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Abstract. A fully nonlinear theory for stationary whistler waves propagating par-
allel to the ambient magnetic field in a cold plasma has been developed. It is shown
that in the wave frame proton dynamics must be included in a self-consistent
manner. The complete system of nonlinear equations can be reduced to two coupled
differential equations for the transverse electron or proton speed and its phase,
and these possess a phase-portrait integral which provides the main features of the
dynamics of the system. Exact analytical solutions are found in the approximation
of ‘small’ (but nonlinear) amplitudes. A soliton-type solution with a core filled by
smaller-scale oscillations (called ‘oscillitons’) is found. The dependence of the soliton
amplitude on the Alfvén Mach number, and the critical soliton strength above which
smooth soliton solutions cannot be constructed is also found. Another interesting
class of solutions consisting of a sequence of wave packets exists and is invoked to
explain observations of coherent wave emissions (e.g. ‘lion roars’) in space plasmas.
Oscillitons and periodic wave packets propagating obliquely to the magnetic field
also exist although in this case the system becomes much more complicated, being
described by four coupled differential equations for the amplitudes and phases of
the transverse motion of the electrons and protons.

1. Introduction
Whistlers are right-handed polarized electromagnetic waves which propagate at
frequencies less than the electron gyrofrequency in a magnetized plasma. The
dispersion relation for these waves propagating parallel to the magnetic field in
a cold plasma is (Stix 1992)

k2

ω2
=

1
c2

+
1

V 2
Ap(1 + ω/Ωp)

+
1

V 2
Ae(1 − ω/Ωe)

, (1a)

in which the electrons and protons appear on an equal footing, VAp,e is the Alfvén
speed based on the proton (electron) mass density and Ωp,e are the gyrofrequencies.
The classical Appleton–Hartle form of magneto-ionic theory follows from the high
frequency (ω >> Ωp) approximation which gives the refractive index (n = ck/ω) as

n2 = 1 +
ω2
pe

ω(Ωe − ω)
, (1b)
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in which we have used V 2
Ap/Ωp =V 2

Ae/Ωe and the identity V 2
Ae/Ω2

e = c2/ω2
pe, where ωpe

is the electron plasma frequency. In this massive proton approximation (mp → ∞)
the proton mass disappears implying that the protons simply provide a quasineut-
ralizing background to the electron motion. However, in the nonlinear treatment,
as will be shown subsequently, the inclusion of the proton dynamics is crucial to
the formation of nonlinear waves associated with the whistler mode. Furthermore,
if V 2

Ae << c2 (or ωpe >>Ωe) (1b) approximates to

k2

ω2
=

1
V 2
Ae

(
Ω2
e

ω(Ωe − ω)

)
(1c)

which form implies that for wave speeds much less than c we may neglect the
displacement current in Maxwell’s equations. Formally this is equivalent to the
limit ε0 → 0 (c → ∞) so that Poisson’s equation requires quasineutrality. For
whistlers, ω � Ωe, this is a very good approximation in many space plasmas, such
as themagnetosphere and solar wind, and we shall use it in the subsequent nonlinear
treatment which is thereby simplified through the neglect of the electric stresses
(i.e. ε0E

2
x/2, ε0ExEy,z) in the momentum conservation equations (10)–(12) given

below.
An especially interesting feature of whistler waves is the existence of a maximum

of the phase speed ω/k (at ω/k = VAe/2 for waves propagating parallel to the
magnetic field at Ωe/2) where the phase and group velocities are equal. A similar
feature, i.e. the appearance of points, maxima or minima in the ω/k–k space, arises
in the dispersion properties of low-frequency waves in multi-ion plasmas. It has been
shown (Sauer et al. 2001, 2002a; Dubinin et al. 2002) that such a system admits
the existence of a new class of stationary nonlinear solutions, called ‘oscillitons’,
characterized by spatial oscillations which are superimposed on the soliton-like
pulses. Sauer et al. (2002b) recently also pointed out that whistler oscillitons arise
from the existence of a maximum in the phase speed. The concept of oscillitons
was invoked to explain the observation of coherent wave emissions observed in the
Earth’s magnetosheath and polar cusp, known as ‘lion roars’.
In these papers (Sauer et al. 2001, 2002a; Dubinin et al. 2002) oscilliton structures

were found by numerically integrating the full set of completely nonlinear equations
describing the system, leaving open the questions of whether oscillitons are a new
class of soliton-like solutions or periodic nonlinear stationary waves, and what is the
strength of an oscilliton as a function of its Mach number, and its critical amplitude
(or Mach number) (if it does exist). In this paper we address these questions by
investigating (analytically) nonlinear stationary whistlers and solitons propagating
parallel and obliquely to the magnetic field in a cold plasma. It is found that
oscillitons are indeed a new specific class of soliton structures. Note that soliton
solutions were also considered by Montgomery (1959) and Kakutani (1966) in terms
of a pseudo-particle motion in Sagdeev’s potential.
The layout is organized as follows. The governing equations, given in Sec. 2, are

the standard equations of motion for the electrons and protons and the Maxwell
equations. The linear dispersion equation for stationary waves of the form f(x+ Ut)
propagating with speed U provides us with the necessary condition for the existence
of soliton structures. In contrast to classical evanescent types of solutions, with
imaginary wave number, the wave number for stationary whistlers is complex, i.e.
the structures are characterized by spatial oscillations which are superposed on
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the spatial growth or decay. Another important conclusion which follows already
from the linear treatment is that in the wave frame the transverse momentum
carried by the electrons and protons is of the same order and therefore the proton
dynamics is essential in the nonlinear analysis. The full system of completely
nonlinear equations describing whistlers propagating parallel to the magnetic field
is given in Sec. 3 with the proton dynamics included in a self-consistent manner.
The neglect of the proton contribution only leads to trivial solutions.
In addition to the standard integrals of motion (momentum and energy fluxes)

we find a new constant of the motion which allows us to reduce the full system
of differential equations to two coupled differential equations for the transverse
amplitude and its phase φ. In Secs 3.1 and 3.2 we consider the approximations
of small (and arbitrary) phases and small (but nonlinear) amplitudes, and analyse
phase portraits of the system. At electron Alfvén Mach numbers MAe in excess of
the threshold value (MAe = 1/2) there is a family of periodic orbits around an O-
type point limited by a heteroclinic orbit connecting two saddle points. The latter
trajectory corresponds to a soliton-type solution. In contrast to classical solitons,
whistler solitons contain an oscillatory part, and hence are called oscillitons. Exact
expressions for the amplitude and phases are found. The strength of oscillitons is
determined by the Mach number and it is shown that already at the Mach number
MAcrit = 1/

√
2 ≈ 0.7, smooth oscillitons cannot be constructed. Another interesting

class of solutions also exists atMAe = 1/2, consisting of a sequence of wave packets.
The amplitude of these waves is determined by the initial perturbation of the
system. In Sec. 4 we discuss stationary waves propagating obliquely to the magnetic
field. Although in this case the system is described by four coupled differential
equations, the main features of stationary solutions can, nevertheless, be elucidated
in certain approximations.

2. Governing equations and the dispersion relation of stationary
waves

In a cold magnetized plasma consisting of protons (p) and electrons (e) the fluid
equations for each constituent are

∂np,e
∂t

+ ∇ · (np,eup,e) = 0, (2)

mp,enp,e
Dp,eup,e

Dt
= enp,eqp,e(E+ up,e × B), (3)

where mp,e is the mass (p, protons, e, electrons), qp,e = ±1 the charge, np,e the
number density and up,e the velocity, whilst B and E are the magnetic and electric
fields, respectively, and the convective derivative is

Dp,e

Dt
=

∂

∂t
+ up,e · ∇. (4)

The remaining equations are Faraday’s and Ampere’s laws

∂B
∂t

= −curlE, (5)

curlB = µ0j, (6)
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in the latter of which we neglect the displacement current, and the current j is
given by

j = e(npup − neue). (7)

This is the standard fluid description in which electron inertia is not neglected and
the proton dynamics is also included, that is to say both are placed on an equal
footing. Our subsequent analysis of stationary, nonlinear whistler waves shows that
the latter, the inclusion of proton dynamics, is crucial for the correct description of
nonlinear waves in the wave frame.
We first consider the simplest case of stationary waves of the form f(x + Ut)

propagating parallel to the magnetic field (B = (B, 0, 0)). It is convenient to carry
out the formulation and analysis in the wave frame so that the plasma appears to
be flowing with speed up = ue = u0 = (+U) along the x-axis. The system has the
following integrals of motion. The number flux of each species is constant,

np,eupx,ex = fp,e = const. (8)

The quasineutrality assumption np = ne (which is valid if ωpe >> Ωe) combined with
zero current in the x-direction, jx = 0, yields upx = uex. Faraday’s law implies that
Ey = const and Ez = const so that for motion parallel to the magnetic field

Ey = 0, Ez = 0. (9)

Total momentum conservation requires

∑
p,e

mp,efp,eupx,ex +
B2

y + B2
z

2µ0
= const, (10)

∑
p,e

mp,efp,eupy,ey − BxBy

µ0
= const, (11)

∑
p,e

mp,efp,eupz,ez − BxBz

µ0
= const, (12)

in which the electric stresses are neglected in this quasineutral approximation. Total
energy flux conservation is simply

∑
p,e

fp,e
mp,e

(
u2
px,ex + u2

py,ey + u2
pz,ez

)
2

= const (13)

(because the Poynting flux (E × B)x/µ0 is zero). Assuming that at x = −∞, np =
ne = 1, upx,ex = u0 = 1, and B = Bx = B0 = 1, the normalized conservation
equations become

npupx = fp = 1, neuex = fe = 1, (14)

µ(upx − 1) + (uex − 1) +
1

2M2
A

(
B2

y + B2
z

)
= 0, (15)

µupy + uey = By/M2
A, (16)

µupz + uez = Bz/M
2
A, (17)

µ
(
u2
px − 1

)
+

(
u2
ex − 1

)
+ µ

(
u2
py + u2

pz

)
+

(
u2
ey + u2

ez

)
= 0, (18)
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where µ = mp/me and MA is the electron Alfvén Mach number of the plasma flow
at x = −∞, M2

A = u2
0/V 2

Ae (VAe = B0/
√

µ0ne0me is the Alfvén speed based on the
electron mass density), and we write upx = uex = ux by virtue of the quasi-charge
neutral approximation.
Using these equations, By, Bz and ux may be expressed as functions of the trans-

verse velocity components of the protons and electrons. The remaining equations,
which close the system, are the differential equations of motion for the transverse
velocities upy, upz, uey and uez, namely

µux
dupy
dx

= upz − upxBz, (19a)

µux
dupz
dx

= upxBy − upy, (19b)

ux
duey
dx

= −(uez − uexBz), (20a)

ux
duez
dx

= −(uexBy − uey). (20b)

Here the spatial variable x is normalized to u0/Ωe, where Ωe = eB0/me is the
electron gyrofrequency, and is therefore an electron gyroradius based on the wave
speed.
Before analysing nonlinear waves we briefly discuss the linearized equations and

derive the dispersion equation for stationary waves. Using the complex variables
ue± = uey ± iuez, up± = upy ± iupz, B± = By ± iBz, the linearized equations (19)
and (20) become

due±
dx

= ∓i
[
M2
A(ue± + µup±) − ue±

]
, (21a)

µ
dup±

dx
= ±i

[
M2
A(ue± + µup±) − up±

]
. (21b)

Seeking solutions of the form ue+ = ue+eikx, up+ = up+eikx, (21) yields the disper-
sion equation

k2 − k + M2
A = 0, (22)

(in which we have used the fact that µ − 1 ∼= µ) with the roots

k1,2 =
1 ±

√
1 − 4M2

A

2
, (23)

which agrees with the stationary wave form of (1c) in which we put ω = kU and
MA = U/VAe. It follows that periodic solutions exist for MA < 1/2. However, for
MA > 1/2, k is complex and stationary structures are characterized by spatial
oscillations which are superimposed on the spatial growth or decay. The real part
of k gives the wave number of the oscillations and the imaginary part determines
the spatial growth of the amplitude. With M2

A = 1/4(1 + δ)2, (23) may be written
as

kr = 1/2, ki =
√

δ/2 . (24)

Since the expression for k does not contain the proton mass it would be tempting
to draw the conclusion that proton dynamics may be neglected (in agreement with
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the classical dispersion analysis for whistlers). However, as we already mentioned
and as will be shown subsequently, the momentum exchange between the protons
and electrons becomes vitally important in nonlinear structures. It is useful to note
even in this linearized version that in the wave frame the ratio of the transverse
speeds of the electrons and protons ue±/up± ∼ O(µ) as, indeed, (21) shows,

ue±
up±

= − µ

1 +
(
κ/M2

A

)
−

(
1/M2

A

) (25a)

or
ue+
up+

=
ue−
up−

≈ µ[(1 − 6δ) ± i
√

8δ ] (δ << 1). (25b)

This clearly demonstrates that the transverse momentum fluxes as carried by the
protons and the electrons are of the same order.

3. Nonlinear stationary whistlers propagating parallel to the magnetic
field

The fully nonlinear equations for the transverse velocities of the electrons and
protons in complex form are

due±
dx

= ∓i
[
M2
A(ue± + µup±) − ue±/ux

]
, (26a)

µ
dup±

dx
= ±i

[
M2
A(ue± + µup±) − up±/ux

]
. (26b)

Multiplying (26a) by ue∓ and adding yields

d|ue|2
dx

= iM2
Aµ(ue+up− − ue−up+). (27a)

Similarly,

µ
d|up|2

dx
= iM2

A(ue+up− − ue−up+), (27b)

where |ue|2 = ue+ · ue− and |up|2 = up+ · up−. Hence

d|ue|2
µd|up|2 = µ or |ue|2 = µ2|up|2. (28)

Then, using the ansatz up± = |up|e±iφp , ue± = |ue|e±iφe , (27a) can be written in the
form

due
dx

= M2
Aue sin φ, (29)

where φ = φp − φe. It can be readily shown that d|ue|/dx = 0 if we neglect the
proton contribution in (26a), and therefore the most important class of solutions
in which |ue| �= const would be lost. Moreover, even if we were to include the
proton dynamics only in the massive proton approximation, it also follows from
the linearized equation (25b) that ue+/up+ = ue−/up− ∼ exp(iφ0), with the result
that the cross product ue+up− − ue−up+ = 0, so that the phase φ = 0 and again
we would come to |ue| = const. These arguments show that the proton dynamics
must be included in a self-consistent manner to describe the intricate structure of
nonlinear waves.
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The differential equation for the phase φ follows from (26a) and (26b) in the form

dφ

dx
= 2M2

A(cos φ + 1) − 1√
1 −

(
u2
e/µ

) (30)

in which we have used ue,p± = |ue,p|e±iφe,p , up = ue/µ and the energy flux relation
(18) to express ux in terms of ue, i.e.

ux =

√
1 −

µu2
p + u2

e

µ + 1
≈

√
1 − u2

e

µ
. (31)

Equations (29) and (30) completely describe the structure of nonlinear stationary
waves propagating in the whistler mode parallel to the magnetic field in a cold
plasma.
In analysing these equations we first note that the system has equilibrium (fixed)

points. One set of fixed points is at ue = 0 and cos φ = 1/2M2
A − 1. The second set

corresponds to sin φ = 0 and ue =
√

µ
√

1 − 1/16M4
A . The system possesses an

integral which provides us with an algebraic expression between ue and cos φ. To
this end note that (29) and (30) yield

sinφ
dφ

due
=

2M2
A(cos φ + 1) −

(
1 − u2

e/µ
)−1/2

M2
Aue

(32)

which, on using the integrating factor u2
e , integrates immediately to give

cos φ =
C

u2
e

− 1
M2
A

√
1 − u2

e/µ

u2
e/µ

− 1, (33)

where C is the integration constant. Alternatively (29) and (30) possess the integral

Φ = u2
e (cos φ + 1) +

√
1 − u2

e/µ

M2
Au2

e/µ
(34)

which shows that
dΦ
dt

=
∂Φ
∂u

du

dt
+

∂Φ
∂ψ

dψ

dt
= 0, (35)

and we have Φ = const = C along the solution trajectories. Thus with sinφ as a
function of ue given by (33), (29) is a first-order differential equation for the spatial
structure of ue which admits soliton and periodic type solutions. In the following
we consider in more detail different approximations to (29) and (30).

3.1. Approximation of small phases and amplitudes

With M2
A = 1/4(1 + δ)2, and assuming δ << 1, one of the fixed points is at u =

0, φ ≈ ±
√

8δ . The second fixed point is at sin φ = 0 and ue = 2
√

µδ . Therefore the
approximations u2

e <<µ and small phases (φ << 1) are valid for all but the largest
amplitudes ue ∼ √

µ and the structure equations (29) and (30) may be written in
rescaled form,

du

dt
= uψ, (36a)

dψ

dt
= 2δ − ψ2 − u2, (36b)

https://doi.org/10.1017/S0022377803002319 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377803002319


312 E. Dubinin, K. Sauer and J. F. McKenzie

in which u2 = u2
e/2µ, ψ = MAφ and t = xMA. The system has two fixed points,

one of which is a saddle or X-type (u = 0, ψ = ±
√

2δ) and the other one is a
circle or O-type (u =

√
2δ , ψ = 0) which in the original coordinates correspond to

(ue = 0, φ = ±
√

2δ/MA) and (ue = 2
√

δµ , φ = 0), respectively.
Equations (36a) and (36b) possess the phase portrait integral

Ψ =
u2

2

(
2δ − ψ2 − u2

2

)
(37)

so that

ψ = ±
√

2δ − u2/2 − 2C1/u2 , (38a)

du

dt
= ±u

√
2δ − u2/2 − 2C1/u2 , (38b)

where C1 is a constant. Figure 1(a) shows the phase portrait (ψ, u) of the system.
There is a family of periodic orbits around the fixed point (ue = 2

√
δµ , φ = 0) lim-

ited by a heteroclinic orbit connecting two saddle points (ue = 0, φ = ±
√

2δ/MA ).
The system is completely integrable and the solution can be reduced to the elliptic
integral of the first kind ∫

du√
2δu2 − u4/2 − 2C1

= ±t, (39a)

or

F (u,K) = ∓

√
2δC2

1

δ2 − C1
t, (39b)

where F (u,K) is the elliptic integral of the first kind, and

K2 =
(1 −

√
1 − (C1/δ2) )

(1 +
√

1 − (C1/δ2) )
. (39c)

Then the amplitude u is

u = ∓sn
(√

2δC2
1

δ2 − C1
t,K

)
, (40)

where sn(t,K) is the Jacobi function.
The differential equation for the phase ψ which determines the characteristic

wave number of the stationary waves takes the form

dψ

dt
= ±

√
(ψ2 − 2δ)2 − 4C1 . (41)

However, these waves also contain smaller-scale oscillations whose wavelengths are
determined by the phases φe (for the electrons) and φp (for the protons). For
example, the wave number characterizing the small-scale oscillating part in the
electron motion, embedded in the main structure, can be readily found as

dφe
dx

= 1/2 + 3u2
e/8µ − 2µC1/u2

e . (42)

Consider first the most interesting solutions corresponding to the orbit connecting
two saddle points. Positive (negative) values of the constant C1 yield closed periodic
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(a)

(b)

Figure 1. (a) The phase portrait of the system at δ = 2 × 10−3. There is a family of periodic
solutions (positive values of a constant C1) around a circle point at u = (2δ)1/2, ψ = 0
limited by a heteroclinic trajectory (the bold curve) connecting two saddle points at
u = 0, ψ = ±(2δ)1/2. (b) The phase portrait of the system at δ = 0. Two saddle points
merge to one at ψ = 0. Trajectories at C1 < 0 correspond to nonlinear stationary waves,
the amplitude and period of which are determined by an ‘initial perturbation’.
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(free) orbits (Fig. 1(a)). On the heteroclinic orbit,C1 = 0 (the bold curve in Fig. 1(a)),
which immediately gives the maximum amplitude of the structure umax = 2

√
δ (or

uemax = 2
√

2µδ ). Integration of (38b) with C1 = 0 (u �= 0) yields a soliton-like
solution,

ln
2
√

δ +
√

4δ − u2

u
= ∓

√
2δ t, (43)

or

u =
4
√

δ exp (±
√

2δ t)
1 + exp (±2

√
2δ t)

. (44)

The width T (or X = T/MA) of the structure (at u = umax/2) is readily determined
from (43),

T =
2√
2δ

ln (2 +
√

3 ), (45)

i.e. it is similar to that of the classical soliton, namely the product of the amplitude
and the width is a constant, in this case 23/2 ln (2 +

√
3 ). The significant difference

is the presence of the smaller-scale oscillations related to the phases φe and φp.
Figure 2(b) (the solid curve) shows u as a function of t for δ = 0.002 (MA = 0.501).
The dashed curve depicts the phase ψ. It varies from

√
2δ at −∞ to −

√
2δ at

+∞, which corresponds to the infinite length of the motion along the heteroclinic
(soliton) trajectory. An oscillating part embedded in the soliton structure is de-
scribed by the value dψe/dt (for the electrons) which varies according to

dψe
dt

= 1/2 + 3/4u2. (46)

Integrating this equation, on using the expression (44), yields the phase ψe = φMA

in the form

ψe = 0.5t ∓ 6
√

δ/2
1

1 + exp(∓2
√

2δ t)
+ const, (47)

where a constant of integration is determined from the merging of the solutions
for t < 0 and t > 0. Figure 2(c) shows dφe/dt as a function of t. The phase φe
varies almost linearly with t undergoing only a small drift with amplitude within
the core of the soliton. Figure 2(d) presents uy = u cos(ψe) and uz = u sin(ψe).
The oscilliton structure exhibiting spatial oscillations, superimposed on the soliton
profile, is clearly depicted.
Figure 3 presents the results for an oscilliton propagating at a slightly higher

speed MA = 0.51 (δ = 0.02). The amplitude (width) increases (decreases) according
to (44) and (45). Correspondingly, the number of embedded oscillations decreases.
The value dφe/dt (=1/2 at t → ±∞) drifts within the main structure reaching 0.55
at the centre of the soliton. For comparison, Fig. 4 shows the results of numerically
solving the exact nonlinear equations (19) and (20) for oscillitons propagating with
speeds MA = 0.501 and MA = 0.51. The good agreement justifies the approxi-
mation used. (To rescale the parameters to the original coordinates we make the
transformation ue = u

√
2µ , x = t/MA and φe = ψe/MA.)

It is interesting to note that at δ = 0 (MA = 1/2) two saddle points degenerate
into one at ψ = 0, and the phase portrait of the system reconfigures to that shown
in Fig. 1(b). Soliton-like structures disappear but nonlinear stationary waves with
different amplitudes remain. For the exact pair of differential equations (29) and
(30) the saddle points appear periodically at ψ = ±nπ. Therefore one can expect
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(a) (b)

(c) (d)

Figure 2. (a) The orbit connecting two saddle points S1, S2 corresponding to the soliton
solution. (b) The envelope of oscilliton u as a function of distance t. The dashed curve shows
the phase ψ which characterizes the width of the envelope. (c) The oscillating part of the
electron motion is determined by the phase ψe. (d) The oscillating content embedded to the
soliton (uy and uz are shown by the solid and dashed curves, respectively).

the existence of periodic nonlinear waves, the amplitude of which is a function of
a constant C1, u = (4C1)1/4 (‘initial perturbation’). In common with oscillitons
these waves contain smaller-scale oscillations so that the overall picture is one of a
sequence of periodical wave packets. The width of the wave packets is determined
by (41) with δ = 0, and therefore it is also a function of the integration constant C1.
As C1 increases the width of the wave packets ∆ ≈ 1/2(4C1)−1/4 decreases. Small-
scale oscillations have a wavelength determined by the expression (42) which is
about 2π/0.5 = 4π. Figure 5 shows an example of numerical integration of (19)
and (20) for MA = 1/2 and different ‘initial disturbances’ of the value uey. It will
be observed that the system ‘generates’ periodic wave packets whose amplitude
is proportional to the initial value uey0 . At small initial values the amplification
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(b)(a)

(d)(c)

Figure 3. The same as in Fig. 2 but for solitons with higher speeds (MA = 0.51).

reaches a factor of ∼25. The width of the wave packets decreases with increasing
uey0 , although the wavelength of the embedded small-scale oscillations remains
practically constant.
Although the fixed point at ψ = 0 disappears for δ < 0, free phase orbits similar

to the orbits shown in Fig. 1(b) remain and associated with these are solutions in
the form of wave packets. The amplitude of these wave packets is also determined
by initial conditions, and decreases with |δ| (38b). Figure 6 shows the solutions of
numerical integration of (19) and (20) for several values of MA � 1/2 for a given
‘initial’ perturbation of the system (uey0 = 0.01). A decrease of MA brings about
decreases in the width and amplitude of the wave packets.

3.2. Approximation of arbitrary phases ψ and small amplitudes

We now consider the exact nonlinear equations (29) and (30) with arbitrary phase φ
using the expansion of (31) (ux ≈ 1−u2

e/2µ). Introducing new normalized variables
ϕ = 2MA cos(φ/2), u = ue/

√
2µ and t = MAx leads to the following system of

coupled differential equations:

du

dt
= ϕu sin

φ

2
, (48a)
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Figure 4. Examples of oscillitons with MA = 0.501 and MA = 0.51. Solid and dashed
curves on the bottom panel show respectively uy and uz .

dϕ

dt
= (1 + u2 − ϕ2) sin

φ

2
. (48b)

Note that the phase portrait of this system coincides with the phase portrait of the
reduced equations,

du

dt
= ϕu, (49a)

dϕ

dt
= (1 + u2 − ϕ2), (49b)

if sin(φ/2) �= 0 (φ �= 0, ±2nπ) (recall that the approximation of small phases φ << 1
was investigated in the preceding section). Equations (48), and correspondingly
(49), also possess the integral

G = 1
2u2(1 + u2/2 − ϕ2) (50)

so that

ϕ = ±
√

1 +
u2

2
− 2C2

u2
(51)

and

du

dt
= ± u

2MA

√(
1 +

u2

2
− 2C2

u2

)[(
4M2

A − 1
)

− u2

2
+

2C2

u2

]
, (52)

where C2 is a constant. Soliton solutions correspond to C2 = 0. Putting MA =
1/2(1+ δ) and assuming that δ << 1, u2 << 2, gives (38b) in the small phase approxi-
mation. The amplitude of the soliton, determined only by the expression in the
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Figure 5. Examples of a sequence of wave packets corresponding to the phase trajectories
shown in Fig. 1(b). The amplitude of wave packets is determined by the value of an ‘initial’
perturbation. Solid and dashed curves show uy and uz .
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Figure 6.Wave packets generated at MA � 1/2 by the initial perturbation uey0 = 0.01 of
the system. Solid and dashed curves show respectively uy and uz .
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square brackets of (52), remains the same as in the approximation of small phases,

umax =
√

2 MA. (53)

Integration of (52) gives the analytical solution,

√
M2

A + 1 ln
2α + βu2 + 2

√
αP

2
(
M2

A + 1
)
u2

= ±t. (54)

Here M2
A = 4M2

A − 1, α = 4M2
A, β = 2(M2

A − 1), P = α + βu2 − u4, and the
constant of integration is determined from u = umax =

√
2 MA.

Figure 7 presents the characteristics of a solution with MA = 0.6. The orbit
corresponding to the soliton is shown by the thick curve in the coordinates (u, ψ =
φMA), where φ = 2arccos(ϕ/2MA) (Fig. 7(a)). The solid curves depict periodic
orbits. It is observed that the picture remains qualitatively the same, with two
saddle points connected by a ‘soliton trajectory’ and an O-point, but the amplitude
of the soliton reaches large values for which the approximation (ue <<

√
µ ) is no

longer strictly valid. The solid curves in Figs 7(b,c) show the solutions of the
exact equations, the heteroclinic orbit (‘soliton trajectory’) of (34) and the soliton
structure found from numerical integration of (29) and (30) with MA = 0.6. The
dashed curves present the results of the approximation used. Despite the qualitative
similarity a significant difference is revealed in the amplitudes. Note that in the
approximation solutions, u2 << µ, the factor 1/2 appears in the expansion of (31) and
this leads to larger soliton amplitudes than in fact the exact equations would allow
as we show subsequently. Figure 7(d) depicts how the phases ψ, φe, φp vary with
the distance t. Far from the soliton core the slopes of the curves φe,p(t) are constant
(dφe,p/dt = 0.5), i.e. the oscilliton contains ‘material’ proportional to ∼cos(0.5t) or
sin(0.5t). Within the first portion of the core the phases φe, φp grow faster than at
small t but, after the centre of the soliton, dφe,p/dt decreases once more approaching
the value 1/2. It is important to note that the phases φe and φp are always different,
thereby ensuring the existence of nonlinear stationary solutions with u �= const. At
large amplitudes the wavelength of the embedded oscillations becomes comparable
with the soliton width and the oscilliton begins to resemble a classical soliton with
a rather complicated core (Fig. 8).
Although the exact equations (29) and (30) are more complicated, we can evaluate

the amplitude of a soliton as a function of the Mach number. Expanding expression
(33) for small phases and comparing with (38a) yields a constant C = µ/M2

A for
solitons (C1 = 0). At the centre of a soliton due/dx = 0, which leads to

uemax =
√

µ

2M2
A

√
4M2

A − 1 , (55)

or in the variables u and MA,

umax =
√

2
MA

M2
A + 1

. (56)

This differs from the expression (53) by the factor 1/(M2
A + 1). It is evident that

the critical Mach number, above which smooth oscillitons cannot be constructed,
corresponds to ux → 0 which occurs at u = 1/

√
2 , i.e. MAcrit = 1, or MAcrit =

1/
√

2 ≈ 0.7.
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(b)

(a)

(c)

(d)

Figure 7. (a) The phase portrait of the system at MA = 0.6 in the approximation of small
amplitudes. The thick curve corresponds to the soliton trajectory. (b) The soliton trajectories
in the approximation of small amplitudes (the dashed curve) and from the exact equations
(the solid curves). (c) Comparison of the soliton solutions in both cases. (d) Variations of the
phases ψ, φe, φp with the distance t.
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Figure 8. Oscillitons with large amplitudes. Top panel shows the amplitude of the transverse
velocity of the electrons. Solid and dashed curves on the bottom panels show respectively
uey and uez .

4. Nonlinear stationary waves propagating obliquely to the magnetic
field

Here we consider stationary waves propagating in the x-direction so that in this
frame the plasma appears to flow obliquely to the magnetic field B (B = Bx, 0, Bz0).
Faraday’s law requires that the electric field transverse to the flow is constant, and
hence Ey = u0Bz0, Ez = 0. The fully nonlinear system of equations (26) for the
transverse velocities of the electrons and protons in the case of oblique propagation
now becomes

dve±
dt

= ∓i
[
M2

‖ (ve± + µvp±) − ve±/ux

]
+ sin θ

(
1 − 1

ux

)
, (57a)

µ
dvp±

dt
= ±i

[
M2

‖ (ve± + µvp±) − vp±/ux

]
− sin θ

(
1 − 1

ux

)
, (57b)

where ve±/ cos θ = uey ± iuez, vp±/ cos θ = upy ± iupz, t = x cos θ, M‖ = MA/ cos θ,
and the magnetic field (cos θ, 0, sin θ) is expressed via the transverse velocities by
using the momentum flux constants, µvp± +ve± = b±/M2

‖ . Here b± = By ±ibz (bz =
Bz − sin θ). Energy flux conservation,

(µ + 1)
(
u2

x − 1
)

+ µ
(
u2
py + u2

pz

)
+ u2

ey + u2
ez +

2Ey(Bz − sin θ)
M2
A

= 0, (58)

yields

ux =
1

√
µ cos θ

(
µ cos2 θ − v2

e − µv2
p − 2 sin θbz/M

2
‖
)1/2

, (59)
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where ve,p = (v2
e,py + v2

e,pz)
1/2. It now follows that

d

dt

(
µ2v2

p − v2
e

)
= 2 sin θ

(
1
ux

− 1
)

By/M2
‖ , (60)

thus instead of the parallel result (28) µvp �= ve and we may expect the appearance
of smaller-scale oscillations superimposed on the large-scale variations in ve and vp
associated with the terms proportional to By and bz.
In the general case of obliquely propagating waves, the four coupled differential

equations (57a–b), which totally describe the nonlinear dynamics, cannot be re-
duced to two equations as was done previously in the case of parallel propagation.
However, some important features of stationary solutions can be found in the ap-
proximation of small amplitudes. In terms of the amplitudes and phases of the
transverse motion of the electrons and protons the system may be written in the
form

dve
dt

= M2
‖ µvp sinφ + sin θ

(
1 − 1

ux

)
cos φe, (61a)

µ
dvp
dt

= M2
‖ ve sin φ − sin θ

(
1 − 1

ux

)
cos φp, (61b)

dφe
dt

= −M2
‖

(
1 +

µvp
ve

cos φ

)
+

1
ux

− sin θ

ve

(
1 − 1

ux

)
sin φe, (61c)

dφp
dt

= M2
‖

(
1 +

ve
µvp

cos φ

)
− 1

µux
+

sin θ

µvp

(
1 − 1

ux

)
sin φp, (61d)

where we have used vp,e,± = vp,ee
±iφp,e and φ = φp − φe. The equation for the phase

φ may be written as

dφ

dt
= 2M2

‖ +M2
‖

(
µvp
ve

+
ve

µvp

)
cos φ− 1

ux
+sin θ

(
1− 1

ux

)(
sinφe

ve
+

sinφp
µvp

)
. (62)

It is reasonable to assume that at least for small-amplitude nonlinear waves (ux ∼
1): µvp ≈ ve, (φe + φp)/2 ∼ φ̄e and dφ̄e/dt ∼ M‖thres, where M‖thres is the threshold
value of the Mach number in excess of which stationary solutions exist (for θ =
0,M‖thres = 1/2). These assumptions are justified a posteriori by numerically solving
the exact system of differential equations. Then in the approximation of small
amplitudes and phases φ, the system again reduces to two coupled differential
equations for the amplitude ve (≈µvp) and the phase φ:

dve
dt

= M2
‖ veφ − v2

e sin θ cos φ̄e
2µ cos2 θ

− sin2 θ

µ cos2 θ
ve sin 2φ̄e, (63a)

dφ

dt
= 4M2

‖ − 1 − 4 sin2 θ sin2 φ̄e
µ cos2 θ

− v2
e

2µ cos2 θ
− M2

‖ φ2 − 3ve sin θ

µ cos2 θ
sin φ̄e, (63b)

in which we have used the expansion

1
ux

≈ 1 +
v2
e

2µ cos2 θ
+

2ve sin θ

µ cos2 θ
sin φ̄e, (64)

which is valid for ve <<
√

µ cos θ.
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(b)(a)

(d)(c)

Figure 9. Phase portraits found by solving the exact equations for stationary waves
propagating obliquely to the magnetic field (the solutions are very close to oscilliton type of
solutions).

In rescaled form (u2 = v2
e /2µ cos2 θ, ψ = M‖φ, t′ = M‖t) the system (63) is

du

dt′ = uψ − u2

MA

sin θ cos φ̄e√
2µ

− u sin2 θ sin 2φ̄e
MAµ cos θ

, (65a)

dψ

dt′ = 4M2
‖ − 1 − 4 sin2 θ sin2 φ̄e

µ cos2 θ
− u2 − ψ2 − 3

√
2
µ

u
sin θ

cos θ
sin φ̄e. (65b)

In the absence of the last two terms in (65a) and the last term in (65b) this system
coincides with the system (36) (for waves propagating parallel to the magnetic field)
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Figure 10. The structure of obliquely propagating whistler oscillitons. From the top to the
bottom are shown the transverse amplitudes of the electron (solid curves) and proton (dashed
curves) speeds, the difference between ue and µup, variations in the longitudinal component
of the velocity and the uey and uez components of the electron speed.

which admits oscilliton type solutions if

4M2
‖ − 1 − 4 sin2 θ sin2 φ̄e

µ cos2 θ
> 0

or solutions in the form of periodic wave packets if

4M2
‖ − 1 − 4 sin2 θ sin2 φ̄e

µ cos2 θ
= 0.

For tan θ <<
√

µ/2 the threshold value of the Mach number is M‖thres = 1/2 or
MAthres = cos θ/2. The terms, which we neglect for the moment, contain a ‘periodic
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Figure 11. Obliquely propagating oscillitons with different amplitudes.

part’ proportional to the sine or cosine of φ̄e (φ̄e ∼ M‖t
′) that essentially modifies

the dynamics of the system (in a certain sense they can be considered as the ‘forcing
terms’ for the system (36)). Figures 9(a,b) show the phase portraits corresponding
to the solutions which are very close to soliton-type solutions with θ = 30◦(60◦)
and M‖ = M‖thres + 0.001 (the results of numerically solving the exact equations).

Although two saddle points at u = 0, ψ = ±
√

4M2
‖ − 1 remain, a new important

feature appears, namely the heteroclinic orbit undergoes ‘sinusoidal’ variations with
a periodic change in the sign of the phaseψ. However such ‘heteroclinic tangle’ is not
a signature of transition to chaos. Since the nonlinear system cannot be reduced to
two differential equations and is described by four variables one may expect regular
trajectories in four-dimensional space. Figure 10 presents the results of numerically
solving the exact nonlinear equations (57) for oscillitons propagating obliquely to
the magnetic field. The amplitudes ve = ue cos θ and µvp = µup cos θ (the top
panels) are almost the same although the appearance of small ripples on the curves
ue(µup) is observed. The longitudinal component of the velocity ux clearly reveals
oscillating behavior superimposed on a soliton-like structure. Figure 11 depicts how
ux varies with increasing Alfvén Mach number. The width of an oscilliton decreases
and its core contains a smaller number of oscillations. This feature is also clearly
observed in the phase portraits at high Mach numbers (Figs 9(c,d)).
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Figure 12. (a) The dependence of the maximum electron speed vemax which can be achieved in
the whistler oscillitons on the obliqueness θ for sin φ̄e = 0, ±1 (the dashed and solid curves).
(b) The corresponding critical Alfvén Mach numbers. The dotted curve shows the threshold
value of the Mach number.

The maximum speed of the electrons in oscillitons can be estimated from the
condition ux → 0,

vemax = −2 sin θ sin φ̄e ±
√

4 sin2 θ sin2 φ̄e + µ cos2 θ, (66)
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where φ̄e ≈ cos(θt/2). It will be observed that this amplitude is now a weak function
of t. Figure 12(a) shows the range of vemax as a function of the obliqueness θ
for sin φ̄e = 0, ±1 (the dashed and solid curves). The corresponding critical Mach
numbers can be estimated by generalizing the parallel case as

M‖cr =
1 +

√
1 − 4v2

emax

2
or MAcr =

cos θ

2

√
1 + M2

‖cr. (67)

Figure 12(b) shows the threshold value of the Alfvén Mach number in excess of
which stationary solutions exist (the dotted curve), and the critical Mach numbers
above which the ‘overturning’ of waves occurs (the black solid and dashed curves).
Smooth solutions exist in the shaded area between these curves.

5. Summary and conclusions
We have developed a fully nonlinear theory for whistler solitons and periodic waves
propagating parallel to the magnetic field. The treatment involves the exact solu-
tions of the coupled nonlinear differential equations in which the electron and
proton dynamics are placed on an equal footing. By making use of the constants of
motion, the momentum and energy fluxes, it is shown that in stationary whistlers
the transverse amplitude of the electron speed |ue| = (u2

ey + u2
ez)

1/2 is equal to the
proton transverse speed |up| multiplied by the mass ratio factor µ = mp/me. This
implies that the transverse momentum carried by the electrons and protons in the
wave frame are equal, µup = ue, and explicitly shows that the momentum fluxes
of both species are required to balance the wave magnetic stresses. Moreover, the
phases of the electron (φe) and proton (φp) motions are different and the system is
analogous to two nonlinearly coupled pendula with different periods. This vitally
important feature of the nonlinear equations distinguishes the nonlinear system
from the linear one, where in the latter the dispersion equation for stationary waves
does not contain the proton mass. However, the linear dispersion equation does
provide us with the necessary condition for the existence of nonlinear stationary
waves, namely that the electron Alfvén Mach number must exceed the critical value,
MAe > 1/2. Another interesting feature which follows already from the linear
dispersion equation is that the wave number is complex in the parameter range
where stationary nonlinear waves exist. This means that evanescent type solutions
also contain an oscillatory core.
The full system of nonlinear equations can be reduced to two coupled differential

equations, which describe the transverse wave motion, for the amplitude ue and the
phase φ = φp − φe. Neglect of the proton contribution yields only trivial solutions
with ue = const. It is interesting to note that if the protons are included but not
in a completely self-consistent manner, for example by using the relation between
the proton and electron transverse speeds from the linear theory, the phase φ = 0
and still only the trivial solution ue = const, results.
The system of nonlinear differential equations for the amplitude ue and the phase

φ completely describe the dynamics of the electrons and protons. This system
possesses a phase-portrait integral which is constant along the solution trajectories
and enables us to deduce the main features of the dynamics. There is a family of
periodic orbits around an O-type point limited by a heteroclinic orbit connecting
two saddle points, with a family of free orbits outside. In a certain sense, the system
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is similar to a nonlinear pendulum (in our case, two nonlinear pendula, one for the
electrons and another one for the protons coupled via the phase φ = φp − φe).
We have analysed in some detail the approximation of ‘small’ amplitudes

(ue <<
√

µ , where the speeds are normalized to the electron Alfvén speed) and
small (and also arbitrary) phases. In this case we find exact solutions in terms of
elliptic integrals of the first kind. For the soliton type solutions which correspond
to a heteroclinic orbit connecting two saddle points, analytical solutions for the
amplitude and phases φe, φp and φ are also found. These phases provide us with
structures which differ from classical solitons by the existence of an oscillating core
and therefore are called oscillitons. The remarkable feature is that the wave number
of the embedded oscillations is very close to the wave number at which the phase
velocity for whistlers has a maximum (note that a wave number k is normalized to
Ωe/u0, i.e. the wave number of the oscillations is Ωe/VAe). The relation between the
amplitude of the envelope of such an oscilliton and its Alfvén Mach number is similar
to the classical soliton. There is a critical Alfvén Mach number (MAcrit = 1/

√
2 )

above which smooth oscilliton solutions cannot be constructed and this corresponds
to where the longitudinal speed of the electrons and protons go to zero (ue → √

µ ).
The existence of the O-type fixed point at u = ((1 − 1/16M4

A)/2)1/2 would
admit the construction of a weak dispersive whistler shock by including a small
amount of dissipation. After several soliton-like pulses the system would go to
a new equilibrium point. Such a shock would be characterized by a sequence of
whistler packets of different widths.
Another interesting class of solutions which may have many applications occurs

at MAe = 1/2. In this case, two saddle points degenerate to one and the system
can ‘generate’ a periodical sequence of wave packets. The small-scale oscillations
in these packets are determined by the phases φe or φp. The nonlinear beating
between both modes gives a stationary wave packet where the amplitude of the
envelope is varying and the wavelength is determined by the phase φ = φe − φp.
The amplitude of these structures is also sensitive to the ‘initial’ perturbation of the
system. The fact that wave packets of nonlinear stationary whistlers appear just at
the border (MAe = 1/2) (in the space ω/k − k), where the usual propagating modes
(with real k) also exist, means that these structures can be effectively seeded by any
mechanism of whistler generation. For example, cyclotron resonance instability fed
by a temperature anisotropy can excite a rather broad spectrum of emissions via
the anomalous Doppler resonance. The modes with the phase (group) speed equal
toMAe = 1/2 are selected and amplified from this wave ensemble since the electrons
and the protons interplay effectively and the nonlinear system begins to ‘resonate’
giving rise to wave packets with an oscillating content at fce/2. This mechanism
may be responsible for the generation of the ‘lion roars’ observed in the Earth’s
magnetosheath (Sauer et al. 2002b).
For stationary waves propagating obliquely to the magnetic field, oscillitons and

periodic wave packets also exist, although the system becomes more complicated,
now being described by four coupled differential equations for the amplitudes and
phases of the transverse motion of the electrons and protons. The threshold Alfvén
Mach number in excess of which oscillitons can be constructed now becomes cos θ/2.
The wave number of the embedded small-scale oscillations is also close to the wave
number at which the dispersive curve (ω/k–k) for obliquely propagating whistlers
has a maximum (at kr ∼ cos θ/2 or, in the original coordinates, at k = Ωe/VAe, i.e.
it does not depend on the angle θ). Interestingly that at large propagation angles
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the oscilliton speed occurs in the range of values common to the solar wind and
therefore one may expect the appearance of oscilliton substructures embedded in
a weak (dispersive) oblique bow shock structure.
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