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General estimates are derived for mean velocities through and around groups or
arrays of fixed and moving bodies, in unbounded and bounded domains, which lie
within a defined perimeter. Robust kinematic flow concepts are introduced, namely
the Eulerian spatial mean velocity uE in the fluid volume between the bodies, the
Eulerian flow outside the group, u(0)

E , and the Lagrangian mean velocity of material

surfaces or fluid particles as they pass through the group of bodies (u(S)
L , u

(P )
L ). The

Eulerian mean velocity is related to the momentum in the fluid domain, and is
mainly influenced by fast moving regions of the flow. The Lagrangian mean velocity
weights slowly moving regions of flow and is related to how material sheets deform
as they are advected through groups of bodies. When the bodies are well-separated,
the interstitial Eulerian and Lagrangian mean velocities (u(I )

E , u
(I )
L ), are defined and

calculated in terms of the far-field contributions from the velocity or displacement
field within the group of bodies.

In unbounded flow past well-separated bodies situated within a rectangular
perimeter, the difference between the Eulerian and Lagrangian mean velocity is
negligible (as the void fraction of the bodies, α → 0). Within wide and short rectangular
arrays, the Eulerian mean velocity is faster than the free-stream velocity U because
most of the incident flow passes through the array and uE =U (1 − α)−1. Within long
and thin rectangular arrays (and other cases where the reflux velocity is negligible),
the Eulerian mean velocity, uE = U (1 − (1 + Cm)α)/(1 − α), is slower than the free-
stream velocity, because most of the incident flow passes around the array. For
a spherical or circular arrays of bodies, the particle Lagrangian mean velocity is
u

(P )
L = U (1 + Cmα)−1 and differs from uE . These calculations are extended to examine

the mean and interstitial flow through clouds of bodies in bounded channel flows.
The new concepts are applied to calculate the mean flow and pressure between and

outside clouds of bodies, the average velocity of bubbly flows as a function of void
fraction, and the tendency of clouds of bubbles to be distorted depending on their
shape.

1. Introduction
Many practical mechanical and processing engineering flows consist of collections

of fixed or moving bodies. These may be unbounded or bounded high-Reynolds-
number flows through ‘clouds’ of bodies, such as crop ‘canopies’ or buildings in the
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atmospheric boundary layer, boiler tubes in a furnace, flows through moving objects
such as icebergs in the ocean, or bubble swarms in pipes. For many purposes, the
main goal is to calculate various integral or statistical properties of the velocity field
in relation to the distribution and movement of the bodies in order to estimate, for
example, the mean drag exerted on the ambient flow, and average heat and mass
transfer rates. This requires calculating the average properties of the flows through
groups of bodies, which is a difficult question to answer, in part because of its
ambiguity. Two contrasting approaches are used. The first, typically employed in
multiphase and ‘canopy’ models, is to estimate the relative slip between the phases
using a spatial (or phase) average of the flow field in the group of bodies (an
Eulerian average; Drew & Wallis 1992). The second approach, which is useful for
some multiphase flow problems, is to define an average based on the residence time in
a fluid region (a Lagrangian average). When the bodies are well-separated, it is also
useful to divide these averages into two components: near- and far-field contributions
to the flow or displacement field. Averaging the far-field flow (Teshukov & Gavrilyuk
2002) or the far-field displacement field over the group of bodies yields a useful
‘interstitial’ mean velocity. Since the zone of validity and magnitude of these average
flow quantities differ from each other, in different conditions, they need to be clearly
defined and to be put on a firmer theoretical foundation. This enables important
practical estimates of the flow to be calculated unambiguously, which is the aim of
this paper.

As bodies translate, they displace or transport fluid in the direction in which
they move. This may in turn cause a return flow or reflux. A simple example is
bubbles rising in a beaker of water. The water they transport with them has to return
downwards when the bubbles leave through the top surface. To analyse the flow in
the interior of the beaker, the complex flows at the free surface (e.g. Eames, Hunt &
Belcher 1996) associated with the movement of the bubbles do not have to be
evaluated, providing there is an appropriate definition of the mean velocity field using
a Lagrangian framework. Such a Lagrangian framework is based substantially on
Darwin’s (1953) analysis of material surface deformation by the flow around rigid
bodies. Darwin (1953) showed that provided a material surface starts infinitely far in
front of the body, and is swept infinitely far past the body, the total volume displaced
forward is CmVB , where VB is the body volume and Cm is the added-mass coefficient.
In bounded flows, a return flow or reflux is also present. The consequence of reflux
is that rising bubbles (or falling particles) see, on average, a slower mean flow which
leads to a hindered rise (or settling) speed.

The limitation of Darwin’s analysis is that the flow must be describable by a velocity
potential. Even high-Reynolds-number flow past clean bubbles generates vorticity on
the bubble surface by a shear free boundary condition. However, the presence of
strong irrotational straining motion in the near-wake region tends to annihilate the
vorticity (Hunt & Eames 2002). Thus even though vorticity is present locally, its
effect on the displacement field tends to be weak. This explains why estimates of
the drift volume based on irrotational theory are surprisingly close to experimental
measurements for both three-dimensional (Bataille, Lance & Marie 1991) and two-
dimensional bubbles (Bush & Eames 1998). In the latter case, the reflux field was
also measured and was in accordance with inviscid predictions based on treating the
bubble and stable wake as a compound body, and the exterior flow as irrotational.
Based on such irrotational flow calculations, Kowe et al. (1988) proposed a model
of the interstitial flow between bubbles rising in a channel, by considering the flux
transported by bubbles, but (unlike van Wijngaarden 1993) neglected the interaction
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between the bubbles. Their predictions agreed with Zuber & Findlay’s (1965) hindered
rise speed formula and drift–flux relations which are widely used in multiphase flows,
even for void fractions close to 0.1 (Couet, Brown & Hunt 1991). The distinction
between different contributions to the velocity field was also proposed, for bubbly
flows, by Cook & Harlow (1984), who suggested that the local flux transported by the
bubbles (a near-field contribution to the velocity field) and the average flow of the gas
and liquid be represented. More recently, Teshukov & Gavrilyuk (2002) studied the
average properties of oscillating bubbles in unbounded flows which involved making
a distinction between the average and the far-field contribution to the velocity field.
The distinction between the different contributions to the velocity field is analysed
more completely here. The pressure field computed here, which determines how the
distribution of bubbles changes with time, shows how rapidly large bubbles or slugs
will form from distributions of smaller bubbles.

These studies can also be applied to improving models of non-uniform flows through
groups of bodies or buildings and their impact on the ambient flow. Typically,
estimates of the average velocity between the bodies are derived by replacing the
obstacles by a distributed drag force, while ignoring inviscid blocking by the rigid
bodies. Since the latter effect also forces the approach flow to go over and around
them, it may explain why, if bodies are only modelled as point forces or a distribution
of drag forces, it may be necessary to assume unrealistically large values of the
drag coefficient in order to account for the observed slow down of flow approaching
the obstacles (Belcher, Jerram & Hunt 2003). The inviscid analysis here can be
compared with the concept of inviscid inertial stresses set up by flow between the
obstacles (Finnigan 2000), an approach that has not so far led to clear quantitative
results.

A new framework is developed to calculate and interpret the mean flow through
groups of bodies. In § 2, we define the Eulerian and Lagrangian mean and interstitial
velocities, and develop general expressions which are applied to potential flows (in
§ 3) and extended to dilute arrays in § 4. These concepts are applied in § 5 to examine
the drift–flux relations for homogeneous bubbly flows. Concluding remarks are made
in § 6.

2. Eulerian and Lagrangian mean velocities
Figure 1(a) shows a group of bodies lying within a perimeter/surface S, denoted

by a dashed curve, in a steady uniform approach flow, U . The total volume of the
cloud and bodies is V and Vb respectively, so that the interstitial volume is V − Vb

and the average voidage of the bodies in the group is α =Vb/V . The cross-sectional
area (or width) of the streamline tube, which just passes around V , tends to A∞ far
upstream of the cloud.

2.1. Definition of Eulerian mean velocity

The main approach for modelling multiphase flow problems has been through solving
conservation equations described in terms of phase-averaged mean quantities (the two-
fluid approach) (e.g. Biesheuvel & Wijngaarden 1984; Zhang & Prosperetti 1994). The
Eulerian mean velocity in a control volume V (such as the volume within the perimeter
S of the group of bodies) is defined as the velocity ux (for each component) averaged
over the volume occupied by the fluid (i.e. the fluid space between the bodies),
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Flow speed U

Cross-sectional area
of stream-tube A∞

X1
X2

Rigid bodies
(total volume Vb)

Volume of group of bodies V

Streamline

Surface, S

(a)

(b) (c)

Speed U uE
(I ) (dotted line)

uE (solid line)

Material sheet
marked at t = 0

Distortion of
material sheet
(solid line) Distortion based

on interstitial flow
(dotted line)

L(y)

Figure 1. Schematic showing notation for (a) the streamline flow through a group of fixed

bodies, (b) the Eulerian mean velocity uE and interstitial velocity u
(I )
E and (c) the distortions of

a material surface by the bodies (—–) and interstitial flow (· · · · · ·). The perimeter or surface
of the group of bodies, S, is denoted by a dashed curve.

namely

uE =
1

V − Vb

∫
V −Vb

ux dV, (2.1)

where Vb is the total volume of bodies in V (see Wallis 1989; Drew & Wallis 1992).
The integral is taken over the fluid space between the bodies, V − Vb, and although
the velocity decays slowly with distance from the individual bodies, the integral is
well-defined because the volume over which the integral is taken is finite. Note that
the integral may include regions of the flow with open or closed streamlines.

2.2. Definition of Lagrangian mean velocity

The mean Lagrangian velocity is based on the mean velocity of fluid particles advected
along streamlines through V . Consider marked fluid particles, uniformly separated
and released far upstream of the cloud of bodies. The time taken for a fluid particle
to be advected from x = x1 (point X1) to some downwind position X2 (at x = x2) is
T (see figure 1a). The mean velocity of a fluid particle through the clouds is L/T ,
where L = x2 − x1 is the horizontal distance between the two points. The travel time
T is related to the fluid particle displacement, X, (Lighthill 1956) through

T =
L + X

U
. (2.2)
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Notation Description Definition

uE Eulerian mean defined (2.1)
over the fluid region

u
(P )
L Particle Lagrangian mean based on (2.5)

average of fluid particle residence time

u
(S)
L Bulk Lagrangian mean based on Applicable to rectangular

average speed of a material sheet control volumes (2.6)

u
(I )
E Interstitial Eulerian mean (2.11); valid for α � 1,

between the bodies consists of far-field contribution
within the group

u
(I )
L Interstitial Lagrangian mean (2.14); valid for α � 1,

between the bodies consists of reflux contribution

Table 1. Different definitions of the mean velocities. The void fraction of bodies is α.

The displacement, X, is the distance a fluid particle is delayed within a flow compared
to a fluid particle moving with the free-stream speed U and is defined by

X =

∫ T

0

(U − ux) dt. (2.3)

Bulk estimates of the fluid particle displacement are calculated in terms of the integral
of displacement across a sheet spanning the flow, A∞, which is defined as the partial
drift volume, Dp (see Eames, Belcher & Hunt 1994):

Dp =

∫
A∞

X dA. (2.4)

There are two (or more) possible definitions of the Lagrangian mean velocity through
a region (see table 1). The ‘particle’ definition is the average velocity of fluid particles
through the region, and is expressed as

u
(P )
L =

1

A∞

∫
A∞

1

T (y0)

∫ T (y0)

0

ux(x(t), t) dt dA=
1

A∞

∫
A∞

L

T
dA. (2.5)

When the control volume is bounded by faces perpendicular to the mean flow
(separated by a distance L), a second definition of the Lagrangian mean, based on
the average speed of a material sheet (figure 1c), is

u
(S)
L =

L

T
, (2.6)

where the average residence time of the material sheet in the group of bodies is

T =
1

A∞

∫
A∞

T dA. (2.7)

The average residence time for the material sheet is therefore related to the partial
drift volume through

T =
L + Dp/A∞

U
. (2.8)

The new flow concepts defined here draw on the ideas developed by Davila & Hunt
(2001) in their analysis of the bulk settling speed of dense particles in turbulent flows.

The Lagrangian mean velocity is weighted towards regions of the flow where the
residence time is largest, corresponding to stagnation points or non-slip surfaces.
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Since the mean flow is expressed in terms of the residence time along streamlines,
regions of the flow surrounded by closed streamlines (such as dipolar vortices or
steady wake regions) are not explicitly included in u

(P )
L or u

(S)
L , but implicitly make

a contribution because closed streamlines generate stagnation points, and with them
a ‘drift’ volume. In oscillatory flows, such as those generated by progressive water
waves, the mean Lagrangian velocity is often described as the mass flux or Stokes
drift velocity (e.g. Stokes 1847; Ursell 1953). These key concepts have not yet been
applied to multiphase or multibody problems, although they are known to be related
(Eames & McIntyre 1999).

2.3. Interstitial flow and the effect of boundaries

A systematic approach to characterizing the Eulerian mean velocity is developed
here. First, the velocity may be decomposed into (i) a far-field flow contribution –
far from each body but still within the cloud of bodies – and (ii) a near-field flow
contribution – local to each body. This concept, originally described qualitatively by
Cook & Harlow (1984) and Kowe et al. (1988), is strictly valid for dilute arrays since
it formally requires a separation of lengthscales between the near and far field, which
respectively scale as O(a) and O(aα−1/d), where a is a characteristic lengthscale of
the bodies and d takes the value of 2 and 3 in two- and three-dimensional flows
respectively. The decomposition is defined formally here for potential flows. The far-
field flow, u(f )

E , is defined mathematically to be the potential flow produced when the
bodies are shrunk to zero, which yields a flow caused by the sum of the dipolar and
source contributions:

∇ · u(f )
E =

∑
i

Ωµi · ∇δ(xi) + Q. (2.9)

Here δ(xi) is the delta function and µi is the dipole moment associated with a body
located at xi; Q is the source due either to the introduction of bodies, the injection
of bubbles into the flow, or to satisfy kinematic boundary conditions due to the
presence of walls; Ω takes the value of 2π and 4π in two- and three-dimensional
flows respectively.

The velocity field distribution is then the combination of the uniform applied
mean flow plus the response due to the distribution of sources and sinks which can
be calculated by integrating the Green’s function for Laplace’s equation over the
distribution:

u(f )
E (x) = U x̂ +

∫
V

∇G(x, x ′)
(
∇ · u(f )

E (x ′)
)
dx ′ (2.10)

(see Batchelor 1967). For planar flows, Green’s function for Laplace’s equation
G(x, x ′) = (log |x − x ′|)/2π, while for three-dimensional flows G = −1/4π|x − x ′|.
The far-field velocity distribution then determines the external flow u(0)

E (x) outside the
group of bodies. Furthermore, when they are widely separated, the bodies within the
group are subjected to an interstitial flow, u(I )

E , which is defined to be the average of

u(f )
E over the whole cloud region:

u(I )
E =

1

V

∫
V

u(f )
E dV. (2.11)

Thus the interstitial velocity, as described by Kowe et al. (1988), is effectively the
average velocity field experienced by a test body introduced into the flow, which is
not located close to any other bodies. Notice that u(I )

E �= uE because uE , the Eulerian
mean flow, includes contributions from the near-field flow from each body. The dipole
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(a) (b) (c)

Bodies
moving
with
speed v

Bodies
moving
with
speed v

Bodies
moving
with
speed v

Bubbles and
fluid injected into
the channel

Bubbles injected
into the channel

Speed U

Speed U

Figure 2. Schematics illustrating three problems with contrasting global boundary conditions.
(a) A cloud of bodies spanning a channel, moving with a steady speed v, where the flow far
upstream is uniform. (b, c) The influence of a lower boundary on the kinematic and mass
constraints. In (b) and (c), the bodies are injected into the flow – sources are required to
describe the injection process and to satisfy kinematics conditions on the lower rigid wall. In
(b), there is a mean velocity U upwind of the injection point. In (c) there is no upstream flow
and the Eulerian velocity is zero, but the interstitial velocity is negative.

moment associated with each body moving parallel to the stream in an interstitial
Eulerian mean flow u

(I )
E is (1 + Cm)(v − u

(I )
E )VB/Ω , where VB is the volume of a body

and Cm its added-mass coefficient.
Teshukov & Gavrilyuk (2002) have recently developed a statistical model of the

kinetics of spherical bubbles moving in an unbounded flow, and also discuss the
far-field contribution to the Eulerian velocity field. The general approach we employ
in (2.9) and (2.10) reduces, for spherical bubbles, to that of Teshukov & Gavrilyuk
(2002, § 4) for unbounded flows. For unbounded flows and infinitely large groups of
bodies, the integral (2.11) is not absolutely convergent and the ad hoc approach of
taking its principal value was applied by Teshukov & Gavrilyuj (2002). But, as we
shall see, (2.11) may be evaluated unambiguously for bounded domains or localized
clouds of bodies.

2.4. Effect of boundaries

Boundaries and global mass conservation impose important constraints on the
interstitial velocity. Figure 2 illustrates this point with three different examples in
bounded channel flows. In figure 2(a), the bodies are moving with a constant speed v.
In figure 2(b) bubbles and fluid are injected into a channel, while in figure 2(c) only
bubbles are injected into the channel. In examples (b) and (c), sources are introduced
into the flow to ensure that the different kinematic boundary conditions are satisfied
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on the bottom of the tank. We first focus on bounded channel flows generated by
a stream of speed U through a group of bodies all moving with speed v along the
x-axis (figure 2a). When the average separation between the bodies is small relative to
the separation of the channel walls, the dipole field can be replaced by a distributed
dipole moment, and averaging (2.10) over the whole volume yields

V u
(I )
E + (1 + Cm)Vb

(
v − u

(I )
E

)
= V U. (2.12)

As a simple test we can consider groups of long and slender bodies, when Cm → 0.
The impact of the bodies is then only through blocking because the near-field flow
contribution from each body is diminished and the Eulerian mean velocity is equal
to the interstitial Eulerian velocity, i.e. uE = u

(I )
E =U/(1 − Vb/V ).

For the problem described by figure 2(b), an additional source contribution must
be added to the right-hand side of (2.12) to account for the injection of the bubbles.
Beyond one channel radius from the bottom of the tanks, the reflux field and inter-
stitial mean flow are independent of distance from the lower wall, and the volumetric
source added to the right-hand side of (2.12) is Vb(v − u

(I )
E ). The interstitial Eulerian

mean velocity corresponding to figure 2(b) is then

V u
(I )
E + CmVb

(
v − u

(I )
E

)
= V U. (2.13)

The problem corresponding to figure 2(c) is also described by (2.13) with U = 0.
As we shall show in § 3, the displacement field, from which the mean Lagrangian

velocity is calculated, naturally divides into a near-field (localized) drift contribution
and a far-field (non-local) reflux contribution; the latter depends on the boundary
condition on the whole flow. For flows through bodies moving with speed v, along a
channel (figure 2a), the interstitial Lagrangian mean velocity is

V u
(I )
L + (1 + Cm)Vb

(
v − u

(I )
L

)
= V U, (2.14)

which though identical to (2.12) may be derived formally from (2.5) by identifying the
interstitial component with the far-field (reflux) flow contribution to u

(S)
L , as described

in § 3.
We have discussed different definitions of a mean velocity for steady flows through

clouds of bodies. By representing bodies as dipoles, we have shown how the far-
field component of the flow associated with each body (but within the array) may be
estimated by averaging the far-field contribution over the entire cloud. This procedure
yields the interstitial Eulerian velocity. Physically, the interstitial velocity corresponds
to the average velocity seen by a body placed randomly within the cloud, but far
from other bodies. Finally, we have shown that boundaries influence the interstitial
velocity. In the next section, we describe how these concepts can be applied in the
special case when the whole flow field is described as a potential flow to calculate
general expressions that will be used to illustrate the influence of cloud shape and
boundaries on the mean flow in § 4.

3. Mean potential flows through clouds of fixed bodies
To interpret the Eulerian and Lagrangian mean velocities, we consider incom-

pressible potential flow past a group of bodies. The flow is then equal to the gradient
of a velocity potential, φ, so that u = ∇φ, and the velocity potential satisfies Laplace’s
equation, ∇2φ = 0. This broad class of flows includes macroscale Darcy flow through
porous inclusions embedded in a matrix of material of uniform permeability (Eames &
Bush 1999), layerwise flow through a Hele-Shaw cell, and the flow outside the
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boundary layer and non-separating wakes of clean high-Reynolds-number spherical
bubbles (Moore 1963). More recently, DNS calculations of high-Reynolds-number
flows through groups of closely packed cylinders (Moulinec, Hunt & Nieuwstadt
2003) have shown that the streamline patterns and the high-Péclet-number dispersion
through closely packed cylinders are primarily determined by the potential flow
blocking solutions. Excluded from the class of problems we consider are bodies with
circulation and flows with singular distributions of vorticity outside the bodies.

Far upstream of the bodies, the flow is a uniform stream of speed U . Due to
the linearity of Laplace’s equation, the flow generated by N bodies, labelled as
1, . . . , k, . . . , N , of volume VBk , can be decomposed as the sum of the contributions
from a uniform flow and from the individual bodies,

φ = Ux +

N∑
k=1

φk, (3.1)

where φk is the velocity potential associated with the kth body. φk includes interactions
between bodies, so that mathematically φk is composed of an infinite number of
(image) dipoles within the kth body to satisfy the boundary conditions on the
surface of each body and rest of the array, or equivalently, an infinite distribution
of multipoles (Saffman 1992). The bodies are fixed in a uniform flow so that the
kinematic condition imposed on the surface of each body is

∇φ · n̂ = 0, (3.2)

where n̂ is directed out of the fluid domain. In general, the dipole moment µk is a
vector determined by the added-mass tensor, Cmk , through µk = − (I + Cmk)VBkU x̂/Ω

(Taylor 1928). Although we focus on bodies which are symmetric about the mean
flow U x̂, so that the component of the dipole moment parallel to the mean flow
is µk = −(1 + Cmk)VBkU/Ω , where Cmk = x̂T Cmk x̂ is the added-mass coefficient which
characterizes the shape of the body, these results may be easily extended to arbitrarily
shaped bodies. The dipole moment is negative, indicating that the dipoles are pointing
in the opposite direction to the mean flow. In the far field, the velocity potential
associated with the kth body, located at xk , is dominated by the dipole contribution:

φk → µk

∂G(x, xk)

∂x
. (3.3)

The interaction between bodies is implicitly included through the added-mass
coefficient (or dipole strength) which increases with α – this increase was explicitly
calculated for groups of cylinders by Dalton & Helfinstine (1971). In an unbounded
flow, the outside flow u(0)

E is characterized by a total dipole strength which is equal to
the sum of the individual contributions from all the bodies, so that for |x| � |xk|,

u(0)
E ≡ u(f )

E → ∇
[
Ux +

(
N∑

k=1

µk

)
∂G(x, 0)

∂x

]
. (3.4)

The Eulerian mean velocity, evaluated using (3.1) and (2.1), is

uE =
U

1 − Vb/V︸ ︷︷ ︸

1 −

N∑
k=1

(1 + Cmk)VBk

V︸ ︷︷ ︸
+

∫
S

(φ − Ux)nx

UV
dS


 , (3.5)

blocking near field far field
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where n̂ = (nx, ny, nz) is a unit vector normal to the body surface and directed out of

the control volume and Vb =
∑N

k=1 VBk . The Eulerian mean is thus a linear operator
and is formed by the sum of the contributions of each body. A distinction is made
between the three terms in (3.5). The first is interpreted as a blocking contribution
which causes the flow to speed up and does not depend on the shape of the bodies.
The second term is a near-field contribution to the Eulerian mean arising from the
impulse of the body and its volume. The third term is a far-field contribution to the
Eulerian mean because the velocity potential decays sufficiently slowly that, even in
the far field, boundary conditions on the whole flow domain are still important.

Unlike the Eulerian mean, the calculation of the Lagrangian mean flow is not simply
the sum of the contributions from each body. For a potential flow, the displacement
of a fluid particle, X, which is advected on a streamline can be decomposed exactly
in terms of drift (Xd) and reflux (Xr ) contributions (Eames et al. 1994),

X = Xd + Xr, (3.6)

where

Xd =

∫ T

0

u′2

U
dt, Xr = −

[
φ − Ux

U

]xf

xi

. (3.7)

The drift contribution, Xd , is the integral with time of the square of the velocity
perturbation, u′2 = |∇φ −U x̂|2, and T is the transit time from the initial position xi to
the final position xf which lie on surface S. The ‘reflux’ contribution, Xr , is determined
only by the initial and final positions of the fluid particles along the streamlines. The
displacement field naturally decomposes into a near-field drift contribution (since u′2

decays rapidly from each body) and a far-field reflux contribution (which decays
slowly from each body). The reflux is zero if the planes xi , xf are far from an isolated
body, but is not zero for bodies moving in a confined space.

The particle Lagrangian mean is

u
(P )
L =

U

A∞

∫
A∞

1

1 + X/L
dA. (3.8)

From (3.7), the drift contribution to the bulk Lagrangian mean,∫
A∞

Xd dA =

∫
V −Vb

u′2

U 2
dV, (3.9)

is proportional to the kinetic energy of the perturbation flow and related to the
added-mass coefficients of the bodies. The above result is essentially Darwin’s (1953)
Proposition, derived by Eames et al. (1994). The bulk Lagrangian average velocity
reduces to

u
(S)
L = U


1 +

1

V

N∑
k=1

CmkVBk︸ ︷︷ ︸
− 1

UV

∫
A∞

[
φ − Ux

UV

]xf

xi

dA︸ ︷︷ ︸



−1

. (3.10)

near field far field

The Lagrangian mean velocity is interpreted as the sum of two terms. The first
term is a near-field drift contribution from each body (which tends to retard the
mean flow) which is related to the added-mass of each body. The second term is a
far-field contribution which tends to speed the flow up and is related to the reflux
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contribution to the partial drift volume. The interstitial Lagrangian mean velocity in
(2.14) is identified as the far-field or reflux contribution to u

(S)
L in (3.10).

4. Evaluation of the mean flow for potential flows through a dilute cloud
of fixed bodies

For simplicity, in the ensuing calculations, the bodies are assumed to be identical
(with volume VB and added-mass coefficient Cm), though this can easily be extended.
When α � 1, the flow interaction between the bodies is weak and the dipole moment
associated with each body tends to that generated by an isolated body in an inbounded
flow, µk = −(1 + Cm)VBU/Ω .

From (3.5) and (3.10) we see that for the dilute clouds of bodies (α � 1), the local
contributions to the Eulerian and Lagrangian mean velocity are identical and can be
respectively interpreted as an impulse or added-mass contribution (which are identical
for steady flows). However, Eulerian and Lagrangian averaging deal with the far-field
contributions in an altogether different manner and can be respectively interpreted
as an impulse (or volume flux) and reflux. As we shall demonstrate, in unbounded
flows, these two different averaging approaches may yield altogether different results.

4.1. Unbounded flows: planar rectangular group of obstacles

For the special case of a planar rectangular array of planar obstacles, randomly
positioned in a region |x| � l, |y| � w, where the rectangular region V has length 2l
and width 2w, the starting and finishing positions of the material sheets are
perpendicular to the undisturbed mean flow.

From (3.10) and (3.5), the Lagrangian and Eulerian mean velocities are:

u
(S)
L = U

(
1 + Cmα − 1

V

∫
S

N∑
k=1

φknx

U
dS

)−1

, (4.1)

and

uE =
U

1 − α

(
1 − (1 + Cm)α +

1

V

∫
S

N∑
k=1

φknx

U
dS

)
. (4.2)

The bulk Lagrangian and Eulerian mean velocities (according to (4.1) and (4.2)) are
consistent to O(α) because the far-field contributions to the average velocity are dealt
with in an identical manner. Also, by expanding the integrand in (3.8), the particle
Lagrangian mean velocity can be seen to be consistent to O(α) with u

(S)
L . Thus, in

this example, the difference between the Lagrangian and Eulerian mean velocities is
negligible for α � 1.

The reflux contribution from a body (represented as a dipole) located at (xk, yk),
corresponding to the third terms in (4.1) and (4.2), is evaluated using (3.3), to give∫

S

φknx

U
dy = − (1 + Cm)VB

2π

[
tan−1

(
w − yk

l − xk

)
+ tan−1

(
w + yk

l − xk

)

+ tan−1

(
w − yk

l + xk

)
+ tan−1

(
w + yk

l + xk

)]
. (4.3)

When the separation of the bodies is much smaller than the size of the rectangular
array (i.e. aα−1/2 � l, w), the Eulerian mean velocity may be evaluated by
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averaging (4.3) over the rectangular array to yield

uE =
U

1 − α

[
1 − (1 + Cm)α

+
2(1 + Cm)α

π

[
tan−1(w/l) − l

4w
log(1 + w2/l2) +

w

4l
log(1 + l2/w2)

]]
. (4.4)

For short wide arrays of obstacles (l/w � 1), the mean Eulerian velocity (from (4.4))
tends to U (1 − α)−1 and is faster than U due to a blocking effect which accelerates
the flow through the obstacles. As the aspect ratio of the rectangular region (l/w)
increases, the mean Eulerian velocity (from (4.4)) tends to U (1 − (1+Cm)α)/(1 − α) ≈
U (1 − αCm) and is slower than U because the residence time is increased by the
stagnation regions. Thus there are two important contributions to the average velocity:
a blocking effect which speeds up the flow and a local added-mass or drift effect which
retards the flow near the stagnation points.

Given the different effects of extreme cloud shapes on u
(S)
L , u

(P )
L and uE , it is

interesting to study an intermediate shape, typical of a rising cloud of bubbles.

4.2. Unbounded flows: circular/spherical group of bodies

In the previous example, the difference between the Eulerian and Lagrangian mean
velocities was small. We elaborate here on an important example of flow through a
circular or spherical cloud (of radius w) of bodies where there are greater differences
between these mean quantities.

From the expression for the Eulerian mean velocity for potential flows given by
(3.5) and in the Appendix, the Eulerian mean velocity, within a circular or spherical
cloud of bodies, is

uE = U

(
1 − (1 + Cm)α + (1/d)(1 + Cm)α

1 − α

)
, (4.5)

where d takes the value of 2 and 3 for two- and three-dimensional flows respectively.
Each body leads to a flux of fluid (1 + Cm)VBU/d out of the circular or spherical
control volume V , which tends to speed up the interior flow. For the special case of a
circular/spherical cloud of cylinders/spheres, characterized by Cm = 1, 1

2
respectively,

the Eulerian mean in the fluid space is exactly U , as also recognised by Jankovic,
Fiori & Dagan (2003).

For α � 1, dA/L = nxdS/L ≈ dS/w. The up- and downstream surfaces of the
control volume are not planes and the definition of the bulk Lagrangian mean is
not applicable. The far-field or reflux contribution to the particle Lagrangian mean
velocity is zero: ∫

A

Xr

L
dA =

N∑
k=1

1

Uw

∫
S

φkdS = 0 (4.6)

(see the Appendix). Thus the average reflux contribution to the displacement of a
fluid particle (or its effect on the mean travel time) is zero, independent of the position
of the bodies. Combined with the drift contribution, the particle Lagrangian mean
velocity in a circular or spherical array is

u
(P )
L = U (1 − Cmα), (4.7)

slightly slower than the ambient flow. This example serves to illustrate a case when
the Eulerian and Lagrangian mean velocities are different, with uE larger than uL by
a factor (1 + Cm)α/d .
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4.3. Bounded channel flows

Bounding channel walls have a significant effect on the far-field contribution to the
Eulerian and Lagrangian mean velocities. We consider the flow through a fixed array
of bodies of length L, which is much longer than the channel width W . In this limit
the final results are independent of L and W .

By mass conservation, the integral of fluid displacement across the channel caused
by a material surface, marked upstream of the array and being advected through the
array, is

1

A∞

∫
A∞

XdA = −αL, (4.8)

provided there are no closed streamlines, where V = A∞L. Thus the bulk Lagrangian
mean velocity is

u
(S)
L = U (1 − α)−1. (4.9)

The drop in the velocity potential across a long array (for L � W ) is∫
A∞

(φ − Ux) nxdS = (1 + Cm)αLA∞U, (4.10)

so that the Eulerian mean velocity is

uE = U (1 − α)−1. (4.11)

Thus for flow bounded by channel walls, the Eulerian and bulk Lagrangian mean
velocities are identical, u

(S)
L ≡ uE , and faster than the flow far upstream of the bodies

as a consequence of flow blocking by obstacles, and independent of the shape of the
bodies.

From (2.12) and (2.14), the interstitial Eulerian and Lagrangian mean velocities are

u
(I )
E = u

(I )
L = U (1 − (1 + Cm)α)−1. (4.12)

The interstitial Lagrangian mean velocity may also be identified from the far-field
reflux contribution in the averaging process, described in (3.10).

5. Interstitial velocity and drift–flux relations for bubbly flows
Most one-dimensional models of multiphase flows are built around a drift–flux

description, where the difference between the volumetric flux of gas and liquid, j12, is
modelled empirically (see Wallis 1969, p. 13). As noted by Kowe et al. (1983), such
expressions for the difference between these fluxes can be understood by considering
how bubbles move relative to an interstitial flow. We develop these ideas for the
problem described in figure 2(a), to determine the relation between the bulk gas and
liquid flows. This provides a theoretical justification for Zuber & Findlay’s (1965)
drift-flux correlation for medium-sized high-Reynolds-number bubbles.

The interstitial Lagrangian mean velocity corresponding to the problem described
in figure 2(a), may be calculated directly from (3.10), so that

u
(I )
L = v +

U − v

1 − α(1 + Cm)
, (5.2)

which on rearrangement yields

u
(I )
L +

(
v − u

(I )
L

)
α(1 + Cm) = U, (5.3)

as defined in § 2. Physically, the bubbles transport both the drift volume (αCm) and
volume (α) with them. The drift volume has been measured experimentally and
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confirms that (5.3) provides a leading-order description of the interstitial Lagrangian
flow. For low void fractions, the difference between u

(I )
E and u

(I )
L is second order. When

the bubble response time is short compared to the advective timescale of the flow, the
bubbles rise with terminal rise speed relative to the interstitial flow, corresponding to
the average fluid speed seen by a test bubble,

v − u
(I )
E = vT , (5.4)

which implies a slip velocity

v − U = vT (1 − (1 + Cm)α). (5.5)

Empirical correlations (e.g. Govier & Aziz 1982, p. 383) suggest that the slip velocity
of the bubble is

v − U = vT (1 − α)1.5, (5.6)

which is consistent to O(α) with (5.5) for Cm ∼ 0.5, a value typical of near spherical
bubbles. Van Wijngaarden (1993) calculated the average rise speed of bubbles by a
detailed consideration of the pairwise interactions between bubbles in an unbounded
domain, and obtained v = vT (1−1.47α) for bubbles rising in a stagnant ambient fluid
(U = 0). As we have shown, the difficulty of considering unbounded flows, which is
related to the divergence of the mean Eulerian velocity, is overcome by considering
bounded channel flows. Then the mean bubble slip velocity is independent of the
pairwise distribution of bubbles provided they are well-separated.

For homogeneous bubbly flows, the drift–flux, j12, defined in terms of the difference
of the slip velocities between the gas and liquid phase, is

j12 ≡ α(1 − α)(v − U ), (5.7)

which when combined with (5.5) yields

j12 = vT α(1 − α)(1 − (1 + Cm)α). (5.8)

Empirical correlations for drift-flux are based on fitting the exponent n from the
expression

j12 = vT α(1 − α)n (5.9)

to experimental data. The value of n depends on the particular configuation
considered, but a value of n= 2.5 is recommended for high-Reynolds-number
homogeneous bubbly flows, which is consistent to O(α2) with (5.8) for near spherical
bubbles where Cm ∼ 0.5. The conclusion from these calculations is that the concept
of an interstitial Eulerian mean velocity provides a bulk description of the impact of
multiple bubbles on the mean flow.

The pressure field averaged over a region between the bubbles is

pE =
1

V − Vb

∫
V −Vb

pdV. (5.10)

Coupled with Bernoulli’s equation, p = p0 + 1
2
ρ(U 2 − u2), where p0 is the pressure

far upstream, the average pressure within a cloud of bodies or bubbles rising in a
channel flow is

pE = p0 − ραCm(U − v)2

2(1 − α)
(5.11)

(e.g. see Kowe et al. 1988) so that the average pressure in a homogeneous distribution
of bubbles rising in a channel is reduced. This is why in a layer of bubbles rising in a
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Figure 3. A schematic of the pressure field in (a) bounded homogeneous bubbly flow where
bubbles are rising with speed v in a channel and (b) a cloud of bubbles rising in an unbounded
channel. In (a), the mean flow speeds up through the array of bubbles, leading to a reduction
of pressure. The direction of the pressure gradients indicates that the bubbles will tend to
coalesce. In an unbounded flow, (b), the acceleration of the flow around the cloud means that
while there are vertical pressure gradients which causes the vertical height of the cloud to
shrink, lateral pressure gradients cause the cloud to widen reducing coalescence and causing
the cloud to grow.

pipe, those at the top and bottom will tend to converge towards the middle, causing
collisions and larger bubbles to be formed (figure 3a). When the bodies or bubbles
are placed in a group with finite volume V far from any confining walls (e.g. a bubble
cloud moving with speed U ), the external velocity u(0)

E around the volume gives rise to
an additional higher pressure at the top and bottom of the cloud and lower pressure
at the sides, which tends to inhibit coalescence (figure 3b).

Boundaries have a significant influence on the interstitial velocity, as described in
§ 2 and shown in figure 2(b,c). When the flow is bounded by a porous or rigid lower
wall, the interstitial Eulerian velocity is increased because bubbles are injected into
the channel, and as a result the average rise speed is increased, according to

v − U = vT (1 − Cm), (5.12)

faster than the example shown in figure 2(a).

6. Concluding remarks
In this paper we have worked out a framework for analysing and understanding

inviscid flows through groups of bodies based on definitions of Eulerian and
Lagrangian mean velocities and their decompositions into near and far (or interstitial)
components. This provides a useful conceptual framework to solve certain multibody
and multiphase problems.

We have shown how the definitions and magnitudes of the Eulerian and Lagrangian
mean velocities differ, corresponding as they do to a phase-averaged velocity and
average residence times. Both contain near-field, far-field and array-scale blocking
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contributions. The definitions of the Lagrangian and Eulerian mean properties contain
integrals which require careful evaluation because they are related to the momentum
of the flow and therefore yield potentially non-absolutely convergent integrals in
unbounded flows. These concepts have been illustrated by studying potential flows,
which include a broad class of problems, including the high-Reynolds-number flows
past clean bubbles, flows through pipe bundles (where vorticity annhilation by
straining motion cancels out most of the shed vorticity and where the flow is
dominated by irrotational blocking by the pipes), and macroscale flows in porous
media where uniform-permeability inclusions are embedded in a matrix of uniform
permeability.

Though the framework has been applied to relatively simply geometries, our analysis
highlights a number of fundamentally important processes. For dilute rectangular
arrays, the difference between Eulerian and Lagrangian mean velocity is negligible.
When the rectangular array is short and wide, the average volumetric flux (of the
bodies and fluid) is constant along the mean streamlines, so that the interstitial
velocity is determined by the reduced space between the bodies (i.e. blocking). This
leads to an increase in the average flow. When the rectangular array is long and
thin, the average flow in the cloud tends to be retarded by the local flow deceleration
(drift or impulse), near the bodies. Thus different physical processes are important in
different regions of an array, with blocking dominating the deceleration of the flow at
the front of the array, while drift or drag retards the flow downstream (Belcher et al.
2003). For circular and spherical groups of bodies, the Eulerian and Lagrangian
mean velocities differ in their weightings of the non-local contributions to the
averages.

For bounded channel flows, the Eulerian and bulk Lagrangian velocities are
identical (for all volume fractions) and are faster than the flow far upstream due
to blocking. The most important contribution to this analysis is the concept of an
interstitial Eulerian and Lagrangian mean flow, where far-field contributions to the
velocity and displacement field are considered. This is in the same spirit as Kowe
et al. (1983), but has been put on a firmer theoretical foundation. One important
conclusion is that a weak vortical flow has a negligible impact on the interstitial
Lagrangian mean because the local contribution to the drift is dominated by the local
potential flow around the bubble and wake. This has been confirmed experimentally
by Bataille, Lance & Marie (1991) and Bush & Eames (1998). These calculations
justify to some extent semi-empirical relations for drift-flux which are commonly
assumed in high-Reynolds-number homogeneous flows.

The calculations in this paper raise a fundamental question: if the averaging process
are different, which velocity should be used? The answer lies in the type of problem
considered. For problems where the residence times are important, such as reactions
or the decay of chemical species, the Lagrangian mean velocity is the most relevant.
But, for problems where the bodies are fixed and do not move relative to the mean
interstitial flow, the Eulerian average flow is the most suitable.

The clear deficiency of the analysis presented is the neglect of the effects of
vorticity shed from rigid bodies on both the mean flow and the displacement field.
For closely packed bodies, the influence of shed vorticity is weak because of wake
interaction and the straining flow around individual bodies which both lead to
vorticity annihilation, as demonstrated by the DNS calculations of Moulinec et al.
(2003). The analysis presented here gives a practical bulk estimate of the average flow
in such cases. In general the influence of such bodies may be included by introducing
distributed or point forces into the momentum equation. The significant and
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broad-range implications of inertial blocking and shed vorticity will form the focus
of a future study.

A further challenge is to investigate whether the concept of an interstitial flow
and its estimate for low void fractions is generally valid at moderate void fractions
(∼ 0.1), when the bubbles are not widely separated. To measure the interstitial velocity
directly requires the development of new diagnostic tools to process incomplete and
conditioned data sets – some of these significant challenges are currently being met
by researchers at IMFT, Toulouse.

I. E. and J. C.R.H. gratefully acknowledge, the support at University College
London from respectively, EPSRC at the Department of Mechanical Engineering
and NERC at the Centre for Polar Observation and Modelling. We acknowledge
the considerable benefit from close interactions with researchers at IMFT, in
particular from discussions with Dr Veronique Roig, Dr Frederic Risso and Dr
Jacques Magnaudet, for their generous hospitality and time, and also access to their
preliminary experimental measurements of interstitial flow in homogeneous high-
Reynolds-number bubbly flows.

Appendix
We demonstrate the following relationships for a dipole of strength µi located

within a circular or spherical control volume (of radius w) bounded by surface S:∫
S

φidS = 0,

∫
S

φinxdS = −Ωµi

d
. (A1a, b)

The proof of (A1a) is given by Lighthill (1986, p. 123), and it is exact for a dipole in
two and three dimensions. For two-dimensional flows, (A1b) may be demonstrated
analytically by writing φi in polar coordinates (r, θ). On the surface S (r = w),

φi = − µi(r cos θ − rp cos θp)

r2 + r2
p − 2rrp cos(θ − θp)

,

where the dipole is located at (rp, θp). Substituting into (A1b) and subsequent
integration yields the required results.

For three-dimensional flows, we need to consider the flux through a conic surface
element of S, to give∫

S

φinxdS =

∫
S

−µi cos θ

r2
dS = −µi

∫
S

cos2 θdΩ. (A2)

The average value of cos2 θ over the total solid angle Ω =4π. This value is independent
of r and the location of the body. Defining a unit radius sphere around the body and
denoting dΩ = sin θdθdϕ, then∫

S

cos2 θdΩ =

∫ 2π

0

∫ π

0

cos2 θ sin θdθdϕ =
4π

3
=

Ω

d
. (A3)

Combining (A3) with (A2), yields (A1b) for three-dimensional flows. The above results
have also been confirmed by numerical integration of the surface integrals.
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