is time, ρ is fluid density, p is pressure and ν is kinematic viscosity.
The numerical simulations were performed with the open-source code OpenFOAM (www.
openfoam.org). The finite volume method (FVM) and the PISO (pressure implicit with
splitting of operators) algorithm (Issa 1986) were used for solving the equations. The
convection, diffusion and time derivative terms were discretised, respectively, using a
fourth-order cubic scheme, a second-order linear scheme and a blended scheme consisting
of the second-order Crank–Nicolson scheme and a first-order Euler implicit scheme. The
same numerical approach was used in Jiang et al. (2016, 2018a) for the simulations of
wake transition of a circular and a square cylinder.

2.2. Computational domain and mesh
A hexahedral computational domain, as sketched in figure 1(a), was used for the present
DNS. As shown in figure 1(a), the centre of the diamond cylinder was placed at (x, y) =
(0, 0). The computational domain size was −40 ≤ x/h ≤ 40 in the streamwise direction,
−40 ≤ y/h ≤ 40 in the transverse direction and 0 ≤ z/h ≤ 12 in the spanwise direction. The
spanwise domain size Lz/h = 12 was chosen based on Jiang, Cheng & An (2017a), who
examined the effect of Lz on the numerical modelling of flow past a circular cylinder
over the 3-D wake transition regimes, and demonstrated that an Lz of approximately three
times the intrinsic wavelength of mode A is required to avoid inaccurate vortex patterns
induced by the restriction of Lz. For the present case of a diamond cylinder, the spanwise
wavelength of mode A at the onset of flow three-dimensionality is 4.00h (see § 2.4), such
that Lz/h = 12 was used to accommodate three spanwise periods of mode A.

The boundary conditions for the velocity included a uniform velocity (ux, uy, uz) =
(U, 0, 0) at the inlet, a Neumann condition (i.e. zero normal gradient) at the outlet and
a no-slip condition on the cylinder surface. The boundary conditions for the pressure
included a Neumann condition for the inlet and cylinder surface, and a reference
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Wake transition of a diamond cylinder
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Figure 1. (a) Schematic model of the computational domain (not to scale), and (b) close-up view of the 2-D
mesh near the cylinder.

of p = 0 at the outlet. Symmetry boundary conditions were applied at the top and
bottom boundaries, while periodic boundary conditions were employed at the two lateral
boundaries perpendicular to the cylinder span. The periodic boundary conditions allow for
travelling waves in the spanwise direction (Jiang et al. 2017a) and follow the nature of the
underlying instability modes which are spanwise periodic (e.g. Henderson 1997; Sheard
et al. 2009). The internal flow followed an impulsive start.

The 2-D mesh in the x–y plane consisted of 92 828 cells. Figure 1(b) shows a close-up
view of the 2-D mesh near the cylinder. The cylinder surface was discretised with 128
nodes. The height of the first layer of mesh next to the cylinder was 0.008h, which
resulted in the smallest cell size at the four corners of the cylinder being 0.008h × 0.008h.
A relatively high resolution was used in the wake region by specifying the streamwise cell
size at the wake centreline (y = 0) increasing linearly from 0.04h at x/h = 1.5 to 0.1h at
x/h = 20. The 3-D mesh was constructed by replicating the 2-D mesh along the z-direction
with a spanwise cell size �z = 0.1h.

For each case, the time step size was fixed at �tU/h = 0.00186, which corresponded to
a Courant–Friedrichs–Lewy (CFL) limit of 0.5. The CFL number is defined as

CFL = |u|�t
�l

, (2.3)

where |u| is the magnitude of the velocity through a cell, and �l is the cell size in the
direction of the velocity.

2.3. Mesh convergence
Based on the reference mesh introduced in § 2.2, a mesh dependence study was performed
at Re = 250 (the largest Re for the present DNS by OpenFOAM) with two variations.

(i) A mesh refined in the z-direction, where �z was reduced from 0.1h to 0.05h.
(ii) A mesh refined in the x–y plane, where the numbers of cells in both the x- and

y-directions were 1.5 times those of the reference mesh, while the general topology
of the mesh remained unchanged. In particular, the number of cells around the
cylinder surface was increased by 1.5 times, while the height of the first layer of
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Case CD C′
L St Lr/h

Reference 1.7213 0.4691 0.1800 1.3487
Refined in the z-direction +0.34% −0.11% +0.46% −0.76%
Refined in the x–y plane +0.98% +3.71% +0.87% −1.59%

Table 1. Mesh dependence check of some major flow properties for Re = 250. The results other than the
reference case are shown by the relative differences with respect to those of the reference case.

mesh next to the cylinder was reduced by 1.5 times. For this case, the time step size
was also reduced by 1.5 times so as to satisfy the CFL limit of 0.5.

Table 1 lists some major flow properties calculated with the three meshes. The drag and
lift coefficients (CD and CL) and the Strouhal number (St) are defined as

CD = FD
1
2ρU2hLz

, (2.4)

CL = FL
1
2ρU2hLz

, (2.5)

St = fLh
U

, (2.6)

where FD and FL are the drag and lift forces on the cylinder, respectively, and fL is
the frequency of the fluctuating lift force, which is determined as the peak frequency
derived from the fast Fourier transform (FFT) of the time history of CL. The time-averaged
drag and lift coefficients are denoted CD and CL, respectively. The root-mean-square lift
coefficient is calculated as

C′
L =

√√√√ 1
N

N∑
i=1

(CL,i − CL)
2
, (2.7)

where N is the number of values in the time history. The wake recirculation length (Lr)
is defined as the horizontal distance between the centre of the cylinder (x/h = 0) and the
wake stagnation point, which is averaged over both time and the cylinder span. For each
case listed in table 1, the time average was performed for at least 650 non-dimensional
time units (defined as t* = tU/h), after discarding an initial period of at least 350
non-dimensional time units.

As shown in table 1, the flow properties calculated with the two refined meshes are very
close to those calculated with the reference mesh.

In addition, for the three cases listed in table 1, figure 2 shows the time-averaged and
root-mean-square velocity profiles sampled at a few streamwise locations in the wake. The
velocity profiles were also averaged over the cylinder span. The time-averaged streamwise
and transverse velocities are denoted as ux and uy, respectively, while the root-mean-square
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Figure 2. Mesh dependence check of the velocity profiles sampled at a few streamwise locations for
Re = 250: (a) time-averaged streamwise velocity profiles, (b) time-averaged transverse velocity profiles,
(c) root-mean-square streamwise velocity profiles and (d) root-mean-square transverse velocity profiles.
The velocity profiles were also averaged over the cylinder span.

streamwise and transverse velocities are calculated as

u′
x =

√√√√ 1
N

N∑
i=1

(ux,i − ux)
2, (2.8)

u′
y =

√√√√ 1
N

N∑
i=1

(uy,i − uy)
2. (2.9)

As shown in figure 2, the velocity profiles calculated with the two variation cases agreed
well with those calculated with the reference case, with the largest difference at any (x, y)
location being smaller than 0.02U. Based on the results shown in table 1 and figure 2, the
reference mesh was considered adequate and was adopted for the present study.

2.4. Onset of three-dimensionality
For flow past a diamond cylinder, the flow transitions from two- to three-dimensional
through the mode A wake instability (Tong et al. 2008; Sheard et al. 2009; Yoon et al.
2010). Floquet stability analysis has been a preferred method in determining the Recr and
λcr values for this instability, e.g. (Recr, λcr/h) = (116, 4.0) by Sheard et al. (2009) and

918 A35-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

35
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.354


H. Jiang

λ
/h

βh

|μ|

1 2 3 4 5 6 7 80

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Re = 120

Re = 140

Re = 120 (Yoon et al. 2010)

Re = 135 (Yoon et al. 2010)

Re = 116 (Sheard et al. 2009)

120 130 140 150
2

3

4

5

6

7

(Recr, λcr/h) = (120.7, 4.00)
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3D DNS (based on OpenFOAM)
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(Recr, λcr/h) = (121.3, 4.09)

(a) (b)

Figure 3. Floquet stability analysis results: (a) dependence of the dominant Floquet multiplier μ on the
spanwise wavenumber β, and (b) the neutral instability curve of mode A.

(120, 4.2) by Yoon et al. (2010). In this section, Floquet analysis was used to confirm the
(Recr, λcr/h) values and to map out the neutral instability curve for mode A. The present
Floquet analysis followed the methodology presented in Barkley & Henderson (1996)
and the numerical framework embedded in the open-source code Nektar++ (Cantwell
et al. 2015) (since Floquet analysis is not readily available in the standard framework
of OpenFOAM but has been well tested in Nektar++). The computational domain size
used in Nektar++ for the Floquet analysis was the same as that introduced in § 2.2 for
OpenFOAM. The macro-element mesh for Nektar++ used 32 macro-elements around
the cylinder perimeter, 0.0388h × 0.0388h for the smallest cell size at the four corners
of the cylinder, and a relatively high wake resolution such that the streamwise cell size
at the wake centreline increased linearly from 0.196h at x/h = 1.5 to 0.810h at x/h = 40.
Overall, the macro-element mesh was approximately 4 to 5 times coarser in both the x- and
y-directions than the mesh used in OpenFOAM. The macro-elements were then subdivided
using fifth-order Lagrange polynomials (Np = 5) on the Gauss–Lobatto–Legendre points
for the quadrilateral expansions. Owing to the use of the high-order spectral/hp element
method for Nektar++ (Karniadakis & Sherwin 2005), the overall mesh resolution for
Nektar++ was finer than that for the FVM-based OpenFOAM.

Figure 3(a) shows the dependence of the dominant Floquet multiplier μ on the spanwise
wavenumber β (= 2π/λ) for Re = 120 and 140, together with similar results predicted by
Sheard et al. (2009) and Yoon et al. (2010). In figure 3(a), a single peak region of |μ|> 1.0
is observed, where the μ values are real and positive, which suggests that this peak region
corresponds to the mode A instability. Figure 3(b) shows the neutral instability curve of
mode A. The (Recr, λcr/h) values for the present Floquet analysis are determined based on
a linear interpolation of the peak |μ| values at Re = 121 and 122 to the neutral instability
of |μ| = 1.0. The results (Recr, λcr/h) = (121.3, 4.09) agree well with those reported by
Sheard et al. (2009) and Yoon et al. (2010). In addition, a mesh convergence check was
performed at (Re, λ/h) = (120, 4.107), where an increase in Np from 5 to 7 resulted in a
decrease in |μ| of 0.01%, suggesting the use of Np = 5 was adequate.

As shown in figure 3(b), the neutral instability curve for mode A was also calculated
through 3-D DNS (based on OpenFOAM). For the DNS method, only a half of a
spanwise period of the mode A structure was simulated (by using Lz = λ/2, Lz/�z = 10 and
symmetry boundary conditions at the two lateral boundaries to isolate a half of a spanwise
period of mode A), such that the computational cost of this method was comparable to that
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Wake transition of a diamond cylinder

of the Floquet analysis. More details on this method can be found in Jiang et al. (2017b).
The present DNS method predicted (Recr, λcr/h) = (120.7, 4.00), which agreed well with
the results predicted by the Floquet analysis. In addition, a mesh convergence check at
Lz = λ/2 = 2h showed that by (i) doubling the mesh layers in the spanwise direction (to
Lz/�z = 20), (ii) doubling the cell numbers in both the x- and y-directions or (iii) doubling
the domain size in the x–y plane (to −80 ≤ x/h ≤ 80 and −80 ≤ y/h ≤ 80), the variations in
Recr were all within 1%. In particular, variation case (i) predicted also Recr = 120.7. For the
3-D wake transition process investigated in § 3, the mesh resolution used in OpenFOAM
was identical to that used in the variation case (i), such that (Recr, λcr/h) = (120.7, 4.00)
was directly applicable to the OpenFOAM cases examined in § 3.

3. Numerical results

3.1. Three-dimensional wake transition
In the present study, the 3-D wake transition beyond Recr = 120.7 was examined up to
Re = 250. For each Re, the flow was deemed fully developed after a time integration of
1000 non-dimensional time units, which corresponded to ∼180 vortex shedding cycles.
After that, at least another 1000 non-dimensional time units were used for the statistics and
analysis of the fully developed flow. The wake transition process was identified through
visualising the streamwise and spanwise vorticity (ωx and ωz) fields, where ωx and ωz are
defined in a non-dimensional form as

ωx =
(

∂uz

∂y
− ∂uy

∂z

)
h
U

, (3.1)

ωz =
(

∂uy

∂x
− ∂ux

∂y

)
h
U

. (3.2)

Figure 4 illustrates the streamwise and spanwise vortex structures for Re in different wake
transition regimes. In summary, with the increase in Re, the wake undergoes a transition
sequence of ‘mode A with global vortex dislocations (Re = Recr − 150) → mode swapping
between modes A and B (Re = 160–210) → mode B (Re ≥ 220)’.

Specifically, for Re = Recr − 150, the initial 3-D structure developed in the wake is a
relatively ordered mode A structure (figure 4b–d). As shown in figure 4(b–d), the mode
A structure originates and grows from the primary vortex cores, which is consistent with
the origin of the mode A instability identified based on a circular cylinder (Williamson
1996; Leweke & Williamson 1998; Thompson et al. 2001). With the evolution over time,
the relatively ordered mode A structure evolves into a pattern with vortex dislocations
(figure 4d–f ). The origin of the vortex dislocations shown in figure 4( f ) can be traced
back to a slight difference in strength in the three pairs of the mode A streamwise vortices
shown in figure 4(b–e). Ever since the emergence of the three mode A streamwise vortex
pairs at t* ∼ 100 (from figures 4a to 4b), pair 1 is always slightly stronger than the other
two pairs (figure 4b–e). With the evolution in time, this stronger pair of mode A structure
grows into a local vortex dislocation in figure 4(e). After that, the local vortex dislocation
develops along the spanwise direction and engulfs the other two pairs of mode A structure,
resulting in a pattern of global vortex dislocation for the saturated flow (figure 4f ).

For the saturated flow, scattered mode A streamwise vortex pairs emerge intermittently.
Depending on the Re value, the mode A streamwise vortex pairs developed in the wake
(e.g. figure 4d,g,j) may evolve into one of the following two patterns:

(i) The mode A streamwise vortex pair evolves into a local vortex dislocation, e.g. pair
1 in figure 4(d,e) and pair 2 in figure 4(g,h).
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Figure 4. Instantaneous vorticity fields in the near wake of a diamond cylinder for (a–f ) Re = 125 with t* = 80,
120, 320, 400, 480 and 520, (g–i) Re = 150 with t* = 1605, 1645 and 1675, ( j–k) Re = 190 with t* = 1360 and
1380 and (l) Re = 240 with t* = 2125. The translucent iso-surfaces represent spanwise vortices with ωz =±1.0,
while the opaque iso-surfaces represent streamwise vortices with ωx =±0.02 for panels (a,b), ωx = ±0.3 for
panel (c), ωx =±0.5 for panels (d–f ), ωx = ±0.8 for panels (g–i), and ωx = ±1.0 for panels ( j–l). Dark grey
and light yellow denote positive and negative vorticity values, respectively. The flow is from left to right past
the cylinder on the left.

(ii) The mode A streamwise vortex pair evolves into the mode B structure, e.g. pair 1 in
figure 4(g) and pairs 2 and 3 in figure 4( j).

For Re = Recr − 140, only pattern (i) exists. Any particular mode A streamwise vortex
pair that evolves through pattern (i) would engulf the unevolved mode A streamwise
vortex pairs and lead to a pattern of global vortex dislocations (e.g. figure 4d–f ). For
Re = 150–210, both patterns exist. A special condition occurs at Re = 150, where although
pattern (ii) exists occasionally, it is always accompanied by the co-existence of pattern (i)
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Wake transition of a diamond cylinder

and would thus still evolve into global vortex dislocations (e.g. figure 4g–i). In summary,
for Re = Recr − 150 the saturated flow is always represented by global vortex dislocations.

For Re = 160–210, global vortex dislocations appear intermittently in the saturated
flow. Similar to Re = 150, any mode A streamwise vortex pair that evolves through
pattern (i) would lead to global vortex dislocations, even when other mode A streamwise
vortex pair(s) evolve through pattern (ii) at the same time (e.g. figure 4g–i). In contrast,
global vortex dislocation is suppressed when all of the mode A streamwise vortex pairs
evolve through pattern (ii) (e.g. figure 4j,k). This pattern (i)/(ii) of evolution results
in an intermittent appearance of global vortex dislocations (i.e. mode swapping) for
Re = 160–210.

The mode swapping over Re = 160–210 is quantified in figure 5. The shaded and
clear blocks indicate dislocation and non-dislocation time periods, respectively, which are
determined by visually examining the time evolution of the streamwise vorticity field (e.g.
those shown in figure 4) with an interval of 10 non-dimensional time units. The global
vortex dislocations are spotted easily as they appear over continuous time periods and
normally occupy the entire domain (Jiang et al. 2016). Based on the time histories shown
in figure 5, the probability of occurrence of dislocation is further quantified in figure 6. As
shown in figure 6, the probability of occurrence of dislocation decreases monotonically
with increasing Re. With the increase in Re, the mode B structures are more likely to be
destabilised and in turn replace/stabilise the mode A streamwise vortex pairs through the
pattern (ii) evolution, which results in a reducing likelihood of pattern (i), i.e. a reducing
likelihood of dislocation. It is also noticed that the mode swapping shown in figure 5 is
most frequent when the probability of occurrence of dislocation is close to 50%.

For Re ≥ 220, pattern (i) no longer exists. Scattered mode A streamwise vortex pairs,
which evolve through pattern (ii) only, are observed for <8% and <2% of the statistical
time periods for Re = 220 and 250, respectively, which suggests that for Re ≥ 220 the
influence of mode A is minimal. The wake is dominated by disordered mode B structures,
as illustrated in figure 4(l).

3.2. Characteristics of the dislocation and non-dislocation periods
Based on the separation of the dislocation and non-dislocation time periods in figure 5, the
flow properties, such as the hydrodynamic forces on the cylinder, can also be decomposed
into the values corresponding to the dislocation and non-dislocation time periods. Such an
analysis has not been performed before in the literature, and is expected to shed new light
on the different characteristics of the dislocation and non-dislocation periods.

Figure 7 shows the time histories of CL for Re over the mode swapping regime, overlaid
with shaded and clear regions representing dislocation and non-dislocation time periods,
respectively. As shown in figure 7, the dislocation periods correspond to local reductions
in the fluctuation amplitude of CL, which include some extremely small fluctuation
amplitudes over the time history. In particular, the long dislocation periods observed for
Re = 160 consist of frequent local reductions in the fluctuation amplitude of CL, except for
the non-dislocation period at t* = 1280–1420, where the fluctuation amplitude is sustained
at a relatively large level.

The local reductions in the fluctuation amplitude of CL for the dislocation periods
originate from the local dislocations in the mode A streamwise vortices. As shown in
figure 4(e,f,h,i), the local dislocations in the mode A streamwise vortices towards the
upstream direction would induce an upstream movement of the corresponding fractions
of the spanwise vortex rollers and eventually lead to inclined spanwise vortex rollers
at the two sides of the local dislocation. The inclined spanwise vortex rollers shown
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Figure 5. Quantification of the intermittent appearance of global vortex dislocations in the range of
Re = 150–220. The shaded and clear blocks indicate dislocation and non-dislocation time periods,

respectively.
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Figure 6. Probability of occurrence of vortex dislocation for Re over the mode swapping regime.

in figure 4( f,i) indicate phase differences in the primary vortex shedding at different
spanwise locations up to at least 180 ° (the inclined spanwise vortex rollers may reach
the streamwise location for the subsequent spanwise vortex roller), which partially cancels
out the integrated lift coefficient. In contrast, the mixed mode A and B structures in the
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Figure 7. Time histories of the lift coefficient for Re = 160–210, overlaid with shaded and clear regions
representing dislocation and non-dislocation time periods, respectively.

non-dislocation periods do not induce significant inclinations in the spanwise vortex rollers
(e.g. figure 4j,k), such that the fluctuation amplitudes of CL are relatively large.

Figure 8(a) shows the C′
L–Re relationship over the wake transition regimes. The

C′
L values over the mode swapping regime are further decomposed into the ones

corresponding to the dislocation and non-dislocation time periods. As expected, the
C′

L values for the dislocation periods are consistently smaller than those for the
non-dislocation periods. With the gradual decrease in the probability of occurrence of
dislocation over Re = 160–210 (figure 6), the overall C′

L value moves gradually from the
dislocation branch to the non-dislocation branch (figure 8a).

Figure 8(b) examines the degree of flow three-dimensionality in the wake, quantified by
the time-averaged streamwise and transverse enstrophies (εx and εy) defined as

εx = 1
2

∫
V

ω2
x dV, (3.3)

εy = 1
2

∫
V

ω2
y dV, where ωy =

(
∂ux

∂z
− ∂uz

∂x

)
h
U

, (3.4)

where V is the volume of the flow field of interest. The enstrophies shown in
figure 8(b) are integrated over the wake region of x/h = 0–20. In general, the degree
of three-dimensionality increases gradually with increasing Re. In addition, the εx and
εy values over the mode swapping regime are decomposed into the ones corresponding
to the dislocation and non-dislocation periods. The enstrophies for the dislocation
periods are slightly larger than those for the non-dislocation periods, which suggests
that the dislocation periods have larger degrees of flow three-dimensionality than
the non-dislocation periods. The larger degrees of flow three-dimensionality for the
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Figure 8. (a) The C′
L–Re relationship, and (b) the εx–Re and εy–Re relationships (integrated over x/h = 0–20)

over the wake transition regimes.
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Figure 9. (a) The C′

L–Re relationship, and (b) the εx–Re relationship (integrated over x/D = 0–10) over the
wake transition regimes for flow past a circular cylinder.

dislocation periods are consistent with the larger reductions in the C′
L values from their

2-D counterparts shown in figure 8(a).
In comparison, figure 9 shows the C′

L–Re and εx–Re relationships for flow past a circular
cylinder. In the mode swapping regime of Re ∼ 230–265 (Williamson 1996; Barkley et al.
2000; Sheard et al. 2003; Jiang et al. 2016), the C′

L and εx values corresponding to the
dislocation and non-dislocation periods are calculated in the present study by further
analysing the numerical cases reported by Jiang et al. (2016), where the dislocation and
non-dislocation time periods are identified in a similar manner to figure 5. Similar to the
diamond cylinder, for a circular cylinder the dislocation periods also display larger degrees
of flow three-dimensionality and larger reductions in C′

L (from their 2-D counterparts) than
the non-dislocation periods (figure 9).

However, a major difference between a circular and a diamond cylinder is that for a
circular cylinder there is a critical condition at the upper end of the mode swapping
regime (Williamson 1996), where a local peak or trough is observed for various flow
properties (see e.g. figure 9). In contrast, such a critical condition does not appear for a
diamond cylinder (figure 8). Such a difference between a circular and a diamond cylinder
originates from the development of particularly ordered and parallel mode B structures for
the non-dislocation periods of a circular cylinder (see e.g. figure 14(c) of Jiang et al. 2016)
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Wake transition of a diamond cylinder

whereas more disordered mode B structures for the non-dislocation periods of a diamond
cylinder (see e.g. figure 4k). For a circular cylinder, the particularly ordered mode B
structures for the non-dislocation periods induce εx values less than half of those for the
dislocation periods (figure 9b) and C′

L values very close to the largest possible level, i.e.
their 2-D counterparts (figure 9a). In contrast, the disordered mode B structures observed
for the non-dislocation periods of a diamond cylinder induce relatively large degrees of
flow three-dimensionality comparable to those of the dislocation periods (figure 8b) and
C′

L values much smaller than their 2-D counterparts (figure 8a). Since the non-dislocation
branches shown in figure 8 are now closer to the dislocation branches than the 2-D curves
(for figure 8b the 2-D results are εx = εy = 0), the overall C′

L–Re, εx–Re and εy–Re curves,
which are bounded by the dislocation and non-dislocation branches, do not show obvious
peak/trough towards their 2-D counterparts at the upper end of the mode swapping regime.
Instead, only slight changes in the variation trends may be observed when the overall
curve detaches the dislocation branch at Re ∼ 160 and attaches the non-dislocation branch
at Re ∼ 210. These slight changes may easily be overlooked when the dislocation and
non-dislocation branches are switched off.

3.3. Vortex shedding frequency
Figure 10 shows the frequency spectra of CL for the determination of the vortex shedding
frequency. The frequency spectra are obtained from the FFT of the time histories of
CL. Each frequency spectrum shown in figure 10 contains a main peak, accompanied by
broadband frequencies at the two sides of the peak, owing to the irregularity of the 3-D
flows.

Based on the separation of the time history of CL into the dislocation and
non-dislocation periods in figure 7, the frequency spectrum of CL can also be decomposed
by performing FFT separately on the dislocation and non-dislocation ranges of the time
history. Figure 11(a) shows an example of the decomposition of the frequency spectrum
of CL for Re = 180. It is seen that the peak frequency corresponding to the non-dislocation
periods is much closer to that of the dislocation periods than that calculated through 2-D
DNS, which is similar to the variation trends of εx and εy shown in figure 8(b). Jiang &
Cheng (2017) also showed based on a circular cylinder that in the mode swapping regime
the degree of reduction in the 3-D St value from its 2-D counterpart correlates well with the
degree of flow three-dimensionality. In comparison, figure 11(b) shows a circular cylinder
example at Re = 250, where the peak frequency corresponding to the non-dislocation
periods is much closer to its 2-D counterpart than that of the dislocation periods.
For the circular cylinder, the difference between the peak frequencies corresponding to
the dislocation and non-dislocation periods (of �St = 0.0104) can be revealed by the
frequency spectrum corresponding to the entire time history of CL, where two peaks
of �St = 0.00997 apart are observed (figure 11b). For the diamond cylinder, however,
because the difference between the peak frequencies corresponding to the dislocation and
non-dislocation periods (of �St = 0.00195) is even smaller than the range of St under
the main frequency peak (of �St >∼ 0.005), the frequency spectrum corresponding to the
entire time history of CL cannot display the twin-peaked pattern. The relatively small �St
between the dislocation and non-dislocation branches over the mode swapping regime can
also be viewed in figure 10 by highlighting the peak frequencies of Re = 150 (just before
mode swapping) and Re = 220 (just after mode swapping) using two vertical lines, where
a similar minor difference of �St = 0.00318 is observed.

Figure 12 shows the St–Re relationship over the wake transition regimes for flow past
a diamond cylinder. At the onset of three-dimensionality, a sudden drop in the St value
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Figure 10. Frequency spectra of CL for Re = 140–240.

(of 5.6%) is observed, which, according to Jiang et al. (2018a), is consistent with the
subcritical nature of the mode A instability for a diamond cylinder (Sheard et al. 2009)
and the associated sudden increase in the degree of flow three-dimensionality at Recr
(figure 8b). For Re > Recr, a continuous St–Re relationship is observed for the 3-D flows,
including the mode swapping regime highlighted in figure 12, since the twin-peaked
pattern is not observed for the frequency spectra shown in figure 10.

918 A35-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

35
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.354


Wake transition of a diamond cylinder

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26
0

0.2

0.4

0.6

0.8

1.0(a) (b)
2D

3D

3D, dislocation periods

3D, non-dislocation periods

St

A
m

p
li

tu
d
e 

o
f 

C
L

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26
0

0.2

0.4

0.6

0.8

1.0

St

Figure 11. Frequency spectra of CL for (a) flow past a diamond cylinder at Re = 180, and (b) flow past a
circular cylinder at Re = 250.
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Figure 12. The St–Re relationship over the wake transition regimes.

3.4. The drag coefficient
Figure 13 shows the CD–Re relationship over the wake transition regimes. In addition,
the total drag coefficient is decomposed into the pressure and viscous components. The
present 2-D results agree relatively well with those reported by Yoon et al. (2010). As
Re exceeds the onset of the primary wake instability, the pressure drag starts to increase
while the viscous drag continues to decrease, which is similar to that of a circular cylinder
investigated in Henderson (1995). However, a difference to a circular cylinder (Henderson
1995) or a square cylinder (Jiang & Cheng 2018) is that for a diamond cylinder the increase
rate of the pressure drag is larger than the decrease rate of the viscous drag, such that the
total drag exhibits an increase right after the onset of the primary wake instability. At
the onset of the secondary wake instability, both the pressure and viscous drag display
an approximately 7% decrease, which is consistent with the sudden decrease/increase
in St (figure 12), C′

L (figure 8a) and the degree of flow three-dimensionality (figure 8b)
discussed in §§ 3.2 and 3.3.

Based on the decomposition of the pressure and viscous drag coefficients (denoted
CD,p and CD,v , respectively) in figure 13, the ratio between the pressure drag and the
total drag (CD,p/CD) is quantified in figure 14. In comparison, figure 14 also shows
the results for a circular cylinder, a square cylinder (with α = 0 °) and inclined square
cylinders with α = 15.3 ° and 29.7 °, based on the CD,p and CD,v values reported by Jiang
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Figure 13. The CD–Re relationship over the wake transition regimes.
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Figure 14. The ratio between the pressure drag and the total drag for different cylinders. The red vertical bars
indicate the onset of three-dimensionality.

& Cheng (2018) and Yoon et al. (2010). The red vertical bars in figure 14 indicate the
onset of three-dimensionality for circular, square and diamond cylinders, where the 3-D
results appear to the right of them. In addition, the 2-D simulations have been extended
beyond the onset of three-dimensionality (although unphysical in real situations), and the
2-D results show excellent agreement with the corresponding 3-D results. The agreement
between the 2-D and 3-D results is attributed to a very similar percentage decrease in the
pressure and viscous drag at the onset of three-dimensionality (e.g. figure 13). Therefore,
the 2-D results for α = 15.3 ° and 29.7 ° can be used without having to consider the effect
of three-dimensionality.
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A common feature for the cylinders investigated in figure 14 is that, for each
cross-sectional shape, the projected length perpendicular to the incoming flow (which
contributes to the pressure drag) is the same as the projected length parallel to the
incoming flow (which contributes to the viscous drag). Therefore, the ratio CD,p/(CD,p +
CD,v) = CD,p/CD serves as a direct indication of the bluffness of the cylinder. As shown
in figure 14, the CD,p/CD value, and hence the bluffness of the cylinder, is largest for a
square cylinder, followed by inclined square cylinders with increasing α from 0 ° to 45 °,
and smallest for a circular cylinder.

3.5. Floquet analysis of the 3-D wake instability modes
As discussed in § 3.1, the mode B structures observed at Re ≥ 150 are destabilised by
the mode A structures that exist in the wake. On the other hand, it is also of interest to
examine the global instability of mode B (and other modes) to the 2-D base flow, where
the interactions between the modes A and B structures are eliminated. In general, Floquet
stability analysis has been a preferred method in determining the 3-D modes that are
unstable to the 2-D base flow, e.g. the mode B instability of a circular cylinder (Barkley &
Henderson 1996; Posdziech & Grundmann 2001) and a square cylinder (Robichaux et al.
1999; Sheard et al. 2009; Park & Yang 2016), among many others. A necessary condition
for the use of the Floquet analysis is that the 2-D base flow is time periodic (Barkley &
Henderson 1996). For a diamond cylinder, however, Sheard et al. (2009) found that the 2-D
base flow became aperiodic at Re >∼ 140, such that no Floquet analysis had been performed
for Re >∼ 140 to identify the instability modes other than mode A.

In the present study, the 3-D instability modes of a diamond cylinder for Re >∼ 140 are
examined by the Floquet analysis with caution. The aperiodicity of the 2-D base flow
is illustrated in figure 15(a,b) at Re = 300 with two instantaneous vorticity fields of one
primary vortex shedding period (T* = TU/h) apart, where the vorticity fields become
aperiodic at x/h >∼ 7. In addition, figure 15(c) shows the locations of the vortex centres
extracted from 19 snapshots of the vorticity field (including the vorticity field shown in
figure 15a), which illustrates more clearly that the wake becomes aperiodic at x/h >∼ 7. The
two vertical dashed lines in each panel of figure 15 mark the streamwise locations where
the wake transitions from the primary vortex street to the two-layered and the secondary
vortex streets. The transition locations are determined as the x/h values corresponding
to the local maxima in the time-averaged transverse velocity field shown in figure 15(d)
(Jiang & Cheng 2019). A mesh convergence check conducted at Re = 300 (the largest Re
considered by the Nektar++ model used in this section) shows that an increase in Np
from 5 to 7 results in variations in the two transition locations of 0.5%, which suggests
that the use of Np = 5 is adequate. As shown in figure 15(a–c), the wake remains periodic
when the primary vortices rearrange themselves to the two-layered pattern, while the wake
gradually becomes aperiodic when the two-layered vortices rearrange themselves for the
irregular vortex merging (see e.g. figure 15b) at the transition to the secondary vortex
street. In other words, the aperiodicity of the 2-D base flow arises from the transition
from the two-layered to the secondary vortex street. Such a transition is not observed for
Re = 140 within the wake domain length up to x/h = 40 (and the entire wake is perfectly
periodic), but is observed for Re ≥ 160 (and the wake is aperiodic), such that the Floquet
analysis of Re ≥ 160 should be conducted with caution.

Figure 16 shows the |μ|−β relationships for Re = 300, predicted through the
Floquet analysis using two different vortex shedding periods of the base flows, i.e.
t* = 1400 − (1400 + T*) and t* = 1600 − (1600 + T*). It is found that the aperiodicity
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Figure 15. Characteristics of the 2-D base flow for Re = 300: (a) instantaneous vorticity field at t* = 1400,
(b) instantaneous vorticity field at t* = 1400 + T*, (c) locations of the vortex centres extracted from 19
snapshots of the vorticity field (at t* = 1000 to 2800 with an interval of 100) and (d) time-averaged transverse
velocity field. The vertical dashed lines mark the two transition locations, while the horizontal dashed line in
panels (c,d) marks the wake centreline.

of the base flow results in quantitative uncertainties in the |μ|−β relationship, while,
qualitatively, the unstable peaks (i.e. the wake instability modes) are the same. The first
peak at βh ∼ 0.8–1.8 contains real and positive μ values, which correspond to the mode
A instability. The second peak at βh ∼ 2.8–4 contains real and negative μ values, which
correspond to a subharmonic mode. Based on further computations, the critical Re for
the instability of the subharmonic mode is located within 280–285. Other than these
two modes, no additional instability modes are identified by the Floquet analysis over
Re = 120–300 (with an interval of 20).

To eliminate the quantitative uncertainties in the |μ|−β relationship induced by the
aperiodicity of the base flow, phase-averaged (hence T-periodic) base flow is attempted
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Figure 16. The |μ|−β relationships for Re = 300, predicted through the Floquet analysis using different base
flows. The horizontal dashed line marks the neutral instability of |μ| = 1.0.

for the Floquet analysis. The phase-averaged base flow is generated based on 200T of
the fully developed original 2-D flow. Figure 17(a,b) illustrates the phase-averaged base
flow for Re = 300 at two phases of T/2 apart. The |μ|−β relationship predicted using the
phase-averaged base flow is also shown in figure 16, where, similarly, a mode A and a
subharmonic mode are obtained, which suggests again that the aperiodicity of the base
flow induces a quantitative but not qualitative influence on the Floquet instability modes.
Based on the phase-averaged base flow, Floquet analyses were performed for Re ≥ 160.
Figure 18 shows the extended neutral instability curve for mode A up to Re = 300 (cf.
figure 3b). In addition, the subharmonic instability mode is identified at Re ≥ 285.

To further confirm the existence of the subharmonic instability mode predicted by the
Floquet analysis, 3-D DNS were conducted using Lz/h = 1–3 to eliminate the influence
of mode A and to reveal the relatively small-scale subharmonic instability mode. The
present DNS cases and their 2-D or 3-D near-wake patterns are summarised in figure 18
using isolated symbols. The DNS results agree well with the neutral instability curves.
For Re = 260 and 280, the near wake becomes three-dimensional when Lz/h increases
from 2.5 to 3, and the wake of Lz/h = 3 is represented by one spanwise period of the
mode A structure. For Re = 290, the near wake first becomes three-dimensional when
Lz/h increases from 1.4 to 1.5, and the near wake is represented by one spanwise period
of the subharmonic mode. The subharmonic mode observed at Lz/h = 1.5 is free from
the influence of mode A that may appear at larger Lz/h values. The existence of the
subharmonic instability mode is thus cross-checked by both DNS and the Floquet analysis,
where both methods predict its onset of instability at Re within 280–290.

The subharmonic mode is also observed at Re = 300 when Lz/h increases from 1.3 to 1.4.
The subharmonic mode at Re = 300 and Lz/h = 1.4 is investigated in detail by examining
the instantaneous ωz and ωx fields over a period of 20T. Figure 19 illustrates the ωz (a,c,e)
and ωx (b,d, f ) fields at the plane z/h = 0.1 over a period of 2T. Panels (a,b) of figure 19
are shown at an arbitrary time instant in the fully developed flow, while panels (c,d) and
(e, f ) are shown at time evolutions of T and 2T, respectively. It is seen that the ωz fields
shown in figure 19(a,c,e) are generally T-periodic at x/h <∼ 7, which is similar to those of
the 2-D flow shown in figure 15(a,b). However, while the |ωx| fields in figure 19(b,d,f ) are
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Figure 17. Illustration of T-periodic base flows for Re = 300. Panels (a,b) show instantaneous vorticity fields
for the phase-averaged base flow at two phases of T/2 apart, while panels (c,d) show instantaneous vorticity
fields for the stabilised base flow at two phases of T/2 apart. The base flows in panels (a,c) are shown at the same
phase as figure 15(a,b). The vertical dashed lines mark the two transition locations for the original aperiodic
2-D flow.

generally T-periodic at x/h <∼ 7, the streamwise vortices change sign every T, resulting in
the period doubling of the flow.

The physical mechanism for the development of the subharmonic mode is investigated
below. It is anticipated that the development of the subharmonic mode is related to the
development of the secondary vortex street relatively close to the cylinder. To prove this
point, an additional Floquet analysis was conducted by using a base flow without the
transition to the secondary vortex street. The transition to the secondary vortex street can
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Figure 18. The neutral instability curves for mode A and the subharmonic mode. The Floquet analyses for

Re ≥ 160 are performed based on the phase-averaged base flow.
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panels (c,d) and (e,f ) are shown at time evolutions of T and 2T, respectively.
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be suppressed by stabilising the two-layered vortex street until the outlet boundary (see
figure 17c,d) through the following procedures:

(i) Compute the fully developed 2-D flow and the corresponding vortex shedding
period T.

(ii) Repeat the following until the two-layered vortex street is stabilised till the outlet:
advance the flow by a period of T and use the average of the flow fields at the
beginning and the end of the T-period as the initial condition for the next iteration.

(iii) Compute the updated T for the stabilised flow field.
(iv) Repeat steps (ii) and (iii) until the updated T does not change.

It is worth noting that the stabilised base flow is strictly T-periodic, since the aperiodic
transition to the secondary vortex street is suppressed.

Based on the stabilised base flow, the |μ|−β relationship for Re = 300 is also shown in
figure 16. While the first peak at βh ∼ 0.8–1.8 still corresponds to the mode A instability,
the second peak, which is marginally unstable at βh = 3.2 with a real and positive μ value
(rather than a real and negative μ for the subharmonic mode), corresponds to a wake
instability in the two-layered vortex street near the outlet, which would not exist in the
original base flow.

The disappearance of the subharmonic mode in the stabilised base flow sheds light on
the origin of the subharmonic mode. For the original base flow (and naturally also the
phase-averaged base flow), it is found that the time-averaged flow becomes asymmetric
about the wake centreline at Re ≥ 285 (e.g. figure 15d). Consistently, the time-averaged
lift coefficient becomes non-zero, the trajectories for the positive and negative vortices
become asymmetric about the wake centreline (figure 15c) and the corresponding
phase-averaged base flow (figure 17a,b) breaks the following spatio-temporal symmetry:

ωz(x, y, t) = −ωz(x, −y, t + T/2). (3.5)

Physically, subharmonic modes are often detected by the Floquet analysis when the base
flow breaks the above spatio-temporal symmetry (Blackburn & Sheard 2010), even when
the bluff body and the incoming flow are symmetric about the wake centreline (e.g. Serson
et al. 2014). Therefore, it is not surprising that the critical Re for the asymmetry of the
time-averaged flow coincides with the critical Re for the instability of the subharmonic
mode (both at Re = 280–285). In contrast, the stabilised base flow (figure 17c,d) possesses
the spatio-temporal symmetry given in (3.5), such that no subharmonic mode is detected
by the Floquet analysis. A comparison between the original/phase-averaged base flow
and the stabilised base flow suggests that the breaking of the spatio-temporal symmetry
described in (3.5) is induced by the transition to the secondary vortex street relatively close
to the cylinder, which rearranges the near-wake vortex pattern upstream of the transition.

Although the subharmonic mode is detected by the Floquet analysis and 3-D DNS with
Lz smaller than the spanwise wavelengths of mode A at Re >∼ 285, it may not exist in the
natural 3-D flow. Instead, § 3.1 shows that the mode B structures are observed in the natural
3-D flow at Re ≥ 150 and dominate the wake at Re ≥ 220, although none of the Floquet
analysis conducted here detects the mode B instability. In addition, table 2 summarises the
wake structures for Re = 300 predicted by the 3-D DNS under different Lz/h constraints.
A mesh convergence check was performed for the case Lz/h = 12 by increasing Np from 5
to 6, where the St, CD and C′

L values vary by less than 1%. It is seen in table 2 that with
increasing Lz/h from 3 to 6, the wake structure changes from the ordered subharmonic
mode (figure 20a) to disordered mode B (figure 20b). The existence of mode B rather than
the subharmonic mode for Lz/h = 6 and 12 is supported by the following evidence.
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Wake transition of a diamond cylinder

Lz/h Streamwise vortices Spanwise vortices |CL|
0 n/a Ordered 0.037
1.4 One spanwise period of the ordered

subharmonic mode
Ordered 0.032

1.5 One spanwise period of the ordered
subharmonic mode

Ordered 0.029

3 Two spanwise periods of the ordered
subharmonic mode (Figure 20a)

Ordered (Figure 20a) 0.029

6 Disordered mode B (Figure 20b) Disordered (Figure 20b) O(10−4)
12 Disordered mode B Disordered O(10−4)

Table 2. Wake structures for Re = 300 predicted by the 3-D DNS under different Lz/h constraints.

201612840
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3

3

Figure 20. Instantaneous vorticity fields for Re = 300 predicted by the 3-D DNS using (a) Lz/h = 3 and
(b) Lz/h = 6. The translucent iso-surfaces represent spanwise vortices with ωz =±2, while the opaque
iso-surfaces represent streamwise vortices with ωx =±0.4 for panel (a) and ωx =±2 for panel (b). Dark grey
and light yellow denote positive and negative vorticity values, respectively. The flow is from left to right past
the cylinder on the left.

(i) The streamwise vortices possess the spatio-temporal symmetry corresponding to
mode B rather than the subharmonic mode.

(ii) The time-averaged lift coefficient is practically zero (of the order of 10−4).
(iii) The mode B structures emerge at Re ≥ 150, which is much smaller than the onset of

the subharmonic mode at Re ∼ 285.

The development of mode B rather than the subharmonic mode in the natural 3-D flow
is attributed to the influence of the mode A instability. The mode A streamwise vortices
may destabilise mode B through (i) destabilising the braid shear layer region (Jiang et al.
2016) for the hyperbolic instability of mode B (Williamson 1996; Leweke & Williamson
1998; Thompson et al. 2001), and (ii) modulating the pattern of the spanwise vortices (i.e.
the base flow) to allow for the instability of mode B. To demonstrate the latter mechanism,
the span-averaged spanwise vorticity fields for Re = 300 computed with Lz/h = 3 and 6
are shown in figure 21. For Lz/h = 3, the ordered streamwise vortices of the subharmonic
mode do not induce noticeable influence on the spanwise vortices (figure 20a), such that
the pattern of the spanwise vortices shown in figure 21(a) is similar to that computed with
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Figure 21. Span-averaged spanwise vorticity fields for Re = 300, obtained from (a) the instantaneous 3-D
flow field shown in figure 20(a) computed with Lz/h = 3, and (b) the phase-averaged 3-D flow computed with
Lz/h = 6.
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Figure 22. The |μ|−β relationship for Re = 300, predicted through the Floquet analysis using the modulated
base flow. The horizontal dashed line marks the neutral instability of |μ| = 1.0.

2-D DNS (figure 15a,b), where the primary vortex street transitions to the two-layered
and secondary vortex streets at x/h ∼ 4 and 10, respectively. For Lz/h = 6, the spanwise
vortices are highly disordered (figure 20b), such that the spanwise vorticity field shown
in figure 21(b) is based on a phase average over 25 vortex shedding cycles. Compared
with figure 21(a), the pattern and strength of the spanwise vortices shown in figure 21(b)
are significantly modulated by the disordered streamwise vortices (figure 20b) and the
associated development of turbulence and turbulent dissipation.

It is anticipated that the modulated pattern of the spanwise vortices may give rise to the
instability of mode B. Therefore, an additional Floquet analysis is conducted, where the
base flow is the phase- and span-averaged spanwise vorticity fields for Re = 300 obtained
with Lz/h = 6 (called the modulated base flow hereafter). Figure 22 shows the |μ|−β

918 A35-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

35
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.354


Wake transition of a diamond cylinder

4

0

–4
0 4 8 12 16 20

0.02

–0.01

0.01

–0.02

0

4

0

–4
0 4 8 12 16 20

0.02

–0.01

0.01

–0.02

0

4

0

–4
0 4 8 12 16 20

0.02

–0.01

0.01

–0.02

0

4

0

–4
0 4 8 12 16 20

0.050

–0.025

0.025

–0.050

0

y/
h

y/
h

y/
h

y/
h

x/h

(a)

(b)

(c)

(d )

Figure 23. Streamwise perturbation vorticity fields for Re = 300: (a) mode A predicted by βh = 1.8 of the
modulated base flow, (b) mode B predicted by βh = 7 of the modulated base flow, (c) mode A predicted
by βh = 1.4 of the phase-averaged base flow and (d) the subharmonic mode predicted by βh = 3.2 of the
phase-averaged base flow. Red and blue denote positive and negative vorticity values, respectively.

relationship for Re = 300, predicted through the Floquet analysis using the modulated
base flow. The two unstable modes identified in figure 22 both contain real and positive
μ values, which correspond to synchronous modes. The streamwise perturbation vorticity
fields for the two modes are shown in figure 23(a,b). The perturbation patterns of the two
modes agree well with those for modes A and B for circular and square cylinders (see e.g.
Robichaux et al. 1999; Carmo, Meneghini & Sherwin 2010). The most unstable spanwise
wavelength for mode B (∼0.9h) is similar to the wavelengths for mode B for circular and
square cylinders (Barkley & Henderson 1996; Choi et al. 2012; Park & Yang 2016).

For completeness, figure 23(c,d) shows the streamwise perturbation vorticity fields for
mode A and the subharmonic mode predicted with the phase-averaged base flow illustrated
in figure 17(a,b). For mode A, the perturbation structure displays opposite signs for the two
sides of the wake centreline (figure 23a,c). For the subharmonic mode, the perturbation
structure displays both signs alternately at each side of the wake centreline (figure 23d).
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The most unstable spanwise wavelength for the subharmonic mode (∼1.9h) is similar to
the wavelengths for the subharmonic mode observed in the wake of other bluff bodies (e.g.
Sheard et al. 2009; Yildirim, Rindt & van Steenhoven 2013).

However, figure 22 shows that the subharmonic mode is suppressed by the modulated
pattern of the spanwise vortices shown in figure 21(b). As discussed earlier in this
section, the subharmonic mode is unstable to the original and phase-averaged base flows
where the spatio-temporal symmetry described in (3.5) is broken by the transition to
the secondary vortex street relatively close to the cylinder. For the modulated base flow
shown in figure 21(b), the two-layered vortices with significantly weakened vorticity do
not transition to the secondary vortex street, and the wake possesses the spatio-temporal
symmetry (see e.g. the |CL| values in table 2), such that the subharmonic mode is
suppressed.

4. Conclusions

This paper investigates numerically the 3-D wake transition process of a diamond cylinder.
Detailed 3-D DNS show that the wake becomes three-dimensional at Recr ∼ 121 and
is represented by mode A with global vortex dislocations for Re = Recr − 150. For
Re = 160–210, a mode swapping between modes A and B takes place. With the increase in
Re, the mode B structures are increasingly likely destabilised by the streamwise vortices
of mode A, and consequently the probability of occurrence of mode A with global vortex
dislocations decreases monotonically. For Re ≥ 220, the wake is dominated by increasingly
disordered mode B structures.

For the mode swapping regime, the different characteristics of the dislocation and
non-dislocation periods are analysed quantitatively through a new approach. Specifically,
a specific flow property (e.g. C′

L, εx, εy, St, etc.) can be decomposed into the values
corresponding to the dislocation and non-dislocation time periods. Owing to the vortex
dislocations, the C′

L and St values for the dislocation periods are smaller than their
counterparts for the non-dislocation periods, and consistently the εx and εy values (i.e. the
degree of flow three-dimensionality) show the opposite. Quantitatively, the C′

L, εx, εy and
St values for the non-dislocation periods are closer to those for the dislocation branch than
their 2-D counterparts. Therefore, the overall C′

L–Re, εx–Re and εy–Re curves, which are
bounded by the dislocation and non-dislocation branches, display only slight changes in
the variation trends when the overall curve detaches the dislocation branch at Re ∼ 160 and
attaches the non-dislocation branch at Re ∼ 210. In addition, the relatively close St values
for the dislocation and non-dislocation periods cannot be distinguished as two peaks in the
overall frequency spectrum.

In contrast, a similar analysis for the circular cylinder case shows that the
non-dislocation branch is much closer to the 2-D curve than the dislocation branch, such
that the overall curve displays an obvious peak/trough towards its 2-D counterpart at
the upper end of the mode swapping regime, commonly known as a critical condition
(Williamson 1996). In addition, the St values for the dislocation and non-dislocation
periods are now sufficiently apart to be distinguished as two peaks in the overall frequency
spectrum.

In addition to DNS, Floquet stability analyses are conducted to identify the 3-D wake
instability modes of a diamond cylinder up to Re = 300. Phase-averaged base flow is
adopted to eliminate the quantitative uncertainties induced by the aperiodic secondary
vortex street in the base flow. In addition to mode A, a subharmonic instability mode is
identified at Re ≥ 285, whereas mode B is not detected. The subharmonic instability mode
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is induced by the breaking of the Z2 spatio-temporal symmetry of the base flow, which
is further induced by the transition to the secondary vortex street relatively close to the
cylinder and rearrangement of the near-wake vortex pattern upstream of the transition.

The disagreement between the natural 3-D flow and the Floquet analysis regarding the
existence of mode B and the subharmonic mode is explained. For the natural 3-D flow, the
existence of mode A modulates the pattern of the spanwise vortices (i.e. the base flow),
which gives rise to the instability of mode B. In addition, the base flow modulated by
the existence of modes A and B does not transition to the secondary vortex street, which
suppresses the subharmonic mode. In summary, the natural 3-D flow involves complex
interactions between the streamwise and spanwise vortices, as well as between the 3-D
wake transition and the 2-D base-flow transition.
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