Skip to main content Accessibility help
×
Hostname: page-component-686fd747b7-s9gpq Total loading time: 0 Render date: 2025-02-13T11:59:45.174Z Has data issue: false hasContentIssue false

Multiple Pregnancy

Published online by Cambridge University Press:  15 January 2025

Jack Hamer
Affiliation:
Birmingham Women's and Children's NHS
James Castleman
Affiliation:
Birmingham Women's and Children's NHS Foundation Trust
R. Katie Morris
Affiliation:
University of Birmingham

Summary

Multiple pregnancy affects 0.9-3.1% of births worldwide. Prevalence rates vary significantly due to differences in dizygotic twinning rates and use of assisted reproduction. Both maternal and fetal/neonatal complications are more common in multiple compared to singleton pregnancies, and there are specific problems for the fetuses related to monochorionicity. Multiple pregnancies require specialised and individualised care. Complicated multiple pregnancies should be managed in a tertiary care centre where there is additional expertise, such as the laser ablation needed to treat monochorionic monozygotic pregnancies with conjoined circulations. Cornerstones of management in pregnancy are the need for accurate fetal measurement to optimise dating of gestational age, and documentation of chorionicity. High-level ultrasound expertise is needed. The mothers need frequent assessment to detect hypertension and anemia, and early identification and management of preterm labour.
Get access
Type
Element
Information
Online ISBN: 9781009526142
Publisher: Cambridge University Press
Print publication: 30 January 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further Reading

Farmer, N, Hillier, M, Kilby, MD, Hodgetts-Morton, V, Morris, RK. Outcomes in intervention and management of multiple pregnancies trials: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2021; 261: 178–92.CrossRefGoogle ScholarPubMed
Khalil, A, Rodgers, M, Baschat, A, et al. ISUOG practice guidelines: role of ultrasound in twin pregnancy. Ultrasound Obstet Gynecol. 2016; 47: 247–63.CrossRefGoogle ScholarPubMed
Mackie, FL, Rigby, A, Morris, RK, Kilby, MD. Prognosis of the co-twin following spontaneous single intrauterine fetal death in twin pregnancies: a systematic review and meta-analysis. BJOG. 2019; 126: 569–78.CrossRefGoogle ScholarPubMed
di Mascio, D, Acharya, G, Khalil, A, et al. Birthweight discordance and neonatal morbidity in twin pregnancies: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2019; 98: 1245–57.CrossRefGoogle ScholarPubMed
d’Antonio, F, Odibo, A, Berghella, V, et al. Perinatal mortality, timing of delivery and prenatal management of monoamniotic twin pregnancy: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2019; 53: 166–74.Google ScholarPubMed
Khalil, A, Beune, I, Hecher, K, et al. Consensus definition and essential reporting parameters of selective fetal growth restriction in twin pregnancy: a Delphi procedure. Ultrasound Obstet Gynecol. 2019; 53: 4754.CrossRefGoogle ScholarPubMed
Royal College of Obstetricians and Gynaecologists (RCOG). Management of Monochorionic Twin Pregnancy, 2nd edn. Green-top Guideline No. 51. London: RCOG, 2016. www.rcog.org.uk/en/guidelines-research-services/guidelines/gtg51/ (accessed 13 September 2024).Google Scholar
Khalil, A, Gordijn, S, Ganzevoort, W, et al. Consensus diagnostic criteria and monitoring of twin anemia–polycythemia sequence: Delphi procedure. Ultrasound Obstet Gynecol. 2020; 56: 388–94.CrossRefGoogle ScholarPubMed
National Institute for Health and Care Excellence (NICE). Twin and Triplet Pregnancy. NICE Guideline NG137. London: NICE, 2024. www.nice.org.uk/guidance/ng137 (accessed 22nd October 2024).Google Scholar
di Mascio, D, Khalil, A, Rizzo, G, et al. Risk of fetal loss following amniocentesis or chorionic villus sampling in twin pregnancy: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2020; 56: 647–55.Google ScholarPubMed
Multifetal gestations: twin, triplet, and higher-order multifetal pregnancies: ACOG practice bulletin, number 231. Obstet Gynecol. 2021; 137: e145–62.Google Scholar
Nicholas, L, Fischbein, R, Ernst-Milner, S, Wani, R. Review of international clinical guidelines related to prenatal screening during monochorionic pregnancies. J Clin Med. 2021; 10: 1128.CrossRefGoogle ScholarPubMed
Townsend, R, d’Antonio, F, Sileo, FG, et al. Perinatal outcome of monochorionic twin pregnancy complicated by selective fetal growth restriction according to management: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2019; 53: 3646.CrossRefGoogle ScholarPubMed
Marleen, S, Dias, C, Nandasena, R, et al. Association between chorionicity and preterm birth in twin pregnancies: a systematic review involving 29 864 twin pregnancies. BJOG. 2021; 128: 788–96.CrossRefGoogle Scholar
EPPPIC Group. Evaluating Progestogens for Preventing Preterm birth International Collaborative (EPPPIC): meta-analysis of individual participant data from randomised controlled trials. Lancet. 2021; 397: 1183–94.Google Scholar
Romero, R, Conde-Agudelo, A, Rehal, A, et al. Vaginal progesterone for the prevention of preterm birth and adverse perinatal outcomes in twin gestations with a short cervix: an updated individual patient data meta-analysis. Ultrasound Obstet Gynecol. 2022; 59: 263–6.CrossRefGoogle Scholar
Li, C, Shen, J, Hua, K. Cerclage for women with twin pregnancies: a systematic review and meta-analysis. Am J Obstet Gynecol. 2019; 220: 543–55.CrossRefGoogle Scholar
Donepudi, R, Hessami, K, Nassr, AA, et al. Selective reduction in complicated monochorionic pregnancies: a systematic review and meta-analysis of different techniques. Am J Obstet Gynecol. 2022; 226: 646–55.CrossRefGoogle ScholarPubMed
di Mascio, D, Khalil, A, d’Amico, A, et al. Outcome of twin–twin transfusion syndrome according to Quintero stage of disease: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2020; 56: 811–20.CrossRefGoogle ScholarPubMed
Murgano, D, Khalil, A, Prefumo, F, et al. Outcome of twin-to-twin transfusion syndrome in monochorionic monoamniotic twin pregnancy: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2020; 55: 310–17.CrossRefGoogle ScholarPubMed

References

Office for National Statistics. Birth Characteristics in England and Wales: 2021. www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/datasets/birthcharacteristicsinenglandandwales (accessed 13 September 2024).Google Scholar
National Centre for Health Statistics. Multiple Births. Data for 2021. www.cdc.gov/nchs/fastats/multiple.htm (accessed 13 September 2024).Google Scholar
Boyle, B, McConkey, R, Garne, E, et al. Trends in the prevalence, risk and pregnancy outcome of multiple births with congenital anomaly: a registry-based study in 14 European countries 1984–2007. BJOG. 2013; 120: 707–16.CrossRefGoogle ScholarPubMed
Monden, C, Pison, G, Smits, J. Twin peaks: more twinning in humans than ever before. Hum Reprod. 2021; 36: 1666–73.CrossRefGoogle Scholar
Gill, P, Lende, MN, van Hook, JW. Twin Births. Treasure Island, FL: StatPearls Publishing, 2023.Google ScholarPubMed
Hall, JG. Twinning, Lancet. 2003; 362: 735–43.CrossRefGoogle Scholar
Martin, JA, Hamilton, BE, Ventura, SJ, et al. Births: final data for 2009. Natl Vital Rep. 2011; 60: 170.Google ScholarPubMed
One Child at a Time, Reducing Multiple Births after IVF. Report of the Expert Group on Multiple Births after IVF. https://ifqlive.blob.core.windows.net/umbraco-website/1311/one-child-at-a-time-report.pdf (accessed 13 September 2024).Google Scholar
Human Fertilisation and Embryology Authority. Multiple Births in Fertility Treatment 2019. www.hfea.gov.uk/about-us/publications/research-and-data/multiple-births-in-fertility-treatment-2019/ (accessed 13 September 2024).Google Scholar
Weber, MA, Sebire, NJ. Genetics and developmental pathology of twinning. Semin Fetal Neonatal Med. 2010; 15: 313–18.CrossRefGoogle ScholarPubMed
Benirschke, K, Kim, CK. Multiple pregnancy. 2. N Engl J Med. 1973; 288: 1329–36.CrossRefGoogle Scholar
Binstock, A, Bodnar, LM, Himes, KP. Severe maternal morbidity in twins. Am J Perinatol. 2023; 40(7): 704–10. http://dx.doi.org/10.1055/a-1974-4449.Google ScholarPubMed
Witteveen, T, van den Akker, T, Zwart, JJ, Bloemankamp, KW, Roosmalen, JV. Severe acute maternal morbidity in multiple pregnancies: a nationwide cohort study. Am J Obstet Gynecol. 2016; 214(5): 641.e1–e10.CrossRefGoogle ScholarPubMed
Santana, SD, Cecatti, GJ, Surita, FG, et al. Twin pregnancy and severe maternal outcomes: the World Health Organization Multicountry Survey on Maternal and Newborn Health. Obstet Gynecol. 2016; 127(4): 631–41.CrossRefGoogle ScholarPubMed
Nurmi, M, Rautava, P, Gissler, M, Vahlberg, T, Polo-Kantola, P. Incidence and risk factors of hyperemesis gravidarum: a national register-based study in Finland 2005–2017. Acta Obstet Gynecol Scand. 2020; 99(8): 1003–13.CrossRefGoogle ScholarPubMed
Shinar, S, Shapira, U, Maslovitz, S. Redefining normal hemoglobin and anemia in singleton and twin pregnancies. Int J Gynaecol Obstet. 2018; 142: 42–7.CrossRefGoogle ScholarPubMed
Johnson, CY, Rocheleau, CM, Howley, MM, et al. Characteristics of women with urinary tract infection in pregnancy. J Womens Health (Larchmt). 2021; 30: 1556–64.CrossRefGoogle ScholarPubMed
Sibai, BM, Hauth, J, Caritis, S, et al. Hypertensive disorders in twin versus singleton gestations. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. Am J Obstet Gynecol. 2000; 182: 938–42.Google ScholarPubMed
Lynch, A, McDuffie, R, Jr, Murphy, J, Faber, K, Orleans, M. Preeclampsia in multiple gestation: the role of assisted reproductive technologies. Obstet Gynecol. 2002; 99: 445–51.Google ScholarPubMed
Narang, K, Szymanski, LM. Multiple gestations and hypertensive disorders of pregnancy: what do we know? Curr Hypertens Rep. 2020; 23: 1.CrossRefGoogle ScholarPubMed
Gortazar, L, Flores-Le Roux, JA, Benaiges, D, et al. Trends in prevalence of diabetes among twin pregnancies and perinatal outcomes in Catalonia between 2006 and 2015: the DIAGESTCAT study. J Clin Med. 2021; 10: 1937.CrossRefGoogle ScholarPubMed
Liu, X, Landon, MB, Chen, Y, Cheng, W. Perinatal outcomes with intrahepatic cholestasis of pregnancy in twin pregnancies. J Matern Fetal Neonatal Med. 2016; 29: 2176–81.CrossRefGoogle ScholarPubMed
di Marco, G, Bevilacqua, E, Passananti, E, et al. Multiple pregnancy and the risk of postpartum hemorrhage: retrospective analysis in a tertiary level center of care. Diagnostics (Basel). 2023; 13: 446.CrossRefGoogle Scholar
Fukami, T, Koga, H, Goto, M, et al. Incidence and risk factors for postpartum hemorrhage among transvaginal deliveries at a tertiary perinatal medical facility in Japan. PLoS One. 2019; 14: e0208873.CrossRefGoogle Scholar
Lapaire, O, Holzgreve, W, Zanetti-Daellenbach, R, et al. Polyhydramnios: an Upd££ate. Donald Sch J Ultrasound Obstet Gynecol. 2007; 1(1): 73–9. http://dx.doi.org/10.5005/jp-journals-10009-1086.Google Scholar
Roman, A, Ramirez, A, Fox, NS. Screening for preterm birth in twin pregnancies. Am J Obstet Gynecol MFM. 2022; 4: 100531.CrossRefGoogle ScholarPubMed
Prapas, N, Kalogiannidis, I, Masoura, S, et al. Operative vaginal delivery in singleton term pregnancies: short-term maternal and neonatal outcomes. Hippokratia. 2009; 13: 41–5.Google ScholarPubMed
Schachter-Safrai, N, Karavani, G, Haj-Yahya, R, Ofek Shlomai, N, Porat, S. Risk factors for cesarean delivery and adverse neonatal outcome in twin pregnancies attempting vaginal delivery. Acta Obstet Gynecol Scand. 2018; 97: 845–51.CrossRefGoogle ScholarPubMed
Hofmeyr, GJ, Barrett, JF, Crowther, CA. Planned cesarean section for women with a twin pregnancy. Cochrane. 2015; 2019: CD006553.CrossRefGoogle Scholar
Bragg, F, Cromwell, DA, Edozien, LC, et al. Variation in rates of cesarean section among English NHS trusts after accounting for maternal and clinical risk: cross sectional study. BMJ. 2010; 341: c5065.CrossRefGoogle ScholarPubMed
Bradshaw, H, Riddle, JN, Salimgaraev, R, Zhaunova, L, Payne, JL. Risk factors associated with postpartum depressive symptoms: a multinational study. J Affect Disord. 2022; 301: 345–51.CrossRefGoogle ScholarPubMed
Madar, H, Goffinet, F, Seco, A, et al. EPIMOMS (EPIdémiologie de la MOrbidité Maternelle Sévère) study group. Severe acute maternal morbidity in twin compared with singleton pregnancies. Obstet Gynecol. 2019; 133: 1141–50.CrossRefGoogle ScholarPubMed
Jarvis, S, Nelson-Piercy, C. Management of nausea and vomiting in pregnancy. BMJ. 2011; 342: d3606.CrossRefGoogle ScholarPubMed
Einarson, TR, Piwko, C , Koren, G. Quantifying the global rates of nausea and vomiting of pregnancy: a meta analysis. J Popul Ther Clin Pharmacol. 2013; 20: e171–83.Google ScholarPubMed
Fiaschi, L, Nlson-Piercy, C, Tata, LJ. Hospital admission for hyperemesis gravidarum: a nationwide study of occurrence, reoccurrence and risk factors among 8.2 million pregnancies. Human Repro. 2016; 31(8): 1675–84.CrossRefGoogle ScholarPubMed
Mitsuda, N, Eitoku, M, Maeda, N, Fujieda, M, Suganuma, N. Severity of nausea and vomiting in singleton and twin pregnancies in relation to fetal sex: the Japan Environment and Children’s Study (JECS). J Epidemiol. 2019; 29: 340–6.CrossRefGoogle ScholarPubMed
Rao, A, Sairam, S, Shehata, H. Obstetric complications of twin pregnancies. Best Pract Res Clin Obstet Gynaecol. 2004; 18: 557–76.CrossRefGoogle ScholarPubMed
Francisco, C, Gamito, M, Reddy, M, Rolnik, DL. Screening for preeclampsia in twin pregnancies. Best Pract Res Clin Obstet Gynaecol. 2022; 84: 5565.CrossRefGoogle ScholarPubMed
Day, MC, Barton, JR, O’Brien, JM, Istwan, NB, Sibai, BM. The effect of fetal number on the development of hypertensive conditions of pregnancy. Obstet Gynecol. 2005; 106(5 Pt 1): 927–31.CrossRefGoogle ScholarPubMed
Henry, DE, McElrath, TF, Smith, NA. Preterm severe preeclampsia in singleton and twin pregnancies. J Perinatol 2013; 33(2): 94–7.CrossRefGoogle ScholarPubMed
Wen, SW, Demissie, K, Yang, Q, Walker, MC. Maternal morbidity and obstetric complications in triplet pregnancies and quadruplet and higher-order multiple pregnancies. Am J Obstet Gynecol. 2004; 191(1): 254–8.CrossRefGoogle ScholarPubMed
Yuan, T, Wang, W, Li, XL, et al. Clinical characteristics of fetal and neonatal outcomes in twin pregnancy with preeclampsia in a retrospective case-control study: a STROBE-compliant article. Medicine (Baltim). 2016; 95: e5199.CrossRefGoogle Scholar
Gonzalez, MC, Reyes, H, Arrese, M, et al. Intrahepatic cholestasis of pregnancy in twin pregnancies. J Hepatol. 1989; 9: 8490.CrossRefGoogle ScholarPubMed
Feng, C, Li, WJ, He, RH, et al. Impacts of different methods of conception on the perinatal outcome of intrahepatic cholestasis of pregnancy in twin pregnancies. Scientific Reports. 2018; 8: 3985.CrossRefGoogle ScholarPubMed
Weis, MA, Harper, ML, Roehl, KA, Odibo, AO, Cahill, AG. Natural history of placenta previa in twins. Obstet Gynecol. 2012; 120(4): 753–8. http://dx.doi.org/10.1097/AOG.0b013e318269baac.CrossRefGoogle ScholarPubMed
Liu, N, Hu, Q, Liao, H, Wang, X, Yu, H. Vasa previa: perinatal outcomes in singleton and multiple pregnancies. Biosci Trends. 2021; 15: 118–25.CrossRefGoogle ScholarPubMed
Hamza, A, Herr, D, Solomayer, EF, Meyberg-Solomayer, G. Polyhydramnios: causes, diagnosis and therapy. Geburtshilfe Frauenheilkd. 2013; 73: 1241–6.Google ScholarPubMed
Goldenberg, RL, Culhane, JF, Iams, JD, Romero, R. Epidemiology and causes of preterm birth. Lancet. 2008; 371: 7584.CrossRefGoogle ScholarPubMed
Chawanpaiboon, S, Vogel, JP, Moller, AB, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health. 2019; 7: e37e46.CrossRefGoogle ScholarPubMed
Blondel, B, Macfarlane, A, Gissler, M, Breart, G, Zeitlin, J. General obstetrics: preterm birth and multiple pregnancy in European countries participating in the PERISTAT project. BJOG. 2006; 113: 528–35.CrossRefGoogle Scholar
Victoria, A, Mora, G, Arias, F. Perinatal outcome, placental pathology, and severity of discordance in monochorionic and dichorionic twins. Obstet Gynecol. 2001; 97: 310–15.Google ScholarPubMed
Bateni, ZH, Clark, SL, Sangi-Haghpeykar, H, et al. Trends in the delivery route of twin pregnancies in the United States, 2006–2013. Eur J Obstet Gynecol Reprod Biol. 2016; 205: 120–6.CrossRefGoogle ScholarPubMed
Ross, LE, McQueen, K, Vigod, S, Dennis, CL. Risk for postpartum depression associated with assisted reproductive technologies and multiple births: a systematic review. Hum Reprod Update. 2011; 17: 96106.CrossRefGoogle ScholarPubMed
National Institute for Health and Clinical Excellence (NICE). Twin and Triplet Pregnancy. NICE clinical guideline. London: NICE, 2024. www.nice.org.uk/guidance/ng137 (accessed 22nd October 2024).Google Scholar
Naert, MN, Khadraoui, H, Muniz Rodriguez, A, Fox, NS. Stratified risk of pregnancy loss for women with a viable singleton pregnancy in the first trimester. J Matern Fetal Neonatal Med. 2022; 35: 4491–5.CrossRefGoogle ScholarPubMed
Batsry, L, Yinon, Y. The vanishing twin: diagnosis and implications. Best Pract Res Clin Obstet Gynaecol. 2022; 84: 6675.CrossRefGoogle ScholarPubMed
Royal College of Obstetricians and Gynecologists (RCOG). Late Intrauterine Fetal Death and Stillbirth. Green-top guideline no. 55. London: RCOG, 2010.Google Scholar
Mackie, FL, Rigby, A, Morris, RK, Kilby, MD. Prognosis of the co-twin following spontaneous single intrauterine fetal death in twin pregnancies: a systematic review and meta-analysis. BJOG. 2019; 126: 569–78.CrossRefGoogle ScholarPubMed
Filipecka-Tyczka, D, Jakiel, G, Kajdy, A, Rabijewski, M. Is growth restriction in twin pregnancies a double challenge? – A narrative review. J Mother Child. 2021; 24: 2430.Google ScholarPubMed
Royal College of Obstetricians and Gynecologists (RCOG). Umbilical Cord Prolapse. Green-top guideline no. 50. London: RCOG, 2014.Google Scholar
Asahina, R, Tsuda, H, Nishiko, Y, et al. Evaluation of the risk of umbilical cord prolapse in the second twin during vaginal delivery: a retrospective cohort study. BMJ Open. 2021; 11: e046616.CrossRefGoogle ScholarPubMed
Fessehaye, A, Abubeker, F, Daba, M. Locked twins – remote from term: a case report. 2021; 15: 115.Google ScholarPubMed
Pharoah, PO, Cooke, T. Cerebral palsy and multiple births. Arch Dis Child Fetal Neonatal Ed. 1996; 75: F174–7.CrossRefGoogle ScholarPubMed
Sellier, E, Goldsmith, S, McIntyre, S, et al. Surveillance of Cerebral Palsy Europe Group and the Australian Cerebral Palsy Register Group. Cerebral palsy in twins and higher multiple births: a Europe-Australia population-based study. Dev Med Child Neurol. 2021; 63: 712–20.CrossRefGoogle ScholarPubMed
Draper, ES, Gallimore, ID, Smith, LK, et al. MBRRACE-UK Perinatal Mortality Surveillance Report, UK Perinatal Deaths for Births from January to December 2020. Leicester: The Infant Mortality and Morbidity Studies, Department of Health Sciences, University of Leicester, 2022.Google Scholar
Glinianaia, SV, Rankin, J, Wright, C. Congenital anomalies in twins: a register-based study. Hum Reprod. 2008; 23: 1306–11.CrossRefGoogle ScholarPubMed
Lewi, L, Jani, J, Blickstein, I, et al. The outcome of monochorionic diamniotic twin gestations in the era of invasive fetal therapy: a prospective cohort study. Am J Obstet Gynecol. 2008; 199: 514.e1–8.Google ScholarPubMed
Baxi, LV, Walsh, CA. Monoamniotic twins in contemporary practice: a single-center study of perinatal outcomes. J Matern Fetal Neonatal Med. 2010; 23: 506–10.CrossRefGoogle Scholar
Jung, YM, Lee, SM, Oh, S, et al. The concordance rate of non-chromosomal congenital malformations in twins based on zygosity: a retrospective cohort study. BJOG. 2021; 128: 857–64.CrossRefGoogle ScholarPubMed
Sperling, L, Kiil, C, Larsen, LU, et al. Detection of chromosal abnormalities, congenital abnormalities and transfusion syndrome in twins. Ultrasoun Obs Gynecol. 2007; 29(5): 517–26.Google Scholar
Piro, E, Schierz, IAM, Serra, G, et al. Growth patterns and associated risk factors of congenital malformations in twins. Ital J Pediatr. 2020; 46: 73.CrossRefGoogle ScholarPubMed
Sun, LM, Chen, XK, Wen, SW, et al. Perinatal outcomes of normal cotwins in twin pregnancies with one structurally anomalous fetus: a population-based retrospective study. Am J Perinatol. 2009; 26: 51–6.CrossRefGoogle ScholarPubMed
d’Antonio, F, Khalil, A. Screening and diagnosis of chromosomal abnormalities in twin pregnancy. Best Pract Res Clin Obstet Gynaecol. 2022; 84: 229–39.CrossRefGoogle Scholar
The Fetal Medicine Foundation. Structural Abnormalities. https://fetalmedicine.org/education/fetal-abnormalities/multiple-pregnancies/structural-abnormalities (accessed 15 September 2024).Google Scholar
Wen, SW, Miao, Q, Taljaard, M, et al. Associations of assisted reproductive technology and twin pregnancy with risk of congenital heart defects. JAMA Pediatr. 2020; 174: 446–54.CrossRefGoogle ScholarPubMed
Zamani, Z, Parekh, U. Vanishing Twin Syndrome. Treasure Island, FL: StatPearls Publishing, 2022.Google Scholar
Harris, AL, Sacha, CR, Basnet, KM, et al. Vanishing twins conceived through fresh in vitro fertilization: obstetric outcomes and placental pathology. Obstet Gynecol. 2020; 135: 1426–33.CrossRefGoogle ScholarPubMed
Kamath, MS, Antonisamy, B, Selliah, HY, Sunkara, SK. Perinatal outcomes of singleton live births with and without vanishing twin following transfer of multiple embryos: analysis of 113 784 singleton live births. Hum Reprod. 2018; 33: 2018–22.CrossRefGoogle ScholarPubMed
d’Antonio, F, Khalil, A, Dias, T, Thilaganathan, B. Early fetal loss in monochorionic and dichorionic twin pregnancies: analysis of the Southwest Thames Obstetric Research Collaborative (STORK) multiple pregnancy cohort. Ultrasound Obstet Gynecol. 2013; 41: 632–6.Google Scholar
Sebire, NJ, Thornton, S, Hughes, K, Snijders, RJ, Nicolaides, KH. The prevalence and consequences of missed abortion in twin pregnancies at 10 to 14 weeks of gestation. Br J Obstet Gynaecol. 1997; 104: 847–8.CrossRefGoogle ScholarPubMed
Morris, RK, Mackie, F, Garces, AT, Knight, M, Kilby, MD. The incidence, maternal, fetal and neonatal consequences of single intrauterine fetal death in monochorionic twins: a prospective observational UKOSS study. PLoS One. 2020; 15: e0239477.CrossRefGoogle ScholarPubMed
Hillman, SC, Morris, RK, Kilby, MD. Co-twin prognosis after single fetal death: a systematic review and meta-analysis. Obstet Gynecol. 2011; 118: 928–40.CrossRefGoogle ScholarPubMed
Morin, L, Lim, K, Bly, S, et al. Ultrasound in twin pregnancies: no. 260, June 2011. Int J Gynecol Obstet. 2011; 115: 117–18.CrossRefGoogle Scholar
Breathnach, FM, Malone, FD. Fetal growth disorders in twin gestations. Semin Perinatol. 2012; 36: 175–81.CrossRefGoogle ScholarPubMed
Hirsch, L, Okby, R, Freeman, H, et al. Differences in fetal growth patterns between twins and singletons. J Matern Fetal Neonatal Med. 2020; 33(15): 2546–55. http://dx.doi.org/10.1080/14767058.2018.1555705.Google Scholar
Cerra, C, d’Antonio, F. Discordance in twins: association versus prediction. Best Pract Res Clin Obstet Gynaecol. 2022; 84: 3342.CrossRefGoogle ScholarPubMed
Kalafat, E, Thilaganathan, B, Papageorghiou, A, Bhide, A, Khalil, A. Significance of placental cord insertion site in twin pregnancy. Ultrasound Obstet Gynecol. 2018; 52: 378–84.CrossRefGoogle ScholarPubMed
Couck, I, Mourad Tawfic, N, Deprest, J, et al. Does site of cord insertion increase risk of adverse outcome, twin-to-twin transfusion syndrome and discordant growth in monochorionic twin pregnancy? Ultrasound Obstet Gynecol. 2018; 52: 385–9.CrossRefGoogle ScholarPubMed
Khalil, A, Beune, I, Hecher, K, et al. Consensus definition and essential reporting parameters of selective fetal growth restriction in twin pregnancy: a Delphi procedure. Ultrasound Obstet Gynecol. 2019; 53: 4754.CrossRefGoogle ScholarPubMed
d’Antonio, F, Odibo, AO, Prefumo, F, Khalil, A, Buca, , Flacco, ME. Weight discordance and perinatal mortality in twin pregnancy: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018; 52: 1123.CrossRefGoogle ScholarPubMed
Breathnach, FM , McAuliffe, FM, Geary, M, et al. Definition of intertwin birth weight discordance. Obstet Gynecol. 2011; 118: 94103.CrossRefGoogle ScholarPubMed
Khalil, A, Rodgers, M, Baschat, A, et al. ISUOG practice guidelines: role of ultrasound in twin pregnancy. Ultrasound Obstet Gynecol. 2016; 47: 247–63.CrossRefGoogle ScholarPubMed
American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins – Obstetrics; Society for Maternal–Fetal Medicine. Practice bulletin No. 169: multifetal gestations: twin, triplet, and higher-order multifetal pregnancies. Obstet Gynecol. 2016; 128: e131–46.Google Scholar
The Fetal Medicine Foundation. MC Twins: Selective Fetal Growth Restriction. https://fetalmedicine.org/education/fetal-abnormalities/multiple-pregnancies/mc-twins-selective-fetal-growth-restriction (accessed 15 September 2024).Google Scholar
Royal College of Obstetricians and Gynaecologists (RCOG). Management of Monochorionic Twin Pregnancy, 2nd edn. Green-top guideline no. 51. London: RCOG, 2016. www.rcog.org.uk/en/guidelines-research-services/guidelines/gtg51/ (accessed 15 September 2024).Google Scholar
di Mascio, D, Acharya, G, Khalil, A, et al. Birthweight discordance and neonatal morbidity in twin pregnancies: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2019; 98: 1245–57.CrossRefGoogle ScholarPubMed
Khalil, A, Prasad, S. Screening and prevention of preterm birth in twin pregnancies. Best Pract Res Clin Obstet Gynaecol. 2022; 84: 179–93.CrossRefGoogle ScholarPubMed
Ananth, CV, Joseph, K, Demissie, K, Vintzileos, AM. Trends in twin preterm birth subtypes in the United States, 1989 through 2000: impact on perinatal mortality. Am J Obstet Gynecol. 2005; 193: e19.CrossRefGoogle ScholarPubMed
Murray, S, Stock, S, Coman, S, Cooper, E, Norman, J. Spontaneous preterm birth prevention in multiple pregnancy. Obstet Gynaecol. 2018; 20: 5763.CrossRefGoogle ScholarPubMed
Breathnach, FM, McAuliffe, FM, Geary, M, et al. Perinatal Ireland Research Consortium. Optimum timing for planned delivery of uncomplicated monochorionic and dichorionic twin pregnancies. Obstet Gynecol. 2012; 119: 50–9.CrossRefGoogle Scholar
Marleen, S, Dias, C, Nandasena, R, et al. Association between chorionicity and preterm birth in twin pregnancies: a systematic review involving 29 864 twin pregnancies. BJOG. 2021; 128: 788–96.CrossRefGoogle Scholar
Borah, T, Das, A. Locked twins: a rarity. Ann Med Health Sci Res. 2012; 2: 204–5.CrossRefGoogle ScholarPubMed
Khalil, A, Bhide, AT, Papageorghiou, A, Thilaganathan, B. Reduction in twin stillbirth following implementation of NICE guidance. Ultrasound Obstet Gynecol. 2020; 56: 566–71.CrossRefGoogle ScholarPubMed
Draper, ES, Gallimore, ID, Kurinczuk, JJ, Kenyon, S (eds.) on behalf of MBRRACE-UK. MBRRACE-UK 2019 Perinatal Confidential Enquiry: Stillbirths and Neonatal Deaths in Twin Pregnancies. Leicester: The Infant Mortality and Morbidity Studies, Department of Health Sciences, University of Leicester, 2021.Google Scholar
Dube, J, Dodds, L, Armson, BA. Does chorionicity or zygosity predict adverse perinatal outcomes in twins? Am J Obstet Gynecol. 2002; 186: 579–83.CrossRefGoogle ScholarPubMed
Danon, D, Sekar, R, Hack, KE, Fisk, NM. Increased stillbirth in uncomplicated monochorionic twin pregnancies: a systematic review and meta-analysis. Obstet Gynecol. 2013; 121: 1318–26.CrossRefGoogle ScholarPubMed
d’Antonio, F, Odibo, A, Berghella, V, et al. Perinatal mortality, timing of delivery and prenatal management of monoamniotic twin pregnancy: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2019; 53: 166–74.Google ScholarPubMed
Mutchinick, OM, Luna-Muñoz, L, Amar, E, et al. Conjoined twins: a worldwide collaborative epidemiological study of the International Clearinghouse for Birth Defects Surveillance and Research. Am J Med Genet C Semin Med Genet. 2011; 157: 274–87.CrossRefGoogle Scholar
Glinianaia, SV, Rankin, J, Khalil, A, et al. Prevalence, antenatal management and perinatal outcome of monochorionic monoamniotic twin pregnancy: a collaborative multicenter study in England, 2000–2013. Ultrasound Obstet Gynecol. 2019; 53: 184–92.CrossRefGoogle ScholarPubMed
Chauhan, SP, Scardo, JA, Hayes, E, et al. Twins: prevalence, problems, and preterm births. Am J Obstet Gynecol. 2010; 203: 305–15.CrossRefGoogle ScholarPubMed
Lewi, L, Valencia, C, Gonzalez, E, Deprest, J, Nicolaides, KH. The outcome of twin reversed arterial perfusion sequence diagnosed in the first trimester. Am J Obstet Gynecol. 2010; 203: 213.e1–4.CrossRefGoogle ScholarPubMed
Bamberg, C, Hecher, K. Twin-to-twin transfusion syndrome: controversies in the diagnosis and management. Best Pract Res Clin Obstet Gynaecol. 2022; 84: 143–54.CrossRefGoogle ScholarPubMed
Nicholas, L, Fischbein, R, Ernst-Milner, S, Wani, R. Review of international clinical guidelines related to prenatal screening during monochorionic pregnancies. J Clin Med. 2021; 10: 1128–47.CrossRefGoogle ScholarPubMed
Spitz, L. Conjoined twins. Br J Surg. 1996; 83(8): 1028–30.CrossRefGoogle ScholarPubMed
Mian, A, Gabra, NI, Sharma, T, et al. Conjoined twins: from conception to separation, a review. Clin Anat. 2017; 30: 385–96.CrossRefGoogle ScholarPubMed
Chen, CP, Hsu, CY, Su, JW, et al. Conjoined twins detected in the first trimester: a review. Taiwan J Obstet Gynecol. 2011; 50: 424–31.CrossRefGoogle ScholarPubMed
van Mieghem, T, Abbasi, N, Shinar, S, et al. Monochorionic monoamniotic twin pregnancies. Am J Obstet Gynecol MFM. 2022; 4: 100520.CrossRefGoogle ScholarPubMed
Rossi, AC, Prefumo, F. Impact of cord entanglement on perinatal outcome of monoamniotic twins: a systematic review of the literature. Ultrasound Obstet Gynecol. 2013; 41: 131–5.CrossRefGoogle ScholarPubMed
Sueters, M, Oepkes, D. Diagnosis of twin-to-twin transfusion syndrome, selective fetal growth restriction, twin–polycythemia sequence, and twin reversed arterial perfusion sequence. Best Pract Res Clin Obstet Gynaecol. 2014; 28: 215–26.CrossRefGoogle ScholarPubMed
Badr, DA, Carlin, A, Kang, X, et al. Evaluation of the new expert consensus-based definition of selective fetal growth restriction in monochorionic pregnancies. J Matern Fetal Neonatal Med. 2022; 35: 2338–44.CrossRefGoogle ScholarPubMed
Gratacos, E, Lewi, L, Muñoz, B, et al. A classification system for selective intrauterine growth restriction in monochorionic pregnancies according to umbilical artery Doppler flow in the smaller twin. Ultrasound Obstet Gynecol. 2007; 30: 2834.CrossRefGoogle ScholarPubMed
Gratacos, E, Antolin, E, Lewi, L, et al. Monochorionic twins with selective intrauterine growth restriction and intermittent absent or reversed end-diastolic flow (Type III): feasibility and perinatal outcome of fetoscopic placental laser coagulation. Ultrasound Obstet Gynecol. 2008; 31: 669–75.CrossRefGoogle ScholarPubMed
van Gemert, MJC, van den Wijngaard, JPHM, Vandenbussche, FPHA. Twin reversed arterial perfusion sequence is more common than generally accepted. Birth Defects Res a Clin Mol Teratol. 2015; 103(7): 641–3. http://dx.doi.org/10.1002/bdra.23405.CrossRefGoogle ScholarPubMed
Quintero, RA, Morales, WJ, Allen, MH, et al. Staging of twin–twin transfusion syndrome. J Perinatol. 1999; 19: 550–5.CrossRefGoogle ScholarPubMed
Hecher, K, Gardiner, HM, Diemert, A, Bartmann, P. Long-term outcomes for monochorionic twins after laser therapy in twin-to-twin transfusion syndrome. Lancet Child Adolesc Health. 2018; 2: 525–35.CrossRefGoogle ScholarPubMed
Lopriore, E, Oepkes, D, Walther, FJ. Neonatal morbidity in twin–twin transfusion syndrome. Early Hum Dev. 2011; 87: 595–9.CrossRefGoogle ScholarPubMed
Tollenaar, LSA, Slaghekke, F, Lewi, L, et al. Spontaneous twin anemia polycythemia sequence: diagnosis, management, and outcome in an international cohort of 249 cases. Am J Obstet Gynecol. 2021; 224: e1–213.CrossRefGoogle Scholar
Assaf, SA, Benirschke, K, Chmait, RH. Spontaneous twin anemia–polycythemia sequence complicated by recipient placental vascular thrombosis and hydrops fetalis. J Matern Fetal Neonatal Med. 2011; 24: 549–52.CrossRefGoogle ScholarPubMed
Slaghekke, F, Kist, WJ, Oepkes, D, et al. Twin anemia–polycythemia sequence: diagnostic criteria, classification, perinatal management and outcome. Fetal Diagn Ther. 2010; 27: 181–90.CrossRefGoogle ScholarPubMed
Murray, SR, Norman, JE. Multiple pregnancies following assisted reproductive technologies – a happy consequence or double trouble? Semin Fetal Neonatal Med. 2014; 19: 222–7.CrossRefGoogle ScholarPubMed
Practice Committee of the American Society for Reproductive Medicine, Practice Committee of the Society for Assisted Reproductive Technologies. Guidance on the limits to the number of embryos to transfer: a committee opinion. Fertil Steril. 2017; 107: 901–3.Google Scholar
Bai, F, Wang, DY, Fan, YJ, et al. Assisted reproductive technology service availability, efficacy and safety in mainland China: 2016. Hum Reprod. 2020; 35: 446–52.Google ScholarPubMed
Adamson, GD, Normal, RJ. Why are multiple pregnancy rates and single embryo transfer rates so different globally, and what do we do about it? Fertil Steril. 2020; 114(4): 680–9.CrossRefGoogle Scholar
Kamath, MS, Mascarenhas, M, Kirubakaran, R, Bhattacharya, S. Number of embryos for transfer following in vitro fertilisation or intra-cytoplasmic sperm injection. Cochrane Database Syst Rev. 2020; (8): CD003416.Google ScholarPubMed
Ma, S, Peng, Y, Hu, L, et al. Comparisons of benefits and risks of single embryo transfer versus double embryo transfer: a systematic review and meta-analysis. Reprod Biol Endocrinol. 2022; 20: 20.CrossRefGoogle ScholarPubMed
Luke, B, Gopal, D, Cabral, H, et al. Adverse pregnancy, birth, and infant outcomes in twins: effects of maternal fertility status and infant gender combinations; the Massachusetts Outcomes Study of Assisted Reproductive Technology. Am J Obstet Gynecol. 2017; 217: 330.e1–15. http://dx.doi.org/10.1016/j.ajog.2017.04.025.Google ScholarPubMed
Glujovsky, D, Retamar, AMQ, Sedo, CRA, et al. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev. 2022; (5): CD002118.Google ScholarPubMed
Busnelli, A, Dallagiovanna, C, Reschini, M, et al. Risk factors for monozygotic twinning after in vitro fertilization: a systematic review and meta-analysis. Fertil Steril. 2019; 111: 302–17.CrossRefGoogle ScholarPubMed
Ellings, JM, Newman, RB, Hulsey, TC, Bivins, HA, Keenan, A. Reduction in very low birth weight deliveries and perinatal mortality in a specialized, multidisciplinary twin clinic. Obstet Gynecol. 1993; 81: 387–91.Google Scholar
Newman, RB, Ellings, JM. Antepartum management of the multiple gestation: the case for specialized care. Semin Perinatol. 1995; 19: 387403.CrossRefGoogle ScholarPubMed
Ruk, RJ, Brown, CE, Peters, MT, Johnston, AB. Specialized care for twin gestations: improving newborn outcomes und reducing costs. J Obstet Gynecol Neonatal Nurs. 2001; 30: 5260.Google Scholar
National Institute for Health and Care Excellence (NICE). Multiple Pregnancy: Twin and Triplet Pregnancies. NICE Quality Standard QS 46. London: NICE, 2013 (updated September 2019). www.nice.org.uk/guidance/qs46 (accessed 15 September 2024).Google Scholar
Twins, and Multiple Births Association (TAMBA). NICE Works: Twins and Multiple Births Association Maternity Engagement Project Final Report. Aldershot: TAMBA, 2019. https://twinstrust.org/static/fc9b2326-a70f-4989-b64b3cafe05f3440/NICE-works-final-report.pdf (accessed 1 October 2024).Google Scholar
Bricker, L, Reed, K, Wood, L, Neilson, JP. Nutritional advice for improving outcomes in multiple pregnancies. Cochrane Database Syst Rev. 2015; (11): CD008867.Google Scholar
National Institute for Health and Care Excellence (NICE). Antenatal Care. NICE Clinical Guideline NG201. London: NICE, 2021. www.nice.org.uk/guidance/ng201 (accessed 15 September 2024).Google Scholar
Norwitz, ER, Edusa, V, Shin Park, J. Maternal physiology and complications of multiple pregnancy. Semin Perinatol. 2005; 29(5): 338–48. http://dx.doi.org/10.1053/j.semperi.2005.08.002.CrossRefGoogle ScholarPubMed
Stock, S, Norman, J. Preterm and term labour in multiple pregnancies. Seminars Fetal Neonatal Med. 2010; 15(6): 336–41.CrossRefGoogle ScholarPubMed
National Institute for Health and Care Excellence (NICE). Preterm Labour and Birth. NICE Guideline NG25. London: NICE, 2022. www.nice.org.uk/guidance/ng25 (accessed 15 September 2024).Google Scholar
dos Santos, F, Daru, J, Rogozińska, E, Cooper, NAM. Accuracy of fetal fibronectin for assessing preterm birth risk in asymptomatic pregnant women: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2018; 97: 657–67.CrossRefGoogle ScholarPubMed
Kuhrt, K, Hezelgrave-Elliott, N, Stock, SJ, et al. Quantitative fetal fibronectin for prediction of preterm birth in asymptomatic twin pregnancy. Acta Obstet Gynecol Scand. 2020; 99: 1191–7.CrossRefGoogle ScholarPubMed
Carter, J, Seed, PT, Watson, HA, et al. Development and validation of predictive models for QUiPP App v.2: tool for predicting preterm birth in women with symptoms of threatened preterm labor. Ultrasound Obstet Gynecol. 2020; 55: 357–67.CrossRefGoogle ScholarPubMed
Singer, E, Pilpel, S, Bsat, F, et al. Accuracy of fetal fibronectin to predict preterm birth in twin gestations with symptoms of labor. Obstet Gynecol. 2007; 109: 1083–7.CrossRefGoogle ScholarPubMed
Kindinger, L, Poon, L, Cacciatore, S, et al. The effect of gestational age and cervical length measurements in the prediction of spontaneous preterm birth in twin pregnancies: an individual patient level meta-analysis. BJOG. 2016; 123: 877–84.CrossRefGoogle ScholarPubMed
American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins – Obstetrics; Society for Maternal–Fetal Medicine. Multifetal gestations: twin, triplet, and higher-order multifetal pregnancies: ACOG practice bulletin, number 231. Obstet Gynecol. 2021; 137: e145–62.Google Scholar
Research Committee, SMFM ; Grantz, KL, Kawakita, T, Lu, YL, et al. SMFM special statement: state of the science on multifetal gestations: unique considerations and importance. Am J Obstet Gynecol. 2019; 221: B212.Google Scholar
da Silva Lopes, K, Takemoto, Y, Ota, E, Tanigaki, S, Mori, R. Bed rest with and without hospitalisation in multiple pregnancy for improving perinatal outcomes. Cochrane Database Syst Rev. 2017; (3): CD012031.Google ScholarPubMed
Dodd, JM, Grivell, RM, O’Brien, CM, Dowswell, T, Deussen, AR. Prenatal administration of progestogens for preventing spontaneous preterm birth in women with a multiple pregnancy. Cochrane Database Syst Rev. 2019; (11): CD012024.Google Scholar
Romero, R, Conde-Agudelo, A, El-Refaie, W, et al. Vaginal progesterone decreases preterm birth and neonatal morbidity and mortality in women with a twin gestation and a short cervix: an updated meta‐analysis of individual patient data. Ultrasound Obstet Gynecol. 2017; 49: 303–14.CrossRefGoogle Scholar
El-Refaie, W, Abdelhafez, MS, Badawy, A. Vaginal progesterone for prevention of preterm labor in asymptomatic twin pregnancies with sonographic short cervix: a randomized clinical trial of efficacy and safety. Arch Gynecol Obstet. 2016; 293: 61–7.CrossRefGoogle ScholarPubMed
American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins – Obstetrics. Prediction and prevention of spontaneous preterm birth: ACOG practice bulletin, number 234. Obstet Gynecol. 2021; 138: e6590.CrossRefGoogle Scholar
Royal Australian and New Zealand College of Obstericians and Gynaecologists (RANZCOG). Progesterone: Use in the Second and Third Trimester of Pregnancy for the Prevention of Preterm Birth. Best practice statement. Melbourne: RANZCOG, 2017.Google Scholar
EPPPIC Group. Evaluating Progestogens for Preventing Preterm birth International Collaborative (EPPPIC): meta-analysis of individual participant data from randomised controlled trials. Lancet. 2021; 397: 1183–94.Google Scholar
Rehal, A, Benkő, Z, De Paco Matallana, C, et al. Early vaginal progesterone versus placebo in twin pregnancies for the prevention of spontaneous preterm birth: a randomized, double-blind trial. Am J Obstet Gynecol. 2021; 224: 86.e1–19.CrossRefGoogle ScholarPubMed
Romero, R, Conde-Agudelo, A, Rehal, A, et al. Vaginal progesterone for the prevention of preterm birth and adverse perinatal outcomes in twin gestations with a short cervix: an updated individual patient data meta-analysis. Ultrasound Obstet Gynecol. 2022; 59: 263–6.CrossRefGoogle Scholar
The George Washington University Biostatistics Center. A trial of pessary and progesterone for preterm prevention in twin gestation with a short cervix. clinicaltrials.gov. 2021. Report No.: NCT02518594. https://clinicaltrials.gov/ct2/show/NCT02518594 (accessed 15 September 2024).Google Scholar
ISUOG. Role of ultrasound in the prediction of spontaneous preterm birth. www.isuog.org/resource/practice-guidelines-preterm-birth-pdf.html (accessed 15 September 2024).Google Scholar
Liem, SM, van Pampus, MG, Mol, BW, Bekedam, DJ. Cervical pessaries for the prevention of preterm birth: a systematic review. Obstet Gynecol Int. 2013; 2013: 576723.CrossRefGoogle ScholarPubMed
Liem, S, Schuit, E, Hegeman, M, et al. Cervical pessaries for prevention of preterm birth in women with a multiple pregnancy (ProTWIN): a multicentre, open-label randomised controlled trial. Lancet. 2013; 382: 1341–9.CrossRefGoogle ScholarPubMed
Goya, M, de la Calle, M, Pratcorona, L, et al. Cervical pessary to prevent preterm birth in women with twin gestation and sonographic short cervix: a multicenter randomized controlled trial (PECEP-Twins). Am J Obstet Gynecol. 2016; 214: 145–52.Google ScholarPubMed
Nicolaides, KH, Syngelaki, A, Poon, LC, et al. Cervical pessary placement for prevention of preterm birth in unselected twin pregnancies: a randomized controlled trial. Am J Obstet Gynecol. 2016; 214: 3.e1–9.CrossRefGoogle ScholarPubMed
Pratcorona, L, Goya, M, Merced, C, et al. Cervical pessary to reduce preterm birth <34 weeks of gestation after an episode of preterm labor and a short cervix: a randomized controlled trial. Am J Obstet Gynecol. 2018; 219: 99.e1–16.CrossRefGoogle Scholar
Thangatorai, R, Lim, FC, Nalliah, S. Cervical pessary in the prevention of preterm births in multiple pregnancies with a short cervix: PRISMA compliant systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2018; 31: 1638–45.CrossRefGoogle Scholar
Norman, JE, Norrie, J, MacLennan, G, et al. Evaluation of the Arabin cervical pessary for prevention of preterm birth in women with a twin pregnancy and short cervix (STOPPIT-2): an open-label randomised trial and updated meta-analysis. PLoS Med. 2021; 18: e1003506.CrossRefGoogle ScholarPubMed
Rafael, TJ, Berghella, V, Alfirevic, Z. Cervical stitch (cerclage) for preventing preterm birth in multiple pregnancy. Cochrane Database Syst Rev. 2014; (9): CD009166.Google Scholar
Rottenstreich, A, Levin, G, Kleinstern, G, et al. History-indicated cervical cerclage in management of twin pregnancy. Ultrasound Obstet Gynecol. 2019; 54: 517–23.CrossRefGoogle ScholarPubMed
Li, C, Shen, J, Hua, K. Cerclage for women with twin pregnancies: a systematic review and metaanalysis. Am J Obstet Gynecol. 2019; 220: 543–57.CrossRefGoogle ScholarPubMed
Atia, H. Prophylactic cerclage for twin pregnancy with shortened cervix. clinicaltrials.gov. 2022. Report No.: NCT05338164. https://clinicaltrials.gov/ct2/show/NCT05338164 (accessed 15 September 2024).Google Scholar
Lv, MD. Cerclage for short cervix in twins. clinicaltrials.gov. 2018. Report No.: NCT02912390. https://clinicaltrials.gov/ct2/show/NCT02912390 (accessed 15 September 2024).Google Scholar
Roman, A, Zork, N, Haeri, S, et al. Physical examination-indicated cerclage in twin pregnancy: a randomized controlled trial. Am J Obstet Gynecol. 2020; 223: 902.e1–e11.CrossRefGoogle ScholarPubMed
Gyamfi, C, Lerner, V, Holzman, I, Stone, JL. Routine cervical length in twins and perinatal outcomes. Am J Perinatol. 2007; 24: 65–9.CrossRefGoogle ScholarPubMed
Palas, D, Ehlinger, V, Alberge, C, et al. Efficacy of antenatal corticosteroids in preterm twins: the EPIPAGE-2 cohort study. BJOG. 2018; 125: 1164–70.CrossRefGoogle ScholarPubMed
Royal College of Obstetricians and Gynaecologists (RCOG). Preterm Prelabor Rupture of the Membranes. Green-top guideline no. 44. London: RCOG, 2010. www.rcog.org.uk/globalassets/documents/guidelines/gtg_44.pdf (accessed 15 September 2024).Google Scholar
Kenyon, S, Brocklehurst, P, Jones, D, et al. MRC ORACLE Children Study. Long term outcomes following prescription of antibiotics to pregnant women with either spontaneous preterm labor or preterm rupture of the membranes. BMC Pregnancy Childbirth. 2008; 8: 14.CrossRefGoogle ScholarPubMed
Sela, HY, Simpson, LL. Preterm premature rupture of membranes complicating twin pregnancy: management considerations. Clin Obstet Gynecol. 2011; 54: 321–9.CrossRefGoogle ScholarPubMed
Doyle, LW, Crowther, CA, Middleton, P, Marret, S, Rouse, D. Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev. 2009; (1): CD004661.Google Scholar
Wilson, A, Hodgetts-Morton, VA, Marson, EJ, et al. Tocolytics for delaying preterm birth: a network meta-analysis (0924). Cochrane Database Syst Rev. 2022; (8): CD014978. http://dx.doi.org/10.1002/14651858.CD014978.pub2.Google ScholarPubMed
Tel-Aviv Sourasky Medical Center. Tocolytic therapy for preterm labor in multiple gestation. clinicaltrials.gov. 2016. Report No.: NCT02725736. https://clinicaltrials.gov/ct2/show/NCT02725736 (accessed 15 September 2024).Google Scholar
Cheung, KW, Seto, MTY, Wang, W, et al. Effect of delayed interval delivery of remaining fetus(es) in multiple pregnancies on survival: a systematic review and meta-analysis. Am J Obstet Gynecol. 2020; 222: 306–19.CrossRefGoogle ScholarPubMed
d’Antonio, F, Khalil, A, Pagani, G, et al. Crown-rump length discordance and adverse perinatal outcome in twin pregnancies: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2014; 44: 138–46.Google ScholarPubMed
Lewi, L, Lewi, P, Diemert, A, et al. The role of ultrasound examination in the first trimester and at 16 weeks’ gestation to predict fetal complications in monochorionic diamniotic twin pregnancies. Am J Obstet Gynecol. 2008; 199: 493.e1–7.CrossRefGoogle ScholarPubMed
Memmo, A, Dias, T, Mahsud-Dornan, S, et al. Prediction of selective fetal growth restriction and twin-to-twin transfusion syndrome in monochorionic twins. BJOG. 2012; 119: 417–21.CrossRefGoogle ScholarPubMed
Kurtz, A, Wapner, R, Mata, J, Johnson, A, Morgan, P. Twin pregnancies: accuracy of first-trimester abdominal US in predicting chorionicity and amnionicity. Radiology. 1992; 185: 759–62.CrossRefGoogle ScholarPubMed
Monteagudo, A, Timor-Tritsch, IE, Sharma, S. Early and simple determination of chorionic and amniotic type in multifetal gestations in the first fourteen weeks by high-frequency transvaginal ultrasonography. Am J Obstet Gynecol. 1994; 170: 824–9.CrossRefGoogle ScholarPubMed
Lu, J, Ting, YH, Leung, TY. Determining chorionicity and amnionicity in twin pregnancies: pitfalls. Best Pract Res Clin Obstet Gynaecol. 2022; 84: 216.CrossRefGoogle ScholarPubMed
Lu, J, Cheng, YKY, Ting, YH, Law, KM, Leung, TY. Pitfalls in assessing chorioamnionicity: novel observations and literature review. Am J Obstet Gynecol. 2018; 219: 242–54.CrossRefGoogle ScholarPubMed
Maruotti, GM, Saccone, G, Morlando, M, Martinelli, P. First-trimester ultrasound determination of chorionicity in twin gestations using the lambda sign: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2016; 202: 6670.CrossRefGoogle ScholarPubMed
Sepulveda, W, Sebire, NJ, Hughes, K, Kalogeropoulos, A, Nicolaides, KH. Evolution of the lambda or twin-chorionic peak sign in dichorionic twin pregnancies. Obstet Gynecol. 1997; 89: 439–41.CrossRefGoogle ScholarPubMed
Gueneuc, A, Spaggiari, E, Bonniere, M, et al. Pitfall in the diagnosis of chorionicity in twin pregnancy at first trimester. Ultrasound Obstet Gynecol. 2017; 49: 277–8.CrossRefGoogle ScholarPubMed
Dias, T, Arcangeli, T, Bhide, A, et al. First-trimester ultrasound determination of chorionicity in twin pregnancy. Ultrasound Obstet Gynecol. 2011; 38: 530–2.CrossRefGoogle ScholarPubMed
Fenton, C, Reidy, K, Demyanenko, M, et al. The significance of yolk sac number in monoamniotic twins. Fetal Diagn Ther. 2019; 46: 193–9.CrossRefGoogle ScholarPubMed
Dias, T, Ladd, S, Mahsud-Dornan, S, et al. Systematic labeling of twin pregnancies on ultrasound. Ultrasound Obstet Gynecol. 2011; 38: 130–3.Google ScholarPubMed
Mackie, FL, Whittle, R, Morris, RK, et al. First-trimester ultrasound measurements and maternal serum biomarkers as prognostic factors in monochorionic twins: a cohort study. Diagn Progn Res. 2019; 3: 9.CrossRefGoogle ScholarPubMed
Prats, P, Rodríguez, I, Comas, C, Puerto, B. Systematic review of screening for trisomy 21 in twin pregnancies in first trimester combining nuchal translucency and biochemical markers: a meta-analysis. Prenat Diagn. 2014; 34: 1077–83.CrossRefGoogle ScholarPubMed
Sarno, L, Revello, R, Hanson, E, Akolekar, R, Nicolaides, KH. Prospective first-trimester screening for trisomies by cell-free DNA testing of maternal blood in twin pregnancy. Ultrasound Obstet Gynecol. 2016; 47: 705–11.CrossRefGoogle ScholarPubMed
Khalil, A, Archer, R, Hutchinson, V, et al. Noninvasive prenatal screening in twin pregnancies with cell-free DNA using the IONA test: a prospective multicenter study. Am J Obstet Gynecol. 2021; 225: 79.e1–13.CrossRefGoogle ScholarPubMed
Revello, R, Sarno, L, Ispas, A, Akolekar, R, Nicolaides, KH. Screening for trisomies by cell-free DNA testing of maternal blood: consequences of a failed result. Ultrasound Obstet Gynecol. 2016; 47(6): 698704.CrossRefGoogle ScholarPubMed
Leung, TY, Qu, JZ, Liao, GJ, et al. Noninvasive twin zygosity assessment and aneuploidy detection by maternal plasma DNA sequencing. Prenat Diagn. 2013; 33: 675–81.CrossRefGoogle ScholarPubMed
Qu, JZ, Leung, TY, Jiang, P, et al. Noninvasive prenatal determination of twin zygosity by maternal plasma DNA analysis. Clin Chem. 2013; 59: 427–35.CrossRefGoogle ScholarPubMed
Benn, P, Rebarber, A. Non-invasive prenatal testing in the management of twin pregnancies. Prenat Diagn. 2021; 41: 1233–40.CrossRefGoogle ScholarPubMed
Balaguer, N, Mateu-Brull, E, Serra, V, Simón, C, Milán, M. Should vanishing twin pregnancies be systematically excluded from cell-free fetal DNA testing? Prenat Diagn. 2021; 41: 1241–8.CrossRefGoogle ScholarPubMed
Chaveeva, P, Wright, A, Syngelaki, A, et al. First-trimester screening for trisomies in pregnancies with vanishing twin. Ultrasound Obstet Gynecol. 2020; 55: 326–31.CrossRefGoogle ScholarPubMed
Public Health England. NHS fetal anomaly screening programme (FASP): programme overview. www.gov.uk/guidance/fetal-anomaly-screening-programme-overview (accessed 15 September 2024).Google Scholar
Palomaki, GE, Chiu, RWK, Pertile, MD, et al. International Society for Prenatal Diagnosis position statement: cell free (cf)DNA screening for Down syndrome in multiple pregnancies. Prenat Diagn. 2021; 41: 1222–32.CrossRefGoogle ScholarPubMed
American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins – Obstetrics; Committee on Genetics; Society for Maternal–Fetal Medicine. Screening for fetal chromosomal abnormalities: ACOG practice bulletin, number 226. Obstet Gynecol. 2020; 136: e4869.CrossRefGoogle Scholar
di Mascio, D, Khalil, A, Rizzo, G, et al. Risk of fetal loss following amniocentesis or chorionic villus sampling in twin pregnancy: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2020; 56: 647–55.Google ScholarPubMed
Gil, MM, Rodríguez-Fernández, M, Elger, T, et al. Risk of fetal loss after chorionic villus sampling in twin pregnancy derived from propensity score matching analysis. Ultrasound Obstet Gynecol. 2022; 59: 162–8.CrossRefGoogle ScholarPubMed
Elger, T, Akolekar, R, Syngelaki, A, et al. Fetal loss after chorionic villus sampling in twin pregnancy. Ultrasound Obstet Gynecol. 2021; 58: 4855.CrossRefGoogle ScholarPubMed
Antsaklis, A, Daskalakis, G, Souka, AP, Kavalakis, Y, Michalas, S. Fetal blood sampling in twin pregnancies. Ultrasound Obstet Gynecol. 2003; 22: 377–9.CrossRefGoogle ScholarPubMed
Corcoran, S, Breathnach, F, Burke, G, et al. Dichorionic twin ultrasound surveillance: sonography every 4 weeks significantly underperforms sonography every 2 weeks: results of the prospective multicentre ESPRiT study. Am J Obstet Gynecol. 2015; 213: 551.e1–5.CrossRefGoogle Scholar
The Royal Australian and New Zealand College of Obstericians and Gynaecologists (RANZCOG). Management of Monochorionic Twin Pregnancy. Best practice statement. Melbourne: RANZCOG, 2021.Google Scholar
FIGO Working Group on Good Clinical Practice in Maternal–Fetal Medicine. Good clinical practice advice: management of twin pregnancy. Int J Gynaecol Obstet. 2019; 144: 330–7.Google Scholar
Khalil, A, d’Antonio, F, Dias, T, Cooper, D, Thilaganathan, B. Southwest Thames Obstetric Research Collaborative (STORK). Ultrasound estimation of birth weight in twin pregnancy: comparison of biometry algorithms in the STORK multiple pregnancy cohort. Ultrasound Obstet Gynecol. 2014; 44: 210–20.CrossRefGoogle Scholar
Stirrup, OT, Khalil, A, d’Antonio, F, et al. Fetal growth reference ranges in twin pregnancy: analysis of the Southwest Thames Obstetric Research Collaborative (STORK) multiple pregnancy cohort. Ultrasound Obstet Gynecol. 2015; 45(3): 301–7. http://dx.doi.org/10.1002/uog.14640.CrossRefGoogle Scholar
Odibo, AO, Cahill, AG, Goetzinger, KR, et al. Customized growth charts for twin gestations to optimize identification of small-for-gestational age fetuses at risk of intrauterine fetal death. Ultrasound Obstet Gynecol. 2013; 41(6): 637–42. http://dx.doi.org/10.1002/uog.12404.CrossRefGoogle ScholarPubMed
Kalafat, E, Sebghati, M, Thilaganathan, B, et al. Predictive accuracy of Southwest Thames Obstetric Research Collaborative (STORK) chorionicity-specific twin growth charts for stillbirth: a validation study. Ultrasound Obstet Gynecol. 2019; 53(2): 193–9. http://dx.doi.org/10.1002/uog.19069.CrossRefGoogle Scholar
Hiersch, L, Barrett, J, Fox, NS, et al. Should twin-specific growth charts be used to assess fetal growth in twin pregnancies? Am J Obstet Gynecol. 2022; 227: 1028.CrossRefGoogle ScholarPubMed
Koch, AK, Burger, RJ, Schuit, E, et al. Timing of delivery for twins with growth discordance and growth restriction: an individual participant data meta-analysis. Obstet Gynecol. 2022; 139: 1155–67.CrossRefGoogle ScholarPubMed
Valsky, DV, Eixarch, E, Martinez, JM, Crispi, F, Gratacós, E. Selective intrauterine growth restriction in monochorionic twins: pathophysiology, diagnostic approach and management dilemmas. Semin Fetal Neonatal Med. 2010; 15: 342–8.CrossRefGoogle ScholarPubMed
Ishii, K, Murakoshi, T, Takahashi, Y, et al. Perinatal outcome of monochorionic twins with selective intrauterine growth restriction and different types of umbilical artery Doppler under expectant management. Fetal Diagn Ther. 2009; 26: 157–61.CrossRefGoogle ScholarPubMed
Townsend, R, d’Antonio, F, Sileo, FG, et al. Perinatal outcome of monochorionic twin pregnancy complicated by selective fetal growth restriction according to management: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2019;53(1): 3646. http://dx.doi.org/10.1002/uog.20114.CrossRefGoogle ScholarPubMed
Monaghan, C, Kalafat, E, Binder, J, Thilaganathan, B, Khalil, A. Prediction of adverse pregnancy outcome in monochorionic diamniotic twin pregnancy complicated by selective fetal growth restriction. Ultrasound Obstet Gynecol. 2019; 53: 200–7.CrossRefGoogle ScholarPubMed
Townsend, R, Duffy, JMN, Sileo, F, et al. International Collaboration to Harmonise Outcomes for Selective Fetal Growth Restriction (CHOOSE-FGR). Core outcome set for studies investigating management of selective fetal growth restriction in twins. Ultrasound Obstet Gynecol. 2020; 55: 652–60.CrossRefGoogle ScholarPubMed
Khairudin, D, Khalil, A. Monochorionic monoamniotic twin pregnancies. Best Pract Res Clin Obstet Gynaecol. 2022; 84: 96103.CrossRefGoogle ScholarPubMed
Saccone, G, Khalil, A, Thilaganathan, B, et al. Weight discordance and perinatal mortality in monoamniotic twin pregnancy: analysis of MONOMONO, NorSTAMP and STORK multiple-pregnancy cohorts. Ultrasound Obstet Gynecol. 2020; 55: 332–8.CrossRefGoogle ScholarPubMed
MONOMONO Working Group. Inpatient vs outpatient management and timing of delivery of uncomplicated monochorionic monoamniotic twin pregnancy: the MONOMONO study. Ultrasound Obstet Gynecol. 2019; 53: 175–83.Google Scholar
Madsen, C, Sogaard, K, Zingenberg, H, et al. Outcomes of monoamniotic twin pregnancies managed primarily in outpatient care-a Danish multicenter study. Acta Obstet Gynecol Scand. 2019; 98: 479–86.CrossRefGoogle ScholarPubMed
Quinn, KH, Cao, CT, Lacoursiere, DY, Schrimmer, D. Monoamniotic twin pregnancy: continuous inpatient electronic fetal monitoring-an impossible goal? Am J Obstet Gynecol. 2011; 204: 161e16.CrossRefGoogle ScholarPubMed
Committee opinion no. 719 summary: multifetal pregnancy reduction. Obstet Gynecol. 2017; 130: 670–1.Google Scholar
Beriwal, S, Impey, L, Ioannou, C. Multifetal pregnancy reduction and selective termination. Obstet Gynecol. 2020; 22: 284–92.CrossRefGoogle Scholar
Dodd, J, Crowther, C. Multifetal pregnancy reduction of triplet and higher-order multiple pregnancies to twins. Fertil Steril. 2004; 81: 1420–2.CrossRefGoogle ScholarPubMed
Gaerty, K, Greer, RM, Kumar, S. Systematic review and metaanalysis of perinatal outcomes after radiofrequency ablation and bipolar cord occlusion in monochorionic pregnancies. Am J Obstet Gynecol. 2015; 213: 637–43.CrossRefGoogle ScholarPubMed
Anthoulakis, C, Dagklis, T, Mamopoulos, A, Athanasiadis, A. Risks of miscarriage or preterm delivery in trichorionic and dichorionic triplet pregnancies with embryo reduction versus expectant management: a systematic review and meta-analysis. Hum Reprod. 2017; 32: 1351–9.CrossRefGoogle ScholarPubMed
Chaveeva, P, Kosinski, P, Puglia, D, Poon, LC, Nicolaides, KH. Trichorionic and dichorionic triplet pregnancies at 10–14 weeks: outcome after embryo reduction compared to expectant management. Fetal Diagn Ther. 2013; 34: 199205.CrossRefGoogle ScholarPubMed
Morlando, M, Ferrara, L, d’Antonio, F, et al. Dichorionic triplet pregnancies: risk of miscarriage and severe preterm delivery with fetal reduction versus expectant management. Outcomes of a cohort study and systematic review. BJOG. 2015; 122: 1053–60.CrossRefGoogle ScholarPubMed
Kumar, S, Paramasivam, G, Zhang, E, et al. Perinatal- and procedure-related outcomes following radiofrequency ablation in monochorionic pregnancy. Am J Obstet Gynecol. 2014; 210: 454.e1–6.CrossRefGoogle ScholarPubMed
Chaveeva, P, Peeva, G, Pugliese, SG, Shterev, A, Nicolaides, KH. Intrafetal laser ablation for embryo reduction from dichorionic triplets to dichorionic twins. Ultrasound Obstet Gynecol. 2017; 50: 632–4.CrossRefGoogle ScholarPubMed
Curado, J, d’antonio, F, Papageorghiou, AT, et al. Perinatal mortality and morbidity in triplet pregnancy according to chorionicity: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2019; 54: 589–95.CrossRefGoogle ScholarPubMed
Antsaklis, A, Anastasakis, E. Selective reduction in twins and multiple pregnancies. J Perinat Med. 2011; 39: 1521.CrossRefGoogle ScholarPubMed
Zipori, Y, Haas, J, Berger, H, Barzilay, E. Multifetal pregnancy reduction of triplets to twins compared with non-reduced triplets: a meta-analysis. Reprod Biomed Online. 2017; 35: 296304.CrossRefGoogle ScholarPubMed
Schreiner-Engel, P, Walther, VN, Mindes, J, Lynch, L, Berkowitz, RL. First-trimester multifetal pregnancy reduction: acute and persistent psychologic reactions. Am J Obstet Gynecol. 1995; 172: 541–7.CrossRefGoogle ScholarPubMed
Stone, J, Ferrara, L, Kamrath, J, et al. Contemporary outcomes with the latest 1000 cases of multifetal pregnancy reduction (MPR). Am J Obstet Gynecol. 2008; 199: 406.e1–4.CrossRefGoogle ScholarPubMed
Bigelow, CA, Factor, SH, Moshier, E, et al. Timing of and outcomes after selective termination of anomalous fetuses in dichorionic twin pregnancies. Prenat Diagn. 2014; 34: 1320–5.CrossRefGoogle ScholarPubMed
Sorrenti, S, di Mascio, D, Khalil, A, et al. Pregnancy and perinatal outcomes of early vs late selective termination in dichorionic twin pregnancy: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2023; 61(5): 552–8. http://dx.doi.org/10.1002/uog.26126.CrossRefGoogle ScholarPubMed
Ting, YH, Poon, LCY, Tse, WT, et al. Outcome of radiofrequency ablation for selective fetal reduction before vs at or after 16 gestational weeks in complicated monochorionic pregnancy. Ultrasound Obstet Gynecol. 2021; 58: 214–20.CrossRefGoogle ScholarPubMed
van den Bos, EM, van Klink, JM, Middeldorp, JM, et al. Perinatal outcome after selective feticide in monochorionic twin pregnancies. Ultrasound Obstet Gynecol. 2013; 41: 653–8.CrossRefGoogle ScholarPubMed
Hillman, S, Morris, R, Kilby, M. Single twin demise: consequence for survivors. Semin Fetal Neonat Med. 2010; 15: 319–26.CrossRefGoogle ScholarPubMed
McPherson, JA, Odibo, AO, Shanks, AL, et al. Impact of chorionicity on risk and timing of intrauterine fetal demise in twin pregnancies. Am J Obstet Gynecol. 2012; 207: 190.e1–6.CrossRefGoogle ScholarPubMed
Gurney, L, Morris, RK, Gibson, J, Kilby, M. Fetal demise in twins: single and double fetal loss. In: Twin and Higher-Order Pregnancies. London: Springer, 2021, 205–27.Google Scholar
Healy, EF, Khalil, A. Single intrauterine death in twin pregnancy: evidenced-based counselling and management. Best Pract Res Clin Obstet Gynaecol. 2022; 84: 205–17.CrossRefGoogle ScholarPubMed
Ward, PL, Reidy, KL, Palma-Dias, R, Doyle, LW, Umstad, MP. Single intrauterine death in twins: the importance of fetal order. Twin Res Hum Genet. 2018; 21: 556–62.CrossRefGoogle ScholarPubMed
Brassard, M, Fouron, JC, Leduc, L, Grignon, A, Proulx, F. Prognostic markers in twin pregnancies with an acardiac fetus. Obstet Gynecol. 1999; 94: 409–14.Google ScholarPubMed
Mone, F, Devaseelan, P, Ong, S. Intervention versus a conservative approach in the management of TRAP sequence: a systematic review. J Perinat Med. 2016; 44: 619–29.CrossRefGoogle ScholarPubMed
Gabby, LC, Chon, AC, Korst, LM, Llanes, A, Chmait, RH. Risk factors for co-twin fetal demise following radiofrequency ablation in multifetal monochorionic gestations. Fetal Diagn Ther. 2020; 47(11): 17.CrossRefGoogle ScholarPubMed
Wang, H, Zhou, Q, Wang, X, et al. Influence of indications on perinatal outcomes after radio frequency ablation in complicated monochorionic pregnancies: a retrospective cohort study. BMC Pregnancy Childbirth. 2021; 21: 41.CrossRefGoogle ScholarPubMed
Rahimi-Sharbaf, F, Ghaemi, M, Nassr, AA, Shamshirsaz, AA, Shirazi, M. Radiofrequency ablation for selective fetal reduction in complicated monochorionic twins; comparing the outcomes according to the indications. BMC Pregnancy Childbirth. 2021; 21: 189.CrossRefGoogle ScholarPubMed
Sun, L, Zou, G, Yang, Y, Zhou, F, Tao, D. Risk factors for fetal death after radiofrequency ablation for complicated monochorionic twin pregnancies. Prenat Diagn. 2018; 38: 499503.CrossRefGoogle ScholarPubMed
Peng, R, Xie, HN, Lin, MF, et al. Clinical outcomes after selective fetal reduction of complicated monochorionic twins with radiofrequency ablation and bipolar cord coagulation. Gynecol Obstet Invest. 2016; 81: 552–8.CrossRefGoogle ScholarPubMed
Has, R, Kalelioglu, I, Corbacioglu Esmer, A, et al. Bipolar cord coagulation in the management of complicated monochorionic twin pregnancies. Fetal Diagn Ther. 2014; 36: 190–5.CrossRefGoogle ScholarPubMed
Donepudi, R, Hessami, K, Nassr, AA, et al. Selective reduction in complicated monochorionic pregnancies: a systematic review and meta-analysis of different techniques. Am J Obstet Gynecol. 2022; 226: 646–55.CrossRefGoogle ScholarPubMed
Meng, X, Yuan, P, Gong, L, et al. Forty-five consecutive cases of complicated monochorionic multiple pregnancy treated with microwave ablation: a single-center experience. Prenat Diagn. 2019; 39: 293–8.CrossRefGoogle ScholarPubMed
Xie, J, Cheng, Z, Wu, T, Wei, Y, Wang, X. Microwave ablation versus radiofrequency ablation for the treatment of severe complicated monochorionic pregnancies in China: protocol for a pilot randomised controlled trial. BMJ Open. 2020; 10: e034995.CrossRefGoogle Scholar
Tavares de Sousa, M, Glosemeyer, P, Diemert, A, Bamberg, C, Hecher, K. First-trimester intervention in twin reversed arterial perfusion sequence. Ultrasound Obstet Gynecol. 2019; 55: 47–9.Google ScholarPubMed
Weber, EC, Recker, F, Gottschalk, I, et al. Outcome of monochorionic monoamniotic twin reversed arterial perfusion sequence diagnosed in the first trimester. Fetal Diagn Ther. 2021; 48: 778–84.CrossRefGoogle ScholarPubMed
TRAP Intervention Study:: early versus late intervention for twin reversed arterial perfusion sequence. clinicaltrials.gov. 2017. Report No.: NCT02621645. https://clinicaltrials.gov/ct2/show/NCT02621645 (accessed 15 September 2024).Google Scholar
Denbow, M, Fogliani, R, Kyle, P, et al. Haematological indices at fetal blood sampling in monochorionic pregnancies complicated by feto-fetal transfusion syndrome. Prenat Diagn. 1998; 18: 941–6.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Paek, B, Dorn, M, Walker, M. Atypical twin-to-twin transfusion syndrome: prevalence in a population undergoing fetoscopic laser ablation of communicating placental vessels. Am J Obstet Gynecol. 2016; 215: e15.CrossRefGoogle Scholar
Solorio, C, Guenther, JS, Chon, AH, et al. Twin–twin transfusion syndrome and the definition of recipient polyhydramnios. Am J Obstet Gynecol. 2021; 225: e18.CrossRefGoogle ScholarPubMed
Khalil, A. Modified diagnostic criteria for twin-to-twin transfusion syndrome prior to 18 weeks’ gestation: time to change? Ultrasound Obstet Gynecol. 2021; 49: 804–5.Google Scholar
Khalil, A, Liu, B. Controversies in the management of twin pregnancy. Ultrasound Obstet Gynecol. 2021; 57: 888902.CrossRefGoogle ScholarPubMed
Lopriore, E, Sueters, M, Middeldorp, JM, et al. Neonatal outcome in twin-to-twin transfusion syndrome treated with fetoscopic laser occlusion of vascular anastomoses. J Pediatr. 2005; 147: 597602.CrossRefGoogle ScholarPubMed
Roberts, D, Neilson, JP, Kilby, MD, Gates, S. Interventions for the treatment of twin–twin transfusion syndrome. Cochrane Database Syst Rev. 2014; (1): CD002073.Google Scholar
Senat, MV, Deprest, J, Boulvain, M, et al. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med. 2004; 351: 136–44.CrossRefGoogle ScholarPubMed
Crombleholme, TM, Shera, D, Lee, H, et al. A prospective, randomized, multicenter trial of amnioreduction vs selective fetoscopic laser photocoagulation for the treatment of severe twin–twin transfusion syndrome. Am J Obstet Gynecol. 2007; 197: 396.e1–9.CrossRefGoogle ScholarPubMed
Khalil, A, Cooper, E, Townsend, R, Thilaganathan, B. Evolution of stage 1 twin-to-twin transfusion syndrome (TTTS): systematic review and meta-analysis. Twin Res Hum Genet. 2016; 19: 207–16.CrossRefGoogle ScholarPubMed
di Mascio, D, Khalil, A, d’Amico, A, et al. Outcome of twin–twin transfusion syndrome according to Quintero stage of disease: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2020; 56: 811–20.CrossRefGoogle ScholarPubMed
Stirnemann, J, Slaghekke, F, Khalek, N, et al. Intrauterine fetoscopic laser surgery versus expectant management in stage 1 twin-to-twin transfusion syndrome: an international randomized trial. Am J Obstet Gynecol. 2021; 224: 528.e1–e12.CrossRefGoogle ScholarPubMed
Wohlmuth, C, Gardiner, HM. Twin–twin transfusion syndrome: don’t rely on fluids and bladders to catch it early. Ultrasound Obstet Gynecol. 2022; 59: 710.CrossRefGoogle ScholarPubMed
Nassr, AA, Hessami, K, Espinoza, J, et al. Gestational age and Quintero staging as predictors of single fetal demise in twin–twin transfusion syndrome after fetoscopic laser photocoagulation: a systematic review and meta-analysis. AJOG Glob Rep. 2022; 2(3): 100055.CrossRefGoogle ScholarPubMed
Murgano, D, Khalil, A, Prefumo, F, et al. Outcome of twin-to-twin transfusion syndrome in monochorionic monoamniotic twin pregnancy: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2020; 55: 310–17.CrossRefGoogle ScholarPubMed
Lopriore, E, Middeldorp, JM, Oepkes, D, et al. Residual anastomoses after fetoscopic laser surgery in twin-to-twin transfusion syndrome: frequency, associated risks and outcome. Placenta. 2007; 28: 204–8.CrossRefGoogle ScholarPubMed
Robyr, R, Lewi, L, Salomon, LJ, et al. Prevalence and management of late fetal complications following successful selective laser coagulation of chorionic plate anastomoses in twin-to-twin transfusion syndrome. Am J Obstet Gynecol. 2006; 194: 796803.CrossRefGoogle ScholarPubMed
Slaghekke, F, Lopriore, E, Lewi, L, et al. Fetoscopic laser coagulation of the vascular equator versus selective coagulation for twin-to-twin transfusion syndrome: an open-label randomised controlled trial. Lancet. 2014; 383: 2144–51.CrossRefGoogle ScholarPubMed
van Klink, JM, Slaghekke, F, Balestriero, MA, et al. Neurodevelopmental outcome at 2 years in twin–twin transfusion syndrome survivors randomized for the Solomon trial. Am J Obstet Gynecol. 2016; 214: 113.e1–7.CrossRefGoogle ScholarPubMed
Dhillon, RK, Hillman, SC, Pounds, R, Morris, RK, Kilby, MD. Comparison of Solomon technique against selective laser ablation for twin–twin transfusion syndrome: a systematic review. Ultrasound Obstet Gynecol. 2015; 46: 526–31.CrossRefGoogle Scholar
Kanazawa, S, Ozawa, K, Muromoto, J, et al. Risk profiling of the Solomon technique versus selective technique of fetoscopic laser surgery for twin–twin transfusion syndrome. Twin Res Hum Genet. 2021; 24: 42–8.CrossRefGoogle ScholarPubMed
Knijnenburg, PJC, Lopriore, E, Ge, Y, et al. Placental abruption after fetoscopic laser surgery in twin–twin transfusion syndrome: the role of the solomon technique. Fetal Diagn Ther. 2021; 48: 660–66.CrossRefGoogle ScholarPubMed
Morris, RK, Selman, TJ, Harbidge, A, Martin, WI, Kilby, MD. Fetoscopic laser coagulation for severe twin-to-twin transfusion syndrome: factors influencing perinatal outcome, learning curve of the procedure and lessons for new centres. BJOG. 2010; 117: 1350–7.CrossRefGoogle ScholarPubMed
Aboudiab, MS, Chon, AH, Korst, LM, et al. Management of twin–twin transfusion syndrome with an extremely short cervix. J Obstet Gynaecol. 2018; 38: 359–62.CrossRefGoogle ScholarPubMed
Malshe, A, Snowise, S, Mann, LK, et al. Preterm delivery after fetoscopic laser surgery for twin–twin transfusion syndrome: etiology and risk factors. Ultrasound Obstet Gynecol. 2017; 49: 612–16.CrossRefGoogle ScholarPubMed
Papanna, R, Habli, M, Baschat, AA, et al. Cerclage for cervical shortening at fetoscopic laser photocoagulation in twin–twin transfusion syndrome. Am J Obstet Gynecol. 2012; 206: 425 e17.CrossRefGoogle ScholarPubMed
Buskmiller, C, Bergh, EP, Brock, C, et al. Interventions to prevent preterm delivery in women with short cervix before fetoscopic laser surgery for twin–twin transfusion syndrome. Ultrasound Obstet Gynecol. 2022; 59: 169–76.CrossRefGoogle ScholarPubMed
Tollenaar, LSA, Loprior, E, Oepkes, D, et al. Twin anemia polycythemia sequence: knowledge and insights after 15 years of research. Maternal Fetal Medicine 2021; 3(1): 3341.CrossRefGoogle Scholar
Tollenaar, LSA, Lopriore, E, Middeldorp, JM, et al. Improved prediction of twin anemia–polycythemia sequence by delta middle cerebral artery peak systolic velocity: new antenatal classification system. Ultrasound Obstet Gynecol. 2019; 53: 788–93.CrossRefGoogle ScholarPubMed
Tavares de Sousa, M, Fonseca, A, Hecher, K. Role of fetal intertwin difference in middle cerebral artery peak systolic velocity in predicting neonatal twin anemia–polycythemia sequence. Ultrasound Obstet Gynecol. 2019; 53: 794–7.CrossRefGoogle ScholarPubMed
Khalil, A, Gordijn, S, Ganzevoort, W, et al. Consensus diagnostic criteria and monitoring of twin anemia–polycythemia sequence: Delphi procedure. Ultrasound Obstet Gynecol. 2020; 56: 388–94.CrossRefGoogle ScholarPubMed
Baschat, AA , Miller, JL. Pathophysiology, diagnosis, and management of twin anemia polycythemia sequence in monochorionic multiple gestations. Best Pract Res Clin Obstet Gynaecol. 2022; 84: 115-26.CrossRefGoogle ScholarPubMed
Denbow, ML, Eckersley, R, Welsh, AW, et al. Ex vivo delineation of placental angioarchitecture with the microbubble contrast agent levovist. Am J Obstet Gynecol. 2000; 182: 966–71.CrossRefGoogle ScholarPubMed
Slaghekke, F, Kist, WJ, Oepkes, D, et al. Twin anemia–polycythemia sequence: diagnostic criteria, classification, perinatal management and outcome. Fetal Diagn Ther. 2010; 27: 181–90.CrossRefGoogle ScholarPubMed
Bahtiyar, MO, Ekmekci, E, Demirel, E, Irani, RA, Copel, JA. In utero partial exchange transfusion combined with in utero blood transfusion for prenatal management of twin anemia–polycythemia sequence. Fetal Diagn Ther. 2019; 45: 2835.CrossRefGoogle ScholarPubMed
Herway, C, Johnson, A, Moise, K, Moise, K J. Fetal intraperitoneal transfusion for iatrogenic twin anemia–polycythemia sequence after laser therapy. Ultrasound Obstet Gynecol. 2009; 33: 592–4.CrossRefGoogle ScholarPubMed
Tollenaar, LSA, Slaghekke, F, Lewi, L, et al. Treatment and outcome of 370 cases with spontaneous or post-laser twin anemia–polycythemia sequence managed in 17 fetal therapy centers. Ultrasound Obstet Gynecol. 2020; 56: 378–87.CrossRefGoogle ScholarPubMed
Gibson, JL, Castleman, JS, Meher, S, Kilby, MD. Updated guidance for the management of twin and triplet pregnancies from the National Institute for Health and Care Excellence guidance, UK: what’s new that may improve perinatal outcomes? Acta Obstet Gynecol Scand. 2020; 99: 147–52.CrossRefGoogle ScholarPubMed
Giorgione, V, d’Antonio, F, Manji, A, Reed, K, Khalil, A. Perinatal outcome of pregnancy complicated by twin anemia–polycythemia sequence: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2021; 58: 813–23.CrossRefGoogle ScholarPubMed
Leiden University Medical Center. The TAPS Trial – fetoscopic laser surgery for twin anemia polycythemia sequence. clinicaltrials.gov. 2020. Report No.: NCT04432168. https://clinicaltrials.gov/ct2/show/NCT04432168 (accessed 15 September 2024).Google Scholar
Tollenaar, LSA, Lopriore, E, Slaghekke, F, et al. High risk of long-term neurodevelopmental impairment in donor twins with spontaneous twin anemia–polycythemia sequence. Ultrasound Obstet Gynecol. 2020; 55: 3946.CrossRefGoogle ScholarPubMed
Greco, PS, Pitts, D, Weadock, WJ, et al. Conjoined twins: an obstetrician’s guide to prenatal care and delivery management. J Perinatol. 202; 41: 2424–31.CrossRefGoogle Scholar
Afzal, AR, Montero, FJ. Conjoined Twins. Treasure Island, FL: StatPearls Publishing, 2022.Google Scholar
Sager, EC, Thomas, A, Sundgren, NC. Conjoined twins: pre-birth management, changes to NRP, and transport. Semin Perinatol. 2018; 42: 321–8.CrossRefGoogle Scholar
Martin, JA, Hamilton, BE, Sutton, PD, et al. National Vital Statistics Report 2010. Natl Vital Stat Rep. 2010; 59(1): 371.Google Scholar
Stoenescu, A, Friedl, WPT, de-Gregorio, N, et al. A single-center cohort study on 1663 twin births from two decades: a descriptive statistics and general trends. Gynecol Obstet (Sunnyvale). 2020; 10: 520.Google Scholar
Dodd, JM, Deussen, AR, Grivell, RM, Crowther, CA. Elective birth at 37 weeks’ gestation for women with an uncomplicated twin pregnancy. Cochrane Database Syst Rev. 2014; (2): CD003582.Google Scholar
Dodd, JM, Crowther, CA, Haslam, RR, Robinson, JS. Elective birth at 37 weeks of gestation versus standard care for women with an uncomplicated twin pregnancy at term: the Twins Timing of Birth Randomised Trial. BJOG. 2012; 119: 964–73.Google ScholarPubMed
Cheong-See, F, Schuit, E, Arroyo-Manzano, D, et al. Prospective risk of stillbirth and neonatal complications in twin pregnancies: systematic review and meta-analysis. BMJ. 2016; 354: i4353.CrossRefGoogle ScholarPubMed
Bibbo, C, Robinson, JN. Management of twins: vaginal or cesarean delivery? Clin Obstet Gynecol. 2015; 58: 294308.CrossRefGoogle ScholarPubMed
Lee, YM. Delivery of twins. Semin Perinatol. 2012; 36: 195200.CrossRefGoogle ScholarPubMed
The Royal Australian and New Zealand College of Obstericians and Gynaecologists (RANZCOG). Management of Breech Presentation. Best practice statement. Melbourne, RANZCOG, 2021.Google Scholar
Hannah, ME, Hannah, WJ, Hewson, SA, et al. Planned cesarean section versus planned vaginal birth for breech presentation at term: a randomised multicentre trial. Lancet. 2000; 356: 1375–83.CrossRefGoogle ScholarPubMed
Hofmeyr, GJ, Hannah, M, Lawrie, TA. Planned cesarean section for term breech delivery. Cochrane Database Syst Rev. 2015; (7): CD000166.Google Scholar
Hogle, KL, Hutton, EK, McBrien, KA, Barrett, JF, Hannah, ME. Cesarean delivery for twins: a systematic review and meta-analysis. Am J Obstet Gynecol. 2003; 188: 220–7.CrossRefGoogle ScholarPubMed
Steins Bisschop, CN, Vogelvang, TE, May, AM, Schuitemaker, NW. Mode of delivery in non-cephalic presenting twins: a systematic review. Arch Gynecol Obstet. 2012; 286: 237–47.CrossRefGoogle ScholarPubMed
Korb, D, Goffinet, F, Bretelle, F, et al. First twin in breech presentation and neonatal mortality and morbidity according to planned mode of delivery. Obstet Gynecol. 2020; 135: 1015–23.CrossRefGoogle ScholarPubMed
Felder, L, McCurdy, R, Berghella, V. External cephalic version of the non-cephalic presenting twin: a systematic review. J Matern Fetal Neonatal Med. 2022; 35: 1712–18.CrossRefGoogle ScholarPubMed
Impey, LWM, Murphy, DJ, Griffiths, M, Penna, LK, on behalf of the Royal College of Obstetricians and Gynaecologists. Management of breech presentation. BJOG. 2017; 124: e151–77.Google Scholar
Rossi, AC, Mullin, PM, Chmait, RH. Neonatal outcomes of twins according to birth order, presentation and mode of delivery: a systematic review and meta-analysis. BJOG. 2011; 118: 523–32.CrossRefGoogle ScholarPubMed
Barrett, JF, Hannah, ME, Hutton, EK, et al. Twin Birth Study Collaborative Group. A randomized trial of planned cesarean or vaginal delivery for twin pregnancy. N Engl J Med. 2013; 369: 1295–305.CrossRefGoogle ScholarPubMed
Asztalos, EV, Hannah, ME, Hutton, EK, et al. Twin birth study: 2 year neurodevelopmental follow-up of the randomized trial of planned caesarean or planned vaginal delivery for twin pregnancy. Am J Obstet Gynecol 2016; 214(3): 371.e1–19.Google ScholarPubMed
Vogel, JP, Holloway, E, Cuesta, C, et al. Outcomes of non-vertex second twins, following vertex vaginal delivery of first twin: a secondary analysis of the WHO Global Survey on maternal and perinatal health. BMC Pregnancy Childbirth. 2014; 14: 55.CrossRefGoogle ScholarPubMed
Cohen, R, Kashani Ligumsky, L, Lopian, M, et al. Is vaginal delivery of a breech second twin safe? A comparison between delivery of vertex and non-vertex second twins. J Matern Fetal Neonatal Med. 2022; 35: 8852–5.CrossRefGoogle Scholar
Schmitz, T, Korb, D, Battie, C, et al. Neonatal morbidity associated with vaginal delivery of noncephalic second twins. Am J Obstet Gynecol. 2018; 218: 449.e1–449.e13.CrossRefGoogle ScholarPubMed
Cahill, A, Stamilio, D, Pare, E, Peipert, J, Macones, G. Vaginal birth after cesarean (VBAC) in twin pregnancies: Is it safe? Am J Obstet Gynaecol. 2004; 191(6), suppl. S183. https://doi.org/10.1016/j.ajog.2004.10.557.Google Scholar
Myles, T. Vaginal birth of twins after a previous cesarean section. J Matern Fetal Med. 2001; 10: 171–4.CrossRefGoogle ScholarPubMed
Hochler, H, Tevet, A, Barg, M, et al. Trial of labor of vertex-nonvertex twins following a previous cesarean delivery. Am J Obstet Gynecol MFM. 2022; 4: 100640.CrossRefGoogle ScholarPubMed
Baradaran, K. Risk of uterine rupture with vaginal birth after cesarean in twin gestations. Obstet Gynecol Int. 2021; 2021: 6693142.CrossRefGoogle ScholarPubMed
Gerten, KA, Coonrod, DV, Bay, RC, Chambliss, LR. Cesarean delivery and respiratory distress syndrome: does labor make a difference? Am J Obstet Gynecol. 2005; 193(3 Pt 2): 1061–4.CrossRefGoogle Scholar
Vidic, Z, Blickstein, I, Štucin Gantar, I, Verdenik, I, Tul, N. Timing of elective cesarean section and neonatal morbidity: a population-based study. J Matern Fetal Neonatal Med. 2016; 29: 2461–3.CrossRefGoogle ScholarPubMed
Bricelj, K, Tul, N, Lasic, M, et al. Respiratory morbidity in twins by birth order, gestational age and mode of delivery. J Perinat Med. 2016; 44: 899902.CrossRefGoogle ScholarPubMed
Royal College of Obstetricians and Gynecologists (RCOG). Antenatal Corticosteroids to Reduce Neonatal Morbidity and Mortality. Green-top guideline no. 74. London: RCOG, 2022.Google Scholar
Negrini, R, da Silva Ferreira, RD, Guimarães, DZ. Value-based care in obstetrics: comparison between vaginal birth and cesarean section. BMC Pregnancy Childbirth. 2021; 21: 333.CrossRefGoogle Scholar
Mol, BW, Bergenhenegouwen, L, Ensing, S, Ravelli, AC, Kok, M. The impact of mode of delivery on the outcome in very preterm twins. J Matern Fetal Neonatal Med. 2020; 33: 2089–95.CrossRefGoogle ScholarPubMed
Sentilhes, L, Lorthe, E, Marchand-Martin, L, et al. Planned mode of delivery of preterm twins and neonatal and 2-year outcomes. Obstet Gynecol. 2019; 133: 7180.CrossRefGoogle ScholarPubMed
Yang, Q, Wen, SW, Chen, Y, et al. Neonatal death and morbidity in vertex-nonvertex second twins according to mode of delivery and birth weight. Am J Obstet Gynecol. 2005; 192: 840–7.CrossRefGoogle ScholarPubMed
Dagenais, C, Lewis-Mikhael, AM, Grabovac, M, Mukerji, A, McDonald, SD. What is the safest mode of delivery for extremely preterm cephalic/non-cephalic twin pairs? A systematic review and meta-analyses. BMC Pregnancy Childbirth. 2017; 17: 397.CrossRefGoogle Scholar
Hiersch, L, Shah, PS, McDonald, SD, Barrett, J, Melamed, N. 946: Mode of delivery and the risk of adverse outcomes in preterm twins <28 weeks. Am J Obstet Gynecol. 2020; 222: S586–7.CrossRefGoogle Scholar
Tucker Edmonds, B, McKenzie, F, Macheras, M, Srinivas, SK, Lorch, SA. Morbidity and mortality associated with mode of delivery for breech periviable deliveries. Am J Obstet Gynecol. 2015; 213: 70.e1–12.CrossRefGoogle ScholarPubMed
McDonald, SD, Narvey, M, Ehman, W, Jain, V, Cassell, K. Guideline No. 424: Umbilical cord management in preterm and term infants. J Obstet Gynaecol Can. 2022; 44: 313–322.e1.Google ScholarPubMed
Grabovac, M, Beltempo, M, Lodha, A, et al. Impact of deferred cord clamping on mortality and severe neurologic injury in twins born at <30 weeks of gestation. J Pediatr. 2021; 238: 118–23.e3.CrossRefGoogle ScholarPubMed
Liu, LY, Yee, LM. Delayed cord clamping in preterm dichorionic twin gestations. J Matern Fetal Neonatal Med. 2019; 26: 15.Google Scholar
Ruangkit, C, Bumrungphuet, S, Panburana, P, Khositseth, A, Nuntnarumit, P. A randomized controlled trial of immediate versus delayed umbilical cord clamping in multiple-birth infants born preterm. Neonatology. 2019; 115: 156–63.CrossRefGoogle ScholarPubMed
Acker, D, Lieberman, M, Holbrook, RH, et al. Delivery of the second twin. Obstet Gynecol. 1982; 59: 710–11.Google ScholarPubMed
Chervenak, FA, Johnson, RE, Berkowitz, RL, Hobbins, JC. Intrapartum external version of the second twin. Obstet Gynecol.1983; 62: 160–5.Google ScholarPubMed
Chauhan, SP, Roberts, WE, McLaren, RA, et al. Delivery of the nonvertex second twin: breech extraction versus external cephalic version. Am J Obstet Gynecol. 1995; 173: 1015–20.CrossRefGoogle ScholarPubMed
Webster, SN, Loughney, AD. Internal podalic version with breech extraction. Obstet Gynecol. 2011; 13: 714.CrossRefGoogle Scholar
Stein, W, Misselwitz, B, Schmidt, S. Twin-to-twin delivery time interval: influencing factors and effect on short-term outcome of the second twin. Acta Obstet Gynecol Scand. 2008; 87: 346–53.CrossRefGoogle ScholarPubMed
Lindroos, L, Elfvin, A, Ladfors, L, Wennerholm, UB. The effect of twin-to-twin delivery time intervals on neonatal outcome for second twins. BMC Pregnancy Childbirth. 2018; 18: 36.CrossRefGoogle ScholarPubMed
Leung, TY, Tam, WH, Leung, TN, Lok, IH, Lau, TK. Effect of twin-to-twin delivery interval on umbilical cord blood gas in the second twins. BJOG. 2002; 109: 63–7.Google ScholarPubMed
Cukierman, R, Heland, S, Palmer, K, et al. Inter-twin delivery interval, short-term perinatal outcomes and risk of cesarean for the second twin. Aust N Z J Obstet Gynaecol. 2019; 59: 375–9.CrossRefGoogle ScholarPubMed
McGrail, CD, Bryant, DR. Intertwin time interval: how it affects the immediate neonatal outcome of the second twin. Am J Obstet Gynecol. 2005; 192: 1420–2.CrossRefGoogle ScholarPubMed
Wenze, SJ, Battle, CL, Tezanos, KM. Raising multiples: mental health of mothers and fathers in early parenthood. Arch Womens Ment Health. 2015; 18: 163–76.CrossRefGoogle ScholarPubMed
Robertson, E, Celasun, N, Stewart, DE. Risk factors for postpartum depression. In: Stewart, DE, Robertson, E, Dennis, CL, Grace, SL, Wallington, T (eds.), Postpartum Depression: Literature Review of Risk Factors and Interventions. Toronto: Toronto Public Health, 2003.Google Scholar
Smith, LK, Manktelow, BN, Draper, ED, et al. Trends in the incidence and mortality of multiple births by socioeconomic deprivation and maternal age in England: population-based cohort study. BMJ Open. 2014; 4: e004514.CrossRefGoogle ScholarPubMed
The Fetal Medicine Foundation. Protocol for Ultrasound Scans. https://fetalmedicine.org/education/fetal-abnormalities/multiple-pregnancies/protocol-for-ultrasound-scans (accessed 16 September 2024).Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Multiple Pregnancy
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Multiple Pregnancy
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Multiple Pregnancy
Available formats
×