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1. Introduction
LetX be a compact metric space and let T : X → X be a strictly ergodic homeomorphism
(that is, T is minimal and uniquely ergodic), which fibers over an almost periodic dynamical
system(generalizedskew-shifts).Thismeansthatthereexistaninfinitecompactabeliangroup
G and an onto continuous map f : X → G such that T (f (x)) = T (x)+ g for some g ∈ G.
We consider Cantero, Moral and Velazquez (CMV) matrices and Jacobi matrices whose
Verblunsky coefficients and, respectively, Jacobi coefficients are obtained by a continuous
sampling map along an orbit of T . Our interest is to investigate spectral properties.

By the nature of dynamically defined Verblunsky and Jacobi coefficients, our results
rely on a connection between spectral properties and dynamics of linear cocycles, which
was first established by Johnson [10], often called Johnson’s theorem. Roughly speaking,
Johnson’s theorem provides a connection between the spectrum of self-adjoint linear
differential operators and uniform hyperbolicity of the associated linear cocycles referred
to as ‘an exponential dichotomy’ in Johnson [10].

Two similar results, which are directly connected to our work, are Damanik et al [6]
for CMV matrices and Marx [11] for Jacobi matrices. In [6], the authors showed that
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the uniform spectrum of a CMV matrix consists of unimodular complex numbers whose
associated cocycles are not uniformly hyperbolic. Likewise, in [11], the author proved that
the uniform spectrum of a Jacobi matrix consists of energies whose associated cocycles
are not uniformly hyperbolic.

In this paper, we consider the continuous cocycles arising from CMV and Jacobi
matrices and show that uniform hyperbolicity is C0-dense in both cases. Together with
the results in [6, 11], this implies that the uniform spectrum of a CMV or Jacobi matrix is
a Cantor set for a generic continuous sampling map.

Let us discuss a paper which is intimately related to our work. In Avila et al [1], the authors
considered continuous SL(2, R)-cocycles with the same base dynamics as in the present
paper. The authors proved that if a cocycle is not uniformly hyperbolic and its homotopy class
doesnotdisplayacertainobstruction, itcanbeC0-perturbedtobecomeuniformlyhyperbolic.
Using this and ‘a projection lemma’, which was also proved in [1], the authors showed that
uniformhyperbolicityisC0-denseforthecocyclesarisingfromSchrödingeroperators.Inturn,
theC0-denseness implies a Cantor spectrum for a generic continuous potential. In Bochi [2],
the author extended the denseness of uniformly hyperbolicity to the denseness of dominated
splitting in higher dimensions. Provided that T is a minimal diffeomorphism and the fiber
dimensionisat least three,a linearcocycle(or,moregenerally,avectorbundleautomorphism)
fibered over T can be approximated by another cocycle admitting a dominated splitting. The
dominated splitting is equivalent to uniform hyperbolicity in SL(2, R)-cocycles.

Our work fully utilizes their results on the general SL(2, R)-cocycles. In addition, the
proof of the Jacobi case is a direct application of the projection lemma. From our point
of view, the applicability of the projection lemma is related to the solvability of a system
of equations. We were unable to find a possible solvability for the case of CMV matrices.
Thus, another constructive way of proof will be provided.

The spectral theory of Schrödinger operators and Jacobi matrices with dynamically
defined potentials and coefficients, respectively, has been extensively studied for the past
few decades in a variety of settings, e.g., random potentials, almost periodic potentials,
subshift potentials etc (see [5, 12] for surveys). On the other hand, the case of CMV
matrices is much less understood. Damanik and Lenz [7] considered ergodic families of
Verblunsky coefficients generated by minimal aperiodic subshifts; thus, a sampling map
in [7] may be regarded as a simple function taking finitely many values.

Conspicuously absent while interesting was the case of almost periodic Verblunsky
coefficients; see [14, pp. 706–707]. Bourget et al [3] studied some almost periodic case
but their model is modified so that it is distinguished from true CMV matrices. Recently,
Wang and Damanik [16] considered quasiperiodic Verblunsky coefficients with analytic
sampling maps and showed Anderson localization in the regime of positive Lyapunov
exponents. Our work considers generalized skew-shifts, which include the almost periodic
case with continuous sampling maps.

2. Statement of results
Let X be a compact metric space and let T : X → X be a homeomorphism. Given a
continuous map A : X → SL(2, R), a continuous cocycle (T , A) : X × R

2 → X × R
2 is

defined as (x, v) → (T (x), A(x)v). For n ∈ Z, An is defined by (T , A)n = (T n, An).
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Definition 2.1. A continuous cocycle

(T , A) : X × R
2 → X × R

2, (x, v) → (T (x), A(x)v)

is uniformly hyperbolic if there are C > 0 and λ < 1 and, for every x ∈ X, there exist
one-dimensional subspaces Esx and Eux of R2 such that:
(1) A(x)Esx = EsT (x) and A(x)Eux = EuT (x);
(2) ‖An(x)vs‖ ≤ Cλn‖vs‖ and ‖A−n(x)vu‖ ≤ Cλn‖vu‖
for every vs ∈ Esx , vu ∈ Eux , x ∈ X and n ≥ 1.

Equivalently, it is well known that (T , A) is uniformly hyperbolic if and only if there
exist constants c > 0 and σ > 1 such that ‖An(x)‖ > cσn for all x ∈ X and n ≥ 1. (See
[15], for example.) This definition is equivalent to the usual hyperbolic splitting condition:
see [17]. Thus, uniform hyperbolicity is an open condition in C0(X, SL(2, R)).

In fact, Esx and Eux are unique if they exist and depend continuously on x ∈ X (compare
[15]). Thus, we may choose a continuous map u from X to RP

1 such that u(x) ∈ Eux .

2.1. CMV matrices. Let D := {z ∈ C : |z| < 1}. Let μ be a non-trivial probability
measure on ∂D, that is, it is not supported on a finite set. Then we may define the nth monic
orthogonal polynomial �n := �n(z; dμ) by �n ⊥ zl for l = 0, 1, . . . , n− 1. Thus, we
have 〈�n, �m〉 = 0 for all m 
= n in L2(∂D, dμ). Naturally, orthonormal polynomials φn
are defined as φn(z) = �(z)/‖�(z)‖.

It is well known that the monic orthogonal polynomials are generated by the Szegö
recursion,

�n+1(z) = z�n(z)− αn�
∗
n(z),

where {α0, α1, α2, . . .} ⊂ D are suitably chosen parameters, called Verblunsky coeffi-
cients. Conversely, given a sequence {α0, α1, α2, . . .} ⊂ D, we may define monic orthog-
onal polynomials with respect to a non-trivial probability measure on ∂D by the Szegö
recursion. In fact, Verblunsky’s theorem says that there is a one-to-one correspondence
between non-trivial probability measures and sequences in D.

The standard CMV matrix associated to the measures μ is a matrix representation
discovered by Cantero et al [4] for multiplication by z ∈ ∂D in L2(∂D, dμ). The matrix is
given by

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 α1ρ0 ρ1ρ0

ρ0 −α1α0 −ρ1α0

α2ρ1 −α2α1 α3ρ2 ρ3ρ2

ρ2ρ1 −ρ2α1 −α3α2 −ρ3ρ2

α4ρ3 −α4α3 α5ρ4

ρ4ρ3 −ρ4α3 −α5ρ4
. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ρn = (1 − |αn|2)1/2.
The basis for the representation is obtained by orthonormalizing {1, z, z−1, z2, z−2, . . .}.

Note that the basis for the representation is not the orthonormal polynomials. The matrix
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representation based on the orthonormal polynomials is called the GGT (after Geronimus,
Gragg and Teplyaev) representation; see [13, §4.1].

Let us briefly discuss why the CMV representation is a more suitable choice for spectral
analysis. First of all, the set of orthonormal polynomials, {1, φ1, φ2, . . .}, may not be
a basis of L2(∂D, dμ). Indeed, the orthonormal polynomials form a basis if and only
if

∑∞
j=0 |αj |2 = ∞, where the αj are the corresponding Verblunsky coefficients [13,

Theorem 1.5.7]. Even for the case when the orthonormal polynomials form a basis, a row
of its GGT representation has infinitely many non-zero terms. The five diagonal form of
a CMV matrix allows us to connect the solution u of Cu = zu, z ∈ ∂D, to 2 × 2 matrices
and this provides very useful tools for spectral analysis. On the other hand, we do not have
this connection for the GGT representation as its rows are not finite (see [13, §§4.1 and
4.2] for more discussion).

Now let us discuss CMV matrices over dynamical systems. Let (X, ν) be a probability
measure space and let T : X → X be an invertible measure-preserving transformation.
Under this setting, we may consider dynamically defined Verblunsky coefficients with
a measurable function f : X → D. That is, our coefficients {αn}n∈Z+ are defined by
αn = f (T nx) for some x ∈ X. As T is an invertible map, we may also consider a
bi-infinite sequence, {αn}n∈Z = {f (T nx)}n∈Z. This leads to a bi-infinite CMV matrix,
called an extended CMV matrix:

Ex =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . . . . .
−α0α−1 α1ρ0 ρ1ρ0

−ρ0α−1 −α1α0 −ρ1α0

α2ρ1 −α2α1 α3ρ2 ρ3ρ2

ρ2ρ1 −ρ2α1 −α3α2 −ρ3ρ2

α4ρ3 −α4α3 α5ρ4

ρ4ρ3 −ρ4α3 −α5ρ4
. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where, again, ρn = (1 − |αn|2)1/2.
Extended CMV matrices are useful tools to study spectral properties. Let us now assume

that T : X → X is an ergodic invertible measure-preserving transformation. With the
associated extended CMV matrix, we have σ(Ex) = σ(Ey) for ν-almost every x, y ∈ X.
Moreover, the almost sure spectrum is purely essential. On the other hand, with the
standard CMV matrix, what we obtain is that the essential spectrum coincides for ν-almost
every x ∈ X and the discrete spectrum may depend on x ∈ X [14, Theorems 10.16.1 and
10.16.2]. Moreover, we may draw more conclusions from Kotani theory with the extended
CMV matrix [14, Theorems 10.11.1–10.11.4].

The spectrum of extended CMV matrices associated to the dynamically defined
Verblunsky coefficients is closely related to the Szegö cocycle defined as (T , Az(x)) =
(T , A(f (x), z)), z ∈ ∂D, where

A(f (x), z) := 1

z1/2
√

1 − |f (x)|2
[

z −f̄ (x)
−f (x)z 1

]
.
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Here Az(x) is an element of SU(1, 1), which may not be in SL(2, R). However, there is an
isomorphism between SU(1, 1) and SL(2, R), which we will explain later in more detail.
The branch z−1/2 is chosen since the angle of z−1/2 would describe the dependence on z
in the SL(2, R) representation.

Let X be a compact metric space. If T : X → X is a minimal homeomorphism and
f ∈ C0(X, D), there is a uniform compact set 
 ⊂ ∂D with σ(Ex) = 
 for every x ∈ X.
Damanik et al [6] showed that the uniform spectrum is given by 
 = ∂D \ U , where

U = {z ∈ ∂D : (T , Az) is uniformly hyperbolic}.
Note that under the same hypothesis, the spectrum of standard CMV matrices may depend
on x ∈ X.

Our strategy is to show that, given ε > 0, if (T , A(f , z)) is not uniformly hyperbolic,
there exists f ′ ∈ C0(X, D) such that ‖A(f , z)− A(f ′, z)‖C0 < ε and (T , A(f ′, z)) is
uniformly hyperbolic. By combining with the result above, the following theorem holds.

THEOREM 2.2. Let T : X → X be a strictly ergodic homeomorphism such that
h(T (x)) = h(x)+ g for some g ∈ G, where h : X → G is an onto continuous map
and G is an infinite compact abelian group. For a generic f ∈ C0(X, D), we have that
U = ∂D \
 is dense and the associated CMV matrices have a Cantor spectrum.

2.2. Jacobi matrices. Let μ be a non-trivial probability measure on R (not supported
on a finite set) with a compact support. Then we may define the nth monic orthogonal
polynomial Pn(x) by Pn ⊥ xl for all l = 0, 1, . . . , n− 1. Naturally, the nth orthonormal
polynomial is given as pn := Pn/‖Pn‖. It is well known that the orthonormal polynomials
obey the Jacobi recursion,

xpn(x) = an+1pn+1(x)+ bn+1pn(x)+ anpn−1(x),

with suitably chosen real-valued sequences an > 0 and bn, called Jacobi coefficients.
Conversely, given real-valued bounded sequences {an} and {bn} with an > 0 for all
n ∈ Z+, the Jacobi recursion gives us a set of orthonormal polynomials with respect to
a non-trivial probability measure with compact support.

The Jacobi matrix associated to the measure μ is the matrix representation for
multiplication by x in L2(R, dμ) with respect to the basis {p0, p1, p2, . . .} :

J =

⎡
⎢⎢⎢⎣

b0 a0

a0 b1 a1

a1 b2 a2
. . . . . . . . .

⎤
⎥⎥⎥⎦ .

Let (X, ν) be a probability measure space. Let fa , fb : X → R be measurable maps with
fa(x) > 0 for all x ∈ X and let T : X → X be an invertible ergodic transformation.

As for the case of Verblunsky coefficients, we may consider dynamically defined
Jacobi coefficients under this setting. Specifically, two-sided Jacobi coefficients {an}n∈Z
and {bn}n∈Z are defined by an = fa(T

n(x)) and bn = fb(T
nx), respectively. Then an

associated bi-infinite Jacobi matrix naturally arises. As in the case of CMV matrices,
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there are many advantages of bi-infinite Jacobi matrices to study spectral properties. Given
x ∈ X, the bi-infinite Jacobi matrix Hx is given by

Hx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . . . . .
a−2 b−1 a−1

a−1 b0 a0

a0 b1 a1

a1 b2 a2
. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is well known that the spectrum of the Jacobi matrix is closely related to the solutions
of the difference equation, (Hx − E)u = 0, where E ∈ R. Notice that a sequence {un} is
a solution of (Hx − E)u = 0 if and only if

anun+1 + (bn − E)un + an−1un−1 = 0

for all n ∈ Z.
Equivalently, {un} obeys

[
un

an−1un−1

]
= AnE,a,b(x)

[
u0

a−1u−1

]
,

where

AE,a,b(x) = 1
fa(x)

[
E − fb(x) −1
fa(x)

2 0

]
.

Let X be a compact metric space. If we assume that fa , fb ∈ C0(X, R) and T : X → X

is a minimal homeomorphism, σ(Hx) coincides for all x ∈ X.
Let 
 be the spectrum of Hx . Marx [11] showed that

R \
 = {E ∈ R|(T , AE,a,b) is uniformly hyperbolic}.
In fact, Marx [11] considered both singular and non-singular cocycles. We call a cocycle
(T , A) : X × R

2 → X × R
2 singular if det A(x0) = 0 for some x0 ∈ X. For singular

cocycles, uniform hyperbolicity is not applicable and, thus, uniform hyperbolicity is
replaced by dominated splitting. For SL(2, R)-cocycles, dominated splitting is equivalent
to uniform hyperbolicity. (See [11].)

Later, given ε > 0, we will prove that if (T , AE,a,b) is not uniformly hyperbolic, there
exists fb′ ∈ C0(X, R) such that ‖AE,a,b − AE,a,b′ ‖C0 < ε and (T , AE,a,b′) is uniformly
hyperbolic, where b′

n = fb′(T nx). Together with the result in [11], this implies the
following theorem.

THEOREM 2.3. Let T : X → X be a strictly ergodic homeomorphism such that
h(T (x)) = h(x)+ g for some g ∈ G, where h : X → G is an onto continuous map and G

is an infinite compact abelian group. Let fa ∈ C0(X, R) with fa(x) > 0 for all x ∈ X. For
generic fb ∈ C0(X, R), we have that R \
 is dense and the associated Jacobi matrices
have a Cantor spectrum.
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2.3. Discussion of the results. In addition to the results for general continuous
SL(2, R)-cocycles, the C0-genericity of a Cantor spectrum for Schrödinger operators
proved in Avila et al [1] was striking. Especially for the standard skew-shift with a
sufficiently regular non-constant potential function V : T2 → R, it had been widely
expected to have a pure point spectrum, which is not a Cantor set, with exponentially
decaying eigenfunctions.

After the work, an obvious expectation for CMV and Jacobi matrices generated by the
same base dynamics is to also have a generic Cantor spectrum. The present paper, to the
best of our knowledge, first provides a proof for the statement.

We would like to mention that the spectrum of quasiperiodic Schrödinger operators
with analytic potentials behaves in a very different way. For the case of shifts on the
one-dimensional torus, Goldstein and Schlag [8] proved that a Cantor spectrum is obtained
for analytic potentials in the regime of positive Lyapunov exponents with typical shifts, that
is, with x ∈ T and n ∈ Z, shifts x + nα for Lebesgue almost every α ∈ T. For the case of
shifts on a multidimensional torus, it turned out to be harder to study and, thus, is much
less understood. However, for a two-dimensional shift, Goldstein et al [9] showed that the
spectrum consists of a single interval for large real analytic potentials satisfying certain
restrictions.

3. Results for SL(2, R)-cocycles
As noted in the introduction, our work is closely related to the results in Avila et al [1]. In
this section, we discuss the results in [1] for general continuous SL(2, R)-cocycles over the
same base dynamics as in the present paper, that is, with a strictly ergodic homeomorphism
T : X → X such that h(T (x)) = h(x)+ g for some g ∈ G, where h : X → G is an onto
continuous map and G is an infinite compact abelian group.

We say that two cocycles (T , A) and (T , Ã) are conjugate (respectively, PSL(2, R)-
conjugate) if there exists a conjugacyB ∈ C0(X, SL(2, R)) (respectively, B ∈ C0(X, PSL
(2, R))) such that Ã(x) = B(T (x))A(x)B(x)−1.

We say that (T , A) is reducible if it is PSL(2, R)-conjugate to a constant cocycle. We
say that (T , A) is reducible up to homotopy if there exists a reducible cocycle (T , Ã) such
that the maps A and Ã : X → SL(2, R) are homotopic. Let Ruth be the set of all A such
that (T , A) is reducible up to homotopy.

In Avila et al [1], the authors showed that if an SL(2, R)-cocycle is not uniformly
hyperbolic, it can be approximated by one that is conjugate to an SO(2, R)-cocycle. Using
this, it was proved that if a cocycle is in Ruth, then it can be approximated by a uniformly
hyperbolic cocycle. As a uniformly hyperbolic cocycle is always reducible up to homotopy,
this shows that uniform hyperbolicity is dense in Ruth [1, Theorem 2].

We will observe that a cocycle associated to a CMV matrix or Jacobi matrix is
homotopic to a constant cocycle and hence in Ruth. Therefore, it can be C0-perturbed so
that it is a continuous SL(2, R)-cocycle, which is uniformly hyperbolic. For the purpose of
our work, a difficulty is that the perturbed cocycle need not be in the form of one associated
with CMV matrices or Jacobi matrices.

The difficulty is nicely overcome for the case of Schrödinger operators in Avila et al [1]
by using ‘a projection lemma’, which was also proved in their work. On the one hand, it
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makes the perturbed SL(2, R)-cocycle conjugate to a cocycle associated to Schrödinger
operators (one may say the perturbed SL(2, R)-cocycle is projected). Of course, the
conjugacy preserves the uniform hyperbolicity. On the other hand, the associated cocycle
can be arbitrarily close to the original cocycle, which is not uniformly hyperbolic. In
conclusion, it provides a uniformly hyperbolic cocycle associated to Schrödinger operators
such that it is arbitrarily close to the original cocycle, which was not uniformly hyperbolic.

Our proof for the case of Jacobi matrices is a direct application of the above procedure.
We were unable to find a possible way of application for the case of CMV matrices and
we will explain in more detail this difficulty during the proof for the case of Jacobi
matrices. However, we still use half of the projection lemma in [1]. We first need to
introduce some notation. Given A ∈ C0(X, SL(2, R)) and a non-empty subset V ⊂ X, let
C0
A,V (X, SL(2, R)) ⊂ C0(X, SL(2, R)) be the set of all B ∈ C0(X, SL(2, R)) such that
B(x) = A(x) for x /∈ V .

LEMMA 3.1. [1, Lemma 10] Let V ⊂ X be any non-empty open set and let A ∈
C0(X, SL(2, R)) be arbitrary. Then there exist an open neighborhood WA,V ⊂
C0(X, SL(2, R)) of A and continuous maps

� = �A,V : WA,V → C0
A,V
(X, SL(2, R))

and

� = �A,V : WA,V → C0(X, SL(2, R))

satisfying

�(B)(T (x)) · B(x) · [�(B)(x)]−1 = �(B)(x),

�(A) = A and �(A) = id.

4. Proof of results
4.1. Proof for CMV matrices. Define SU(1, 1) := {A ∈ U(1, 1) : det A = 1}. Let J be
a matrix such that J

∗ = J = J
−1

and T r(J ) = 0. Then we may choose a unitary matrix
W such that WSU(1, 1; J )W−1 = SU(1, 1), where SU(1, 1; J ) := {A : A∗JA = J }.

Note that, with Jr := [ 0 i−i 0 ], we have SU(1, 1, Jr) = SL(2, R) : see [14, Proposition
10.4.1]. For our purpose, this may be read as

W−1SU(1, 1)W = SU(1, 1, Jr) = SL(2, R),

whereW = 1/
√

2[ 1 i
1 −i ]. Let f ∈ C0(X, D) and let z ∈ ∂D be given. Note that A(f , z) ∈

C0(X, SU(1, 1)). Thus, given x ∈ X, we have an SL(2, R) matrix

W−1A(f (x), z)W

= 1

2z1/2
√

1 − |f (x)|2
[

z− f̄ (x)− f (x)z+ 1 i(z+ f̄ (x)− f (x)z− 1)
i(−z+ f̄ (x)− f (x)z+ 1) z+ f̄ (x)+ f (x)z+ 1

]
.

Denote Rη as the 2 × 2 rotation matrix with the angle η ∈ R. By a simple observation, we
have following result.
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LEMMA 4.1. Let z = eiψ ∈ ∂D and let f ∈ C0(X, D) be given by f (x) = r(x)eiφ(x).
Then W−1A(f (x), z)W is equal to

1√
1 − r(x)2

(
Rθ ′ + r(x)

[−cos θ(x) sin θ(x)
sin θ(x) cos θ(x)

] )
,

where θ ′ = ψ/2 and θ(x) = (ψ/2)+ φ(x).

Given z ∈ eiψ ∈ ∂D with θ ′ := ψ/2, define S′
θ ′ ⊂ SL(2, R) as

S′
θ ′ =

{
1√

(1 − s2)

(
Rθ ′ + s

[−cos θ sin θ
sin θ cos θ

] )
: s ∈ [0, 1), θ ∈ R

}
.

Let A(x) := W−1A(f (x), z)W . Then we have A ∈ C0(X, S′
θ ′) and we may write it as in

Lemma 4.1.
Given an S′

θ ′-valued cocycle (T , A), our goal is to construct another S ′
θ ′-valued

cocycle (T , B ′′) which is uniformly hyperbolic and arbitrarily C0-close to (T , A). By
the C0-denseness result in [1], we may choose a uniformly hyperbolic SL(2, R)-valued
cocycle (T , B)which is arbitrarilyC0-close toA. From (T , B), we construct an S ′

θ ′-valued
cocycle (T , B ′) which is arbitrarily C0-close to (T , A). From (T , B ′), we finally construct
an S′

θ ′-valued cocycle (T , B ′′)which is uniformly hyperbolic and arbitrarilyC0-close toA.
We assume that f ∈ C0(X, D) is not identically zero. Let y ∈ X be an element such

that f (y) 
= 0. We may choose a non-empty open set V ⊂ X so that y ∈ V and f (x) 
= 0
for all x ∈ V . In fact, there exist r1, r2 ∈ [0, 1) such that r1 ≤ |f (x)| ≤ r2 for all x ∈ V .
Thus, r1 ≤ r(x) ≤ r2 for all x ∈ V .

By Lemma 3.1 and the C0-denseness result of uniform hyperbolicity in [1], we
may choose a uniformly hyperbolic cocycle (T , B) such that B ∈ C0

A,V̄
(X, SL(2, R)) is

arbitrarily C0-close to A. Write B as

B(x) = 1√
1 − r(x)2

(
Rθ ′ + r(x)

[
b11(x) b12(x)

b21(x) b22(x)

] )
.

Set B ′(x) := B(x) for x ∈ X \ V . For x ∈ V , we define B ′ ∈ C0(X, S′
θ ′) as follows.

(1) Recall that since (T , B) is uniformly hyperbolic there exists a continuous map u
from X to the projective space RP1 such that u(x) ∈ Eux . Let R−τ(x) · u(x) = (1, 0).
Consider the matrix[

y11(x) y12(x)

y21(x) y22(x)

]
:=

[
b11(x) b12(x)

b21(x) b22(x)

]
· Rτ(x). (1)

Note that we may choose a τ : X → R so that it is continuous since u is continuous.
(2) Normalize the vector (y11(x), y21(x)). Then we may write it as (−cos θ̃ , sin θ̃ ) for

some θ̃ ∈ R.
(3) Set B ′ as

B ′(x) = 1√
1 − r(x)2

(
Rθ ′ + r(x)

[−cos θ̃ (x) sin θ̃ (x)
sin θ̃ (x) cos θ̃ (x)

]
R−τ(x)

)
.
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Observe that, as an element in the projective line of R2, we have
[−cos θ̃ (x) sin θ̃ (x)

sin θ̃ (x) cos θ̃ (x)

]
R−τ(x) · u(x) =

[−cos θ̃ (x) sin θ̃ (x)
sin θ̃ (x) cos θ̃ (x)

] [
1
0

]

=
[
y11(x) y12(x)

y21(x) y22(x)

] [
1
0

]

=
[
b11(x) b12(x)

b21(x) b22(x)

]
u(x).

LEMMA 4.2. Given ε > 0, there exists δ > 0 so that ‖A− B‖C0 < δ implies that
‖B − B ′‖C0 < ε.

Proof. It suffices to show that given ε > 0, there exists δ > 0 so that∥∥∥∥
[
b11(x) b12(x)

b21(x) b22(x)

]
−

[−cos θ(x) sin θ(x)
sin θ(x) cos θ(x)

] ∥∥∥∥
C0
< δ

implies that ∥∥∥∥
[−cos θ̃ (x) sin θ̃ (x)

sin θ̃ (x) cos θ̃ (x)

]
R−τ(x) −

[
b11(x) b12(x)

b21(x) b22(x)

] ∥∥∥∥
C0
< ε.

Set δ = ε/4. Then∥∥∥∥
[
y11(x) y12(x)

y21(x) y22(x)

]
−

[−cos θ(x) sin θ(x)
sin θ(x) cos θ(x)

]
Rτ(x)

∥∥∥∥
C0
< ε/4.

In particular, we have∥∥∥∥
[
y11(x)

y21(x)

]
−

[−cos(θ(x)+ τ(x))

sin(θ(x)+ τ(x))

] ∥∥∥∥ < ε/4

and ∥∥∥∥
[
y12(x)

y22(x)

]
−

[
sin(θ(x)+ τ(x))

cos(θ(x)+ τ(x))

] ∥∥∥∥ < ε/4.

This implies that ∥∥∥∥
[
y21(x)

−y11(x)

]
−

[
y12(x)

y22(x)

] ∥∥∥∥ < ε/2.

Therefore, we have∥∥∥∥
[
y11(x) y21(x)

y21(x) −y11(x)

]
−

[
y11(x) y12(x)

y21(x) y22(x)

] ∥∥∥∥
C0
< ε/2.

If necessary, choose a C0-close B to A (so, smaller δ) so that∥∥∥∥ 1√
y11(x)2 + y21(x)2

[
y11(x) y21(x)

y21(x) −y11(x)

]
−

[
y11(x) y21(x)

y21(x) −y11(x)

] ∥∥∥∥
C0
< ε/2

for all x ∈ X.
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Then, by the triangle inequality,∥∥∥∥ 1√
y11(x)2 + y21(x)2

[
y11(x) y21(x)

y21(x) −y11(x)

]
−

[
y11(x) y12(x)

y21(x) y22(x)

] ∥∥∥∥
C0
< ε.

In conclusion,∥∥∥∥
[−cos θ̃ (x) sin θ̃ (x)

sin θ̃ (x) cos θ̃ (x)

]
−

[
y11(x) y12(x)

y21(x) y22(x)

] ∥∥∥∥
C0
< ε,

which implies that
∥∥∥∥

[−cos θ̃ (x) sin θ̃ (x)
sin θ̃ (x) cos θ̃ (x)

]
R−τ(x) −

[
b11(x) b12(x)

b21(x) b22(x)

] ∥∥∥∥
C0
< ε.

Let N be the closed annulus on the R
2-plane centered at the origin with radius

r1/

√
1 − r2

1 ≤ ρ ≤ r2/

√
1 − r2

2 . That is,

N :=
{

r√
1 − r2

(cos η, sin η) ∈ R
2 : r1 ≤ r ≤ r2, η ∈ R

}
.

Note that
1√

1 − r2
− r√

1 − r2
< 1.

Let ε < 1 be a number such that

1√
1 − r2

1

− ε · r1√
1 − r2

1

< 1

and let ε > 1 be a number such that

1√
1 − r2

2

− ε · r2√
1 − r2

2

> 0.

Given ε < ε < ε, we define hε : N → [0, 1) and gε : N → [−π , π ] as follows.
Given t ∈ N with |t | = r/

√
1 − r2, we may choose η ∈ R such that

t = r√
1 − r2

[−cos η sin η
sin η cos η

]
·
[

1
0

]
.

Consider the vector

1√
1 − r2

( [−1
0

]
+ r

[−cos η sin η
sin η cos η

]
·
[
ε

0

] )
. (2)

Then there exist unique s ∈ [0, 1) and β ∈ [−π , π ] so that

1√
1 − s2

( [−1
0

]
+ s

[−cos η sin η
sin η cos η

]
· Rβ ·

[
1
0

] )

coincides with (2). We define hε(t) = s and gε(t) = β. Here are some properties of hε .
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LEMMA 4.3.
(a) hε is continuous.
(b) Given t ∈ N with |t | = r/

√
1 − r2, we have hε(t) → r as ε → 1.

(c) Let t ∈ N with |t | = r/
√

1 − r2 and let ε′ ≤ ε ≤ 1. Then we have hε′(t) ≤ hε(t) ≤ r .
(d) Let t ∈ N with |t | = r/

√
1 − r2 and let ε′ ≥ ε ≥ 1. Then we have hε′(t) ≥ hε(t) ≥ r .

(e) Let h : N → [0, 1) be the function defined by h(t) = r if |t | = r/
√

1 − r2. Let {εn}
be a sequence such that εn → 1 and εn ≤ εn+1 (or εn ≥ εn+1) for all n. Then {hεn}
converges uniformly to h.

Proof. Parts (a) to (d) are easy to check. For part (e), suppose that {εn} is a sequence such
that εn → 1 and εn ≤ εn+1 ≤ 1 for all n. By part (b), {hεn} pointwise converges to h. By
part (c), hεn(t) ≤ hεn+1(t) for all n and for all t ∈ T .

Thus, by Dini’s theorem, {hεn} uniformly converges to h. A similar argument shows the
uniform convergence of {hεn} with εn ≥ εn+1 ≥ 1 for all n.

Here are some properties of gε .

LEMMA 4.4.
(a) gε is continuous.
(b) Given t ∈ N , we have gε(t) → 0 as ε → 1.
(c) Let t = ρ(cos η, sin η) ∈ N with η ∈ [0, π ]. If ε′ ≤ ε ≤ 1, we have gε′(t) ≤

gε(t) ≤ 0. If ε′ ≥ ε ≥ 1, we have gε′(t) ≥ gε(t) ≥ 0.
(d) Let t = ρ(cos η, sin η) ∈ N with η ∈ [π , 2π ]. If ε′ ≤ ε ≤ 1, we have gε′(t) ≥

gε(t) ≥ 0. If ε′ ≥ ε ≥ 1, we have gε′(t) ≤ gε(t) ≤ 0.
(e) Let {εn} be a sequence such that εn → 1 and εn ≤ εn+1 (or εn ≥ εn+1) for all n.

Then {gεn} uniformly converges to g = 0.

Proof. Parts (a) to (d) are easy to check. For part (e), suppose that {εn} is a sequence such
that εn → 1 and εn ≤ εn+1 ≤ 1 for all n. By part (b), {gεn} pointwise converges to g = 0.
By part (c), gεn(t) ≤ gεn+1(t) for all n if t = ρ(cos η, sin η) with η ∈ [0, π ]. By part (d),
gεn(t) ≥ gεn+1(t) for all n if t = ρ(cos η, sin η) with η ∈ [π , 2π ].

Thus, by Dini’s theorem, {gεn} uniformly converges to g = 0. A similar argument shows
the uniform convergence of {gεn} with εn ≥ εn+1 ≥ 1 for all n.

Note that by setting h(ε, t) := hε(t) and g(ε, t) = gε(t), it is easy to see that h :
(ε, ε)×N → [0, 1) and g : (ε, ε)×N → [ −π , π ] are continuous functions.

Now set B ′′(x) = B(x) for x ∈ X \ V . For x ∈ V , define B ′′ ∈ C0(X, S′
θ ′) as

follows.
(1) Consider

B ′(x) = 1√
1 − r(x)2

(
Rθ ′ + r(x)

[−cos θ̃ (x) sin θ̃ (x)
sin θ̃ (x) cos θ̃ (x)

]
R−τ(x)

)

and ε(x) = √
y11(x)2 + y21(x)2 (see equation (1)). We may assume that

ε < ε(x) < ε for all x ∈ X by taking a C0-close enough B to A.
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(2) Let ω(x) ∈ [0, 2π ] be such that Rω(x) · Rθ ′ · u(x) = (−1, 0). Define t (x) ∈ N as

t (x) = ρ(x) · Rω(x) ·
[−cos θ̃ (x) sin θ̃ (x)

sin θ̃ (x) cos θ̃ (x)

]
R−τ(x)u(x),

where ρ(x) = r(x)/
√

1 − r(x)2.
(3) Define B ′′(x) as

B ′′(x) = 1√
1 − s2

(
Rθ ′ + s

[−cos θ̃ (x) sin θ̃ (x)
sin θ̃ (x) cos θ̃ (x)

]
R−τ(x)Rβ

)
,

where s = hε(x)(t (x)), and let β = gε(x)(t (x)).
Note that, by construction, we have B ′′ ∈ C0(X, S′

θ ′) and

B(x)u(x) = B ′′(x)u(x) (3)

for all x ∈ X. Since (T , B) is uniformly hyperbolic, there exist a constant C and σ > 1
such that

‖(B ′′)n(x)‖ ≥ ‖(B ′′)n(x)u(x)‖ = ‖Bn(x)u(x)‖ ≥ Cσn

for all x ∈ X and n ≥ 1, where the equality holds by the equation (3). This gives us the
following lemma.

LEMMA 4.5. The cocycle (T , B ′′) is uniformly hyperbolic.

PROPOSITION 4.6. Let f ∈ C0(X, D) with f (x) 
= 0 for some x ∈ X and let A =
W−1A(f , z)W ∈ C0(X, S′

θ ′), where θ ′ ∈ R. Suppose that (T , A) is not uniformly hyper-
bolic. Given ε′ > 0, there exists B ′′ ∈ C0(X, S′

θ ′) such that ‖A− B ′′‖C0 < ε′ and (T , B ′′)
is uniformly hyperbolic.

Proof. Write A as in Lemma 4.1. Let ε′ > 0 be given. Let y ∈ X be such that
r(y) := r 
= 0. Choose an open set V ⊂ X such that y ∈ V and r(x) 
= 0 for all x ∈ V .
We may assume that r1 ≤ r(x) ≤ r2 for all x ∈ V , where r1, r2 ∈ [0, 1).

Choose δ1, δ2 > 0 so that |s − r2| < δ1 and |β| < δ2 imply that

∥∥∥∥ 1√
1 − r2

2

Rθ ′ − 1√
1 − s2

Rθ ′

∥∥∥∥

+
∥∥∥∥ r2√

1 − r2
2

[−cos η sin η
sin η cos η

]
− s√

1 − s2

[−cos η sin η
sin η cos η

] ∥∥∥∥

+
∥∥∥∥ s√

1 − s2

[−cos η sin η
sin η cos η

]
− s√

1 − s2

[−cos η sin η
sin η cos η

]
Rβ

∥∥∥∥ < ε′

3

for all η ∈ R.
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Then, given r ∈ [r1, r2], s̄ with |r − s̄| < δ1 and |β| < δ2, we have∥∥∥∥ 1√
1 − r2

(
Rθ ′ + r

[−cos η sin η
sin η cos η

] )

− 1√
1 − s̄2

(
Rθ ′ + s̄

[−cos η sin η
sin η cos η

]
Rβ

)∥∥∥∥ < ε′

3

for all η ∈ R.

Let N ⊂ R
2 be the annulus of radius r1/

√
1 − r2

1 ≤ ρ ≤ r2/

√
1 − r2

2 . Define l : N →
[0, 1) as l(t) := r when |t | = r/

√
1 − r2 and define hε : N → [0, 1) and gε : N →

[−π , π ] as above. By parts (c), (d) and (e) of Lemmas 4.3 and 4.4, we may choose δ > 0
so that |1 − ε| < δ implies that |hε(t)− l(t)| < δ1 and |gε(t)| < δ2 for all t ∈ N .

By Lemma 3.1, we may choose B ∈ C0
A,V
(X, SL(2, R)), which is arbitrarily close to A,

and (T , B) is uniformly hyperbolic. Let B ∈ C0
A,V
(X, SL(2, R)) be close enough to A so

that |ε(x)− 1| < δ for all x ∈ X, where ε(x) := √
y11(x)2 + y21(x)2 (see equation (1)).

Define B ′ ∈ C0(X, S′
θ ′) and B ′′ ∈ C0(X, S′

θ ′) as previously. Then we have |hε(x)(t (x))−
r(x)| < δ1 and |gε(x)(t (x))| < δ2 for all x ∈ X. (Note that l(t (x)) = r(x).) With such B,
we have ‖B ′ − B ′′‖C0 < ε′/3.

From here, choose a C0-close B (if necessary) so that ‖A− B‖C0 < ε′/3 and
‖B − B ′‖C0 < ε′/3. In conclusion, we have

‖A− B ′′‖C0 ≤ ‖A− B‖C0 + ‖B − B ′‖C0 + ‖B ′ − B ′′‖C0 < ε′

while B ′′ ∈ C0(X, S′
θ ′) and (T , B ′′) is uniformly hyperbolic.

Proof of Theorem 2.2. Let f ∈ C0(X, D) and suppose that f is not identically zero. Let
A := W−1A(f , z)W ∈ C0(X, S′

θ ′) and suppose that (T , A) is not uniformly hyperbolic.
Choose B ∈ C0(X, SL(2, R)), B ′ ∈ C0(X, S′

θ ′) and B ′′ ∈ C0(X, S′
θ ′) as in the proof of

Proposition 4.6.
Define β : X → D as β(x) = hε(x)(t (x))e

iη(x), where

η(x) = θ̃ (x)− τ(x)+ gε(x)(t (x))− θ ′.

Note that we have β ∈ C0(X, D) and

W−1A(β(x), z)W = W−1 1

z1/2
√

1 − |β(x)|2
[

z −β̄(x)
−β(x)z 1

]
W

= B ′′(x).

Since W is unitary and ‖A− B ′′‖C0 < ε′, we have

‖WAW−1 −WB ′′W−1‖C0 = ‖A(f , z)− A(β, z)‖C0 < ε′.

This implies that we may choose β ∈ C0(X, D), which is arbitrarily C0-close to f , and
(T , A(β, z)) is uniformly hyperbolic.

Now suppose that f ∈ C0(X, D) is identically zero. Then we may choose f ′ ∈
C0(X, D) such that it is not identically zero and arbitrarily C0-close to f . With f ′, we
may repeat a similar procedure as above.
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Now, for z ∈ ∂D, consider the set

UHz = {f ∈ C0(X, D) : (T , A(f , z)) is uniformly hyperbolic}.
Then UHz is open and dense by the previous argument. Thus, we may choose a countable
dense subset {zn} of ∂D to conclude that for f ∈ ⋂

n UHzn , the set ∂D \
 is dense. Note
that 
 is a compact set and contains no isolated points by ergodicity of T . Together with
the result in [6], the associated CMV matrices have a Cantor spectrum for a generic f ∈
C0(X, D).

5. Proof for Jacobi matrices
Let fa , fb ∈ C0(X, R) with fa(x) > 0 for all x ∈ X. Fix x ∈ X and letHx be a two-sided
Jacobi matrix with an = fa(T

nx), bn = fb(T
nx). Define J ⊂ SL(2, R) as

J =
⎧⎨
⎩

⎡
⎣ t −1

a
a 0

⎤
⎦ ∈ SL(2, R)|t , a ∈ R, a > 0

⎫⎬
⎭ .

Then we have AE,a,b ∈ C0(X, J ). Recall that given a non-empty subset K ⊂ X,
C0
A,K(X, SL(2, R)) denotes the set of all B ∈ C0(X, SL(2, R)) such that A(x) = B(x)

for x /∈ K .

LEMMA 5.1. LetK ⊂ X be a compact set such thatK ∩ T (K) = ∅ andK ∩ T 2(K) = ∅.
Let A ∈ C0(X, J ) be such that for every x ∈ K , we have trA(x) 
= 0. Then there exist an
open neighborhood WA,K ⊂ C0

A,K(X, SL(2, R)) of A and continuous maps

� = �A,K : WA,K → C0(X, J )

and

� = �A,K : WA,K → C0(X, SL(2, R))

satisfying

�(B)(T (x)) · B(x) · [�(B)(x)]−1 = �(B)(x),

�(A) = A and �(A) = id.

Proof. Let B ∈ C0
A,K(X, SL(2, R)). Let �(B)(x) = A(x) if x /∈ ⋃1

i=−1 T
i(K). Fix

x ∈ K . Let

B(T (x))B(x)B(T −1(x)) =
⎡
⎣ t1 − 1

a1
a1 0

⎤
⎦

[
p q

r s

] ⎡
⎣ t3 − 1

a3
a3 0

⎤
⎦

=
⎡
⎢⎣t1(pt3 + qa3)− rt3 + sa3

a1
−pt1
a3

+ r

a1a3

a1(pt3 + qa3) −pa1

a3

⎤
⎥⎦
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and let

A(x) =
⎡
⎣ t2 − 1

a2
a2 0

⎤
⎦ .

For x ∈ ⋃1
i=−1 T

i(K), our goal is to define �(B)(x) so that

�(B)(T (x))�(B)(x)�(B)(T −1(x)) =
⎡
⎢⎣t1(pt3 + qa3)− rt3 + sa3

a1
−pt1
a3

+ r

a1a3

a1(pt3 + qa3) −pa1

a3

⎤
⎥⎦

while we have �(B)(x) ∈ J .
By a simple calculation,

⎡
⎣ t ′1 − 1

a′
1

a′
1 0

⎤
⎦

⎡
⎣ t ′2 − 1

a′
2

a′
2 0

⎤
⎦

⎡
⎣ t ′3 − 1

a′
3

a′
3 0

⎤
⎦ =

⎡
⎢⎢⎣
t ′1

(
t ′2t ′3 − a′

3
a′

2

)
− a′

2a
′
3

a′
1

− t
′
1t

′
2

a′
3

+ a′
2

a′
1a

′
3

a′
1

(
t ′2t ′3 − a′

3
a′

2

)
− t

′
2a

′
1

a′
3

⎤
⎥⎥⎦ .

Set a′
1 = a1, a′

2 = a2 and a′
3 = a3. We may write t ′i , i = 1, 2, 3, as

t ′i = E − b′
i

a′
i

,

where E, b′
i ∈ R. Set

b′
2 = E − pa2,

b′
3 = E − a′

3

pt3 + qa3 + a′
3
a′

2
t ′2

and

b′
1 = E − a′

1a
′
3

t ′2

(
a′

2
a′

1a
′
3

+ pt1

a3
− r

a1a3

)
.

Note that we have p 
= 0 by choosing a proper neighborhood WA,K of A since we assume
that trA(x) 
= 0 for all x ∈ K . This, in turn, implies that t ′2 
= 0.

By setting

�(B)(T (x)) =
⎡
⎣ t ′1 − 1

a′
1

a′
1 0

⎤
⎦ , �(B)(x) =

⎡
⎣ t ′2 − 1

a′
2

a′
2 0

⎤
⎦

and

�(B)(T −1(x)) =
⎡
⎣ t ′3 − 1

a′
3

a′
3 0

⎤
⎦ ,

we have

�(B)(T (x))�(B)(x)�(B)(T −1(x)) = B(T (x))B(x)B(T −1(x)).
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Let �(B)(x) = id for x /∈ K ∪ T (K) and let

�(B)(x) = �(B)(T −1(x)) · [B(T −1(x)]−1

for x ∈ K . Let

�(B)(x) = �(B)(T −1(x)) ·�(B)(T −2(x)) · [B(T −2(x)]−1 · [B(T −1(x)]−1

for x ∈ T (K). All properties are easy to check.

By combining Lemmas 3.1 and 5.1, we obtain the following result.

PROPOSITION 5.2. Let A ∈ C0(X, J ) be a map whose trace is not identically zero. Then
there exist an open neighborhood W ⊂ C0(X, SL(2, R)) of A and continuous maps

� = �A : W → C0(X, J ) and � = �A : W → C0(X, SL(2, R))

satisfying

�(B)(T (x)) · B(x) · [�(B)(x)]−1 = �(B)(x),

�(A) = A and �(A) = id.

Proof. Let x ∈ X be such that trA(x) 
= 0. Let V be an open neighborhood of x such that
with K = V̄ , we have trA(x) 
= 0 for x ∈ K , K ∩ T (X) = ∅ and K ∩ T 2(X) = ∅.

Let �A,V : WA,V → C0
A,V̄
(X, SL(2, R) and �A,V : WA,V → C0(X, SL(2, R)) be

given by Lemma 3.1. Let�A,K :WA,K →C0(X, J ) and �A,K : WA,K →C0(X, SL(2, R))
be given by Lemma 5.1. Let W be the domain of � := �A,K ◦�A,V and let � =
(�A,K ◦�A,V ) ·�A,V . With � and �, the result follows.

Remark. Let us discuss why we do not apply the above procedure in the case of CMV
matrices. To make a similar argument as in the proof of Lemma 5.1, one essential part is
to construct �(B) ∈ C0(X, S′

θ ′) such that

B(T m(x)) · · · B(x) · · · B(T −n(x))
= �(B)(T m(x)) · · · �(B)(x) · · · �(B)(T −n(x))

for some m, n ∈ Z+. The conjugation property almost automatically follows then. As we
observed in the proof of Lemma 5.1, the construction is related to the solvability of a
system of equations.

If we write �(B) as in Lemma 4.1, the product of matrices,

�(B)(T m(x)) · · · �(B)(x) · · · �(B)(T −n(x)),

may be very complicated. In addition, we have many constraints since a matrix as in
Lemma 4.1 has a very particular form while 0 ≤ r(x) < 1.

Alternatively, we may consider a product of matrices as in the form of SU(1, 1). In
this case, the product involves complex numbers and conjugations of those while solutions
must be in the complex unit disk. Moreover, we anticipate that it is unlikely that solutions
are written as linear forms.
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Now we are ready to prove Theorem 2.3. Let A ∈ C0(X, J ). Recall that if A is not
uniformly hyperbolic, we may choose B ′ ∈ C0(X, SL(2, R)) such that B ′ is arbitrarily
C0-close to A and (T , B ′) is uniformly hyperbolic.

Proof of Theorem 2.3. For E ∈ R, define the set

UHE := {fb ∈ C0(X, R)|(T , AE,a,b) is uniformly hyperbolic}.
Suppose that a cocycle (T , AE,a,b) is not uniformly hyperbolic. If fb(x) 
= E for some
x ∈ X, (T , AE,a,b) can be approximated by a uniformly hyperbolic cocycle (T , AE,a,b′)
for some fb′ ∈ C0(X, R) by Proposition 5.2.

Suppose that fb(x) = E for all x ∈ X. Then we may find b′ ∈ C0(X, R) such that fb′
is arbitrarily C0-close to fb and fb′(x) 
= E for some x ∈ X. From (T , AE,a,b′), we may
choose a uniformly hyperbolic cocycle (T , AE,a,b′′) for some fb′′ ∈ C0(X, R), which is
arbitrarily C0-close by Proposition 5.2. This shows that the set UHE is open and dense.
Thus, there exists a countable dense subset {En} ⊂ R so that for all fb ∈ ⋂

n UHEn ,
the set R \
 is dense. Note that 
 is a compact set and contains no isolated points by
ergodicity of T . Together with the result in [11], the associated Jacobi matrices have a
Cantor spectrum for a generic f ∈ C0(X, D).
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[7] D. Damanik and D. Lenz. Uniform Szegő cocycles over strictly ergodic subshifts. J. Approx. Theory 144(1)

(2007), 133–138.
[8] M. Goldstein and W. Schlag. On resonances and the formation of gaps in the spectrum of quasi-periodic

Schrödinger equations. Ann. of Math. (2) 173(1) (2011), 337–475.
[9] M. Goldstein, W. Schlag and M. Voda. On the spectrum of multi-frequency quasiperiodic Schrödinger

operators with large coupling. Invent. Math. 217(2) (2019), 603–701.
[10] R. A. Johnson. Exponential dichotomy, rotation number, and linear differential operators with bounded

coefficients. J. Differential Equations 61(1) (1986), 54–78.
[11] C. A. Marx. Dominated splittings and the spectrum of quasi-periodic Jacobi operators. Nonlinearity 27(12)

(2014), 3059–3072.
[12] C. A. Marx and S. Jitomirskaya. Dynamics and spectral theory of quasi-periodic Schrödinger-type

operators. Ergod. Th. & Dynam. Sys. 37(8) (2017), 2353–2393.
[13] B. Simon. Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory (American Mathematical

Society Colloquium Publications, 54). American Mathematical Society, Providence, RI, 2005.

https://doi.org/10.1017/etds.2021.30 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.30


Cantor spectrum for CMV and Jacobi matrices 2027

[14] B. Simon. Orthogonal Polynomials on the Unit Circle. Part 2. Spectral Theory (American Mathematical
Society Colloquium Publications, 54). American Mathematical Society, Providence, RI, 2005.

[15] M. Viana. Lectures on Lyapunov Exponents (Cambridge Studies in Advanced Mathematics, 145). Cam-
bridge University Press, Cambridge, 2014.

[16] F. Wang and D. Damanik. Anderson localization for quasi-periodic CMV matrices and quantum walks.
J. Funct. Anal. 276(6) (2019), 1978–2006.

[17] J.-C. Yoccoz. Some questions and remarks about SL (2, R) cocycles. Modern Dynamical Systems and
Applications. Cambridge University Press, Cambridge, 2004, pp. 447–458.

https://doi.org/10.1017/etds.2021.30 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.30

	1 Introduction
	2 Statement of results
	2.1 CMV matrices
	2.2 Jacobi matrices
	2.3 Discussion of the results

	3 Results for SL(2,R)-cocycles
	4 Proof of results
	4.1 Proof for CMV matrices

	5 Proof for Jacobi matrices
	Acknowledgements
	References

