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A GIBBS SAMPLER FOR THE (EXTENDED) MARGINAL RASCH MODEL
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In their seminal work on characterizing the manifest probabilities of latent trait models, Cressie
and Holland give a theoretically important characterization of the marginal Rasch model. Because their
representation of the marginal Rasch model does not involve any latent trait, nor any specific distribution of
a latent trait, it opens up the possibility for constructing aMarkov chain -Monte Carlo method for Bayesian
inference for the marginal Rasch model that does not rely on data augmentation. Such an approach would
be highly efficient as its computational cost does not depend on the number of respondents, which makes
it suitable for large-scale educational measurement. In this paper, such an approach will be developed and
its operating characteristics illustrated with simulated data.

Key words: item response theory, marginal Rasch model, extended Rasch model, Gibbs sampler.

1. Introduction

Over the last two decades, Markov chain - Monte Carlo (MCMC) approaches to Bayesian
inference for item response theory (IRT) models have become increasingly popular. Most appli-
cations follow the data augmentation Gibbs (DA-Gibbs) approach of Albert (1992) (see also,
Albert & Chib, 1993) for the normal ogive model. The work of Albert (1992) has been extended
in many directions, see for instance Maris and Maris (2002), Fox and Glas (2001), Béguin and
Glas (2001), and many others.

Data augmentation provides a very powerful tool to simplify sampling from distributions
that are otherwise intractable. However, the tractability comes at a prize in terms of both the
autocorrelation and the computational cost of every step in the resulting Markov chain, which
limits its usefulness for large-scale applications.

The approach advocated by Albert (1992) involves two layers of augmented data. First, for
every person an unobserved ability is introduced, and second, for every item response a normally
distributed variable is introduced. Johnson and Junker (2003) propose to use aMetropolis-within-
Gibbs algorithm to remove one layer of augmented data from the problem.

In this paper, a different approach will be developed that does not use data augmentation
at all, and hence will give a Markov chain with lower autocorrelation, whilst at the same time
producing tractable full conditional distributions. Moreover, as will become apparent later on, the
computational cost for every iteration of the algorithm is independent of the number of persons.
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860 PSYCHOMETRIKA

This combination makes our algorithm suitable for large-scale applications involving both large
numbers of items and persons.

We take as our starting point the theoretically important characterization of the marginal
Raschmodel fromCressie andHolland (1983). They not only give a representation of themarginal
Rasch model, but also show that without further parametric assumptions on the distribution of
ability only a limited number of characteristics of the ability distribution can be estimated. Using
the famous Dutch identity (Holland, 1990), we develop a parametrization of the marginal Rasch
model in terms of item difficulty parameters, and Expected A Posteriori (EAP) estimators for
ability. That is, even though the individual ability parameters do not figure in the Cressie and
Holland (1983) characterization of the marginal Rasch model, their EAP estimators do figure in
the model.

Recent work on the Cressie and Holland (1983) characterization of the marginal Raschmodel
has centred on constrained versions (Hessen, 2011; 2012), and on pseudo-likelihood approaches
to parameter estimation (Anderson, Li, & Vermunt, 2007). Our work is complementary to such
recent work, in that it provides researchers with a fully Bayesian approach to statistical inference
suitable for use in large-scale educational measurement contexts.

This paper is organized as follows. In Sect. 2 the characterization of the marginal Rasch
model from Cressie and Holland (1983) is revisited. In Sect. 3 a Gibbs sampler for the Cressie
and Holland (1983) formulation of the marginal Rasch model is proposed. Section 4 provides
some simulation studies to illustrate the working characteristics of our approach. Section 5 shows
how the approach can be extended in a number of directions, and the paper ends with some
concluding comments and discussion.

2. The (Extended) Marginal Rasch Model

If f denotes the density for the ability distribution, the marginal Rasch model may be
expressed as follows1:

P(X = x) =
∫ ∞

−∞

∏
i

exp(xi (θ − δi ))

1 + exp(θ − δi )
f (θ)dθ (1)

where xi equals one for correct and zero for incorrect responses, δi is the difficulty of item i , and
θ denotes ability.

Recognizing that

1∏
i 1 + exp(θ − δi )

f (θ) ∝ f (θ |X = 0)

is proportional to the posterior distribution of ability for someone who answers all items incor-
rectly, with as proportionality constant the (marginal) probability to answer all items incorrectly
(P(0)), we may express the marginal Rasch model as follows:

P(x) =
∫ ∞

−∞
exp

(∑
i

xi (θ − δi )

)
f (θ |X = 0)dθ P(0)

=
(∏

i

bxii

)
E (exp(x+�)|X = 0) P(0) (2)

1 Where possible without introducing ambiguity, we suppress the difference between random variables and their
realization.
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where bi = exp(−δi ) and x+ denotes the sum score.
The theoretical significance of Eq. 2, which corresponds to Equation 13 from Cressie and

Holland (1983), is that it clearly shows that one cannot infer the full population distribution from
the marginal Rasch model. However, theoretically, important this result is, we will treat Eq. 2 as a
characterization of the marginal Rasch model that is useful for constructing a Gibbs sampler for
Bayesian inference.

With some further change of notation

μ = P(0)

λs = E (exp(s�)|X = 0)

we finally obtain the following characterization of the marginal Rasch model:

P(x) =
∏
i

bxii λx+μ (3)

As it stands, the marginal Rasch model, as written in Eq. 3, need, without further constraints,
not even represent a probability distribution. A constraint which suffices to ensure that Eq. 3
represents a probability distribution (i.e.

∑
x P(x) = 1) is the following:

μ = 1∑
x
∏

i b
xi
i λx+

= 1∑n
s=0 γs(b)λs

(4)

in which the γs function denotes the elementary symmetric function2 of order s of the vector b.
Imposing the constraint in Eq. 4 we obtain the following expression for the marginal Rasch

model

P(x) = p(x|b,λ) =
∏

i b
xi
i λx+∑n

s=0 γs(b)λs
(5)

from which we readily see that it does indeed represent a probability distribution for all (non-
negative) values of its parameters.

Additional insight in the structure of the marginal Rasch model derives from considering
some of its properties. We focus on properties that are not only theoretically but also practically
significant. First, from the distribution in Eq. 5 we readily find the following factorization

p(x|b,λ) = p(x|x+,b)p(x+|b,λ)

=
∏

i b
xi
i

γx+(b)

γx+(b)λx+∑n
s=0 γs(b)λs

=
∏

i b
xi
i

γx+(b)
πx+ (6)

2 The elementary symmetric function of order s of the vector b is defined as

γs (b) =
∑
x→s

∏
i

b
xi
i

where the sum runs over all response patterns x that yield the sum score s.
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which gives the conditional likelihood distribution that is also used in conditional maximum-
likelihood estimation for the Rasch model (Andersen, 1973) and the score distribution. Observe
that the factorization shows that the observed score distribution is the sufficient statistic for λ.
Observe that the parameters b, λ and b, π are one–one transformations of each other. The last
expression is due to Tjur (1982), and is called the extended Rasch model by Cressie and Holland
(1983). We see directly from Eq. 6 that the conditional maximum- likelihood estimates of the
item difficulty parameters (Andersen, 1973) are equivalent to their maximum-likelihood estimates
under an extended Rasch model. As a consequence, Bayesian inferences for the parameters of
the extended Rasch model can be perceived as the Bayesian analogue of conditional maximum-
likelihood estimation.

Second, we consider the marginal and conditional distributions corresponding to Eq. 5. In
particular, we consider the distribution of x without item n (which we denote by x(n)):

p(x(n)|b,λ) = p(x(n), 1|b,λ) + p(x(n), 0|b,λ)

=
∏

i �=n b
xi
i (λ

x (n)
+

+ λ
x (n)
+ +1

bn)∑n
s=0 γs(b)λs

=
∏

i �=n b
xi
i (λ

x (n)
+

+ λ
x (n)
+ +1

bn)∑n−1
s=0 γs(b(n))(λs + λs+1bn)

(7)

where the last equality follows from the following recursive property of elementary symmetric
functions (Verhelst, Glas, & van der Sluis, 1984):

γs(b) = γs(b(i)) + γs−1(b(i))bi (8)

and shows that X(n) is also a marginal Rasch model.
We readily obtain the distribution of Xn conditionally on the remaining n − 1 responses:

p(Xn = x |x(n),b,λ) =
bxnλx (n)

+ +x

η
x (n)
+

=

(
bn

λ
x(n)
+ +1

λ
x(n)
+

)x

1 + bn
λ
x(n)
+ +1

λ
x(n)
+

= p(Xn = x |x (n)
+ ,b,λ). (9)

We find that this conditional distribution only depends on the remaining n − 1 responses via the
raw score x (n)

+ , and it is independent of the values of the remaining item parameters b(n). That is,
expression 9 gives an analytical expression for the item-rest regression function, which may be
used for evaluating the fit of the marginal Rasch model.

Third, in rewriting Eq. 2 as Eq. 3, we actually did more than just change the parametrization.
Specifically, the model in Eq. 3 reduces to the model in Eq. 2 if, and only if, the λs parameters
represent a sequence of moments. To appreciate the kind of constraints this implies, we consider
λ1 and λ2. From the fact that the variance of a random variable is non-negative, we readily obtain
that

λ2 = E (exp(2�)|X = 0) ≥ E (exp(�)|X = 0)2 = λ21

In its most general form, these inequality constraints can be formulated as follows (Shohat &
Tamarkin, 1943):
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det

⎡
⎢⎢⎢⎣

λ0 λ1 . . . λm
λ1 λ2 . . . λm+1
...

...
...

λm λm+1 . . . λ2m

⎤
⎥⎥⎥⎦ ≥ 0 ,m = 0, 1, 2, . . .

and

det

⎡
⎢⎢⎢⎣

λ1 λ2 . . . λm+1
λ2 λ3 . . . λm+2
...

...
...

λm+1 λm+2 . . . λ2m+1

⎤
⎥⎥⎥⎦ ≥ 0 ,m = 0, 1, 2, . . .

After introducing a Gibbs sampler for the extended Rasch model in Eq. 3, in the next Section,
we consider how the additional constraints implied by the marginal Rasch model in Eq. 2 can be
incorporated in the algorithm. In a more restricted setting, Theorem 3 of Hessen (2011) provides
the constraints needed for the extended Rasch model to be equivalent to a marginal Rasch model
in which the latent variable is normally distributed.

Fourth, even if all the moment constraints are met, the λs parameters are not very easy to
interpret, as they correspond to a sequence of moments corresponding to the posterior distribution
of ability for a person who fails all the items. For that reason we introduce a more natural
parametrization. Specifically, from the Dutch identity (Holland, 1990) applied to the marginal
Rasch model, we immediately obtain

τs = λs+1

λs
= E(exp((s + 1)�)|X = 0)

E(exp((s)�)|X = 0)

=
∫ ∞
−∞ exp((s + 1)θ) f (θ |X = 0)dθ∫ ∞

−∞ exp(sθ) f (θ |X = 0)dθ

=
∫ ∞

−∞
exp(θ)

exp(sθ)∏
i 1+exp(θ−δi )

f (θ)

∫ ∞
−∞

exp(sθ)∏
i 1+exp(θ−δi )

f (θ)dθ
dθ

=
∫ ∞

−∞
exp(θ) f (θ |X+ = s)dθ = E(exp(�)|X+ = s) (10)

which is recognized as the posterior expectation of ability for different scores. Observe that
the posterior expectation of ability for a person who answers all questions correctly cannot be
estimated. As we find later, this new parametrization is also useful when considering the moment
constraints implied by the marginal Rasch model. In terms of the item parameters b and the EAP
parameters τ , the marginal Rasch model can be expressed as follows:

P(X = x|b, τ ) =
∏

i b
xi
i

∏
s<x+ τs∑

s γs(b)
∏

t<s τt

Fifth, a further consequence of the Dutch identity is that we can obtain not only the EAP
estimators for ability, but also more generally

λs+t

λs
= E (exp(t�)|X+ = s) , 0 ≤ s + t ≤ n (11)
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We proceed to show how this fact can be used in combination with an algorithm to sample from
the posterior distribution of the parameters of the marginal Rasch model to obtain estimates of
both the posterior mean and variance of ability, taking into account the uncertainty regarding the
parameters of the marginal Rasch model. Using Eq. 11, we obtain that

E(
exp(�)|X+ = s,b,λ

) = λs+1

λs
, s = 0, . . . , n − 1

and

E(
exp(�)2|X+ = s,b,λ

) = λs+2

λs
, s = 0, . . . , n − 2

from which we directly obtain (for s = 0, . . . , n − 1)

E(
exp(�)|X+ = s,X = x

) = E[E(exp(�)|X+ = s,B,�)|X = x]
= E

[

s+1


s
|X = x

]

which can be directly estimated (using Monte Carlo integration) with a sample from the posterior
distribution of�. Similarly, we can estimate the posterior variance of ability (for s = 0, . . . , n−2)

V(exp(�)|X+ = s,X = x) = V[E(exp(�)|X+ = s,B,�)|X = x]
+ E[V(exp(�)|X+ = s,B,�)|X = x] (12)

where V(exp(�)|X+ = s,b,λ) is estimated as follows:

V(exp(�)|X+ = s,b,λ) = λs+2

λs
−

(
λs+1

λs

)2

The first termon the right-hand side of Eq. 12 reflects uncertainty due to the fact that the parameters
b and λ are not known, whereas the second term reflects uncertainty due to finite test length.
Specifically, as the number of persons tends to infinity, the first term in Eq. 12 tends to zero. The
second term, however, tends to zero as the number of items tends to infinity.

For some, inferences regarding exp(θ) rather than regarding θ directly may seem inconve-
nient. Particularly, since the posterior distribution of exp(θ) converges to its asymptotic (in the
number of items) normal limit at a slower rate than does the posterior distribution of θ . Hence, the
posterior mean and variance of exp(θ) need not give a good summary of the posterior distribution.
Using Corollary 1 from Holland (1990), we may for scores for which the posterior distribution
of θ can be considered to be approximately normal, use the relation between moments of the
log-normal distribution, and the mean and variance of the corresponding normal distribution to
obtain approximations to the posterior mean and variances of θ (denoted below with μs and σ 2

s ):

E(exp(�)|X+ = s,b,λ) ≈ exp(μs + 1/2σ 2
s )

and

E(exp(�)2|X+ = s,b,λ) ≈ exp(2μs + 2σ 2
s )
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such that

σ 2
s ≈ ln[E(exp(�)2|X+ = s,b,λ)] − 2 ln[E(exp(�)|X+ = s,b,λ)]

and

μs ≈ 2 ln[E(exp(�)|X+ = s,b,λ)] − ln[E(exp(�)2|X+ = s,b,λ)]/2

Finally, in the field of educational surveys (such as PISA, TIMMS, ESLC, etc.), the purpose
of the study is to relate ability to student (or school, or system) characteristics.We shortly consider
how such research could, in principle, be based on the marginal Rasch model. In typical applica-
tions, the relation between student responses and other student characteristics (e.g. gender) runs
through ability. That isY (the student characteristics) and the student responsesX are independent
conditionally on ability. Typically, the distribution of ability conditionally on Y is modelled as a
normal regression model.

Theorem 1. If Y⊥⊥X|θ and X⊥⊥ �|X+, then also Y⊥⊥X|X+
Proof. The conditions of the Theorem imply the following joint distribution:

f (x, x+, y, θ) = f (y|θ)p(x|x+)p(x+|θ) f (θ)

from which we immediately obtain

f (y, x|x+) = p(x|x+)

∫ ∞

−∞
f (y|θ) f (θ |x+)dθ


�
Theorem 1 shows that under the assumptions of independence between X and Y conditionally
on θ , and of sufficiency of the sum score, all information on the relation between Y and X is
contained in the distribution of Y conditionally on X+, which is (at least in principle) directly
observable (to any desired degree of accuracy). Observe that Theorem 1 holds true for every
element ofY in isolation, which implies that we may modelmain effects of student characteristics
with an appropriate item-rest regression function (with the item relating to an element of Y, and
the rest to X+). Observe furthermore that, using Bayes theorem, we may equally well estimate
the distribution of X+ conditionally on an element from Y.

3. A Gibbs Sampler

Looking at the likelihood function in Eq. 5, we readily see that the parameters are not iden-
tifiable from X. Specifically, using the following well-known relation for elementary symmetric
functions γs(cb) = csγs(b) (Verhelst et al., 1984), we obtain

p(x|b,λ) =
∏

i b
xi
i λx+∑n

s=0 γs(b)λs

=
∏

i b
xi
i

cx+
cx+ λx+∑n

s=0 γs(b) c
s

cs λs

=
∏

i (cbi )
xiλ∗

x+∑n
s=0 γs(cb)λ∗

s
= p(x|cb,λ∗)
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with λ∗
s = λs/cs . This type of non-identifiability can easily be resolved with a constraint on one

of the item parameters bi = 1 (which we assume to be the first one, without loss of generality).
Observe, however, that changing the identifying constraint also changes the values of λ. Observe,
that the λs may all be multiplied with the same constant, without changing the distribution.
This additional type of non-identifiability can easily be resolved by constraining one of the λs
parameters to a constant.

In order to construct an algorithm for sampling from the posterior distribution of b and
λ corresponding to Eq. 5, a prior distribution needs to specified. We consider a simple prior
distribution for the parameters which give rise to tractable full conditional distributions for each
of the parameters. The prior we consider is the following:

f (b,λ) =
(∏

i

αi b
αi−1
i

) (∏
s

βsλ
βs−1
s

)
(13)

Assuming that none of the items is answered (in)correctly by all students, and that every score
occurs at least once, we can specify an improper uniform prior distribution of b and λ by choosing
all αi and βs to be equal to one:

f (b,λ) ∝ 1

that still yields a proper posterior distribution.
Using this prior, the posterior distribution is the following:

f (b,λ|x;α,β) ∝
∏

i b
x+i+αi−1
i

∏
s λ

ms+βs−1
s(∑n

s=0 γs(b)λs
)m (14)

where x+i refers to the number of persons that make item i correct, ms refers to the number of
persons that obtain a sum score equal to s, and m denotes the number of persons.

The distribution in Eq. 14 is not very tractable. Specifically, it is not immediately clear how
to generate iid draws from it. We show that using a Gibbs sampler (Geman & Geman, 1984;
Gelfand & Smith, 1990; Casella & George, 1992) we obtain full conditional distributions that are
each easy to sample from. In that way, we can generate a Markov chain for which the posterior
distribution in Eq. 14 is the unique invariant distribution.

3.1. Full Conditional Distribution for bi

The full conditional distribution for an item parameter bi is proportional to

f (bi |b(i),λ, x;α,β) ∝ bx+i+αi−1
i(∑n

s=0 γs(b)λs
)m (15)

In order to see how a sample from the full conditional distribution in Eq. 15may be generated,
we use the recursive property of elementary symmetric functions in Eq. 8 which shows that
elementary symmetric functions are linear in each of their arguments.

Using the result in Eq. 8 allows us to rewrite the full conditional distribution in Eq. 15 as
follows:

f (bi |b(i),λ, x;α,β) ∝ bx+i+αi−1
i

(1 + cbi )m
(16)
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where c is a constant depending only on all other parameters:

c =
∑n

s=0 γs−1(b(i))λs∑n
s=0 γs(b(i))λs

With a transformation of variables

y = cbi
1 + cbi

(17)

we obtain the following expression

f (y|b(i),λ, x;α,β) ∝ yx+i+αi−1(1 − y)m−x+i−αi−1 (18)

which is readily seen to be a beta distribution.
That is, if we generate y from a beta (x+i +αi ,m− x+i −αi ) distribution, then the following

transformation of y (being the inverse to the transformation in Eq. 17)

bi = 1

c

y

1 − y

gives us a draw from the full conditional distribution in Eq. 15. Formally, the distribution in Eq.
15 classifies as a scaled Beta prime distribution.

3.2. Full Conditional Distribution for λs

The full conditional distribution for an element of λ is readily seen to be the following:

f (λt |b,λ(t), x;α,β) ∝ λ
mt+βt−1
t(∑n

s=0 γs(b)λs
)m (19)

As we found when considering the full conditional distribution for the item parameters, we see
that the denominator in Eq. 19 is linear in λt , such that we obtain

f (λt |b,λ(t), x;α,β) ∝ λ
mt
t

(1 + cλt )m
(20)

where now the constant (with respect to λt ) c equals

c = γt (b)∑
s �=t γs(b)λs

We see that the full conditional distributions for both the bi and the λs parameters belong to
the same family of distributions.
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Figure 1.
Empirical distribution functions for iterations 49 and 50 based on 5000 replications of the Gibbs sampler for b2 and λ10.

4. Simulation Results

In this section we present some simulation results to illustrate the operating characteristics
of our new Gibbs sampler. We focus on two aspects. First, we evaluate the autocorrelation in
the Markov chain, which drives convergence. Second, we evaluate the computational burden. In
Appendix an illustrative implementation of our Gibbs sampler is given in R (R Development Core
Team, 2011). This code was used to generate the simulation results presented below. Observe that
when n becomes large, significant computational advantages can be obtained by coding (parts
of) the algorithm in a compiled language (e.g. C++, Fortran, Pascal). All simulations were run
on a Lenovo X200s laptop with an Intel Core2 Duo CPU with a clock speed of 2.13 GHz and 2
gigabytes of memory running Windows 7 Enterprise.

4.1. Autocorrelation and Convergence

Convergence of Markov chains is driven by the autocorrelation structure of the chain. In
this simulation study we evaluate the autocorrelation as a function of lag, and convergence of
the Gibbs sampler. A Markov chain is converged in iteration t if the cumulative distribution
function (CDF) at iteration t and t + 1 coincide. For a 30 item test, with true item difficulties
uniformly distributed between −2 and 2, and 100,000 persons drawn from a standard normal
distribution, 5000 replications of the Gibbs sampler were run for 50 iterations each, with starting
values uniformly distributed between 0 and 1 for b, and λ. These 5000 Markov chains allow us to
estimate the autocorrelation between any two iterations, and to evaluate the distribution of every
parameter at every iteration.

Figure 1 shows the empirical CDF (ECDF) after 49 and 50 iterations for one item parameter
(b2) and one of the λ parameters (λ10). It is clear from Figure 1 that after only 50 iterations the
Markov chain is converged.

Figure 2 gives the autocorrelation for lag 0 to 50, after discarding the first 49 iterations. It is
clear from Figure 2 that except for the lag 1 autocorrelation, autocorrelation is negligible.

We conclude that ourMarkov chain comes close to generating an independent and identically
distributed sample from the posterior distribution, with virtually no autocorrelation whatsoever.
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Figure 2.
Autocorrelation for lag 0 to 50, after a burnin of 49 iterations, for b2 based on 5000 replications of the Gibbs sampler.
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Figure 3.
Number of items (n) versus average time per iteration (in seconds) for the GNU R implementation (left panel) and a C
implementation (right panel).

4.2. Computational Complexity

An algorithm for which the computational cost does not depend on the number of persons has
in principle great advantages over algorithms for which the computational cost increases with the
number of persons. For instance, we can guarantee that for some sample size m∗ our algorithm
will outperform any particular competitor for which the computational cost increases with sample
size. However, it is only practically relevant if m∗ is some modest number. Clearly, if m∗ equals
109 there is little need for our algorithm. Moreover, the question remains whether our algorithm
is feasible for realistic sample sizes. For instance, if for 30 items and 105 persons, one iteration
takes a week, our algorithm may be more feasible than competitors, but still not feasible.

To evaluate the feasibility of the algorithm, the average time for one iteration for tests with a
different number of items, and 100,000 persons, is given in Figure 3 (left panel).

The average time per iteration appears to increase as a quadratic function of the number
of items. The largest cost per iteration is in the repeated evaluation of elementary symmetric
functions, the computational complexity of which is quadratic in the number of items.
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Figure 4.
Number of items (n) versus average time per iteration (in seconds) for a C implementation of the DA-Gibbs sampler of
Albert (1992).

To illustrate the computational gain from coding the algorithm in a compiled language, we
compare the naive R implementation that is in Appendix with a C implementation of both the full
conditional distribution for b and λ that is called from within R using a dynamic link library. The
right panel of Figure 3 gives results on the computational time per iteration for tests consisting of
different numbers of items. We see that even for a test consisting of 200 items, we can do roughly
150 iterations per second, regardless of the number of students. Comparing the right with the
left-hand panel in Figure 3 shows the dramatic improvement that results from implementing key
parts of the algorithm in C (or Fortran, etc.).

Finally, for comparison, the DA-Gibbs sampler of Albert (1992), or the Metropolis-within-
Gibbs sampler of Johnson and Junker (2003) have a computational cost that increases as a linear
function of both the number of items and persons. For the DA-Gibbs sampler we illustrate the
average time for one iteration, for a C implementation, with different numbers of items and
100,000 persons, in Figure 4. We see in Figure 4 that the average time per iteration increases as a
linear function of the number of items, and is considerably larger than the average times for our
new algorithm when implemented in C.

4.3. Conclusion

The combination of low autocorrelation that implies a low number of burn in iterations to
reach convergence of the Markov chain, and a small number of iterations after convergence on
which inferences will be based, together with a cost per iteration that only depends on the number
of items (such that for a test of 200 items we can do 9000 iterations a minute), make our Gibbs
sampler extremely feasible, even for very large-scale applications.

5. Extensions

The approach taken to estimate the parameters of the marginal Rasch model can easily be
generalized in various directions. To illustrate its flexibility, we consider dealing with incom-
plete designs, dealing with polytomous responses, dealing with multidimensional Rasch models
and incorporating moment constraints. As will become clear, all of these generalizations can be
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combined with each other without losing the desirable characteristics of the simple algorithm
presented above.

5.1. Incomplete Designs

The first problem we tackle is to show how the marginal Rasch model works out for data
collected with a non-equivalent groups anchor test (NEAT) design. We consider the simplest
NEAT design explicitly, but all results carry over immediately to more complicated designs.

Consider two groups of students, from possibly different populations, taking a test that con-
sists of an anchor (we use x to denote responses on the anchor, and b for its item parameters),
and a unique set of items (we use y and z for responses on the unique sets, and c and d for their
parameters). Applying our representation for the marginal Rasch model we obtain the following
two distributions:

p(x, y) =
∏

i b
xi
i

∏
j c

y j
j λx++y+∑

s γs(b, c)λs

and

p(x, z) =
∏

i b
xi
i

∏
k d

zk
k ηx++z+∑

t γt (b,d)ηt

It is immediately clear that for the parameters c,d,λ and η, we obtain the same full conditional
distributions as before. For the anchor items, the full conditional becomes the following:

f (bi |b(i), c,d,λ, η, x, y, z;α,β) ∝ bx+i+αi−1
i

(
∑

s γs(b, c)λs)mxy (
∑

t γt (b,d)ηt )mxz

which can be rewritten to the following general form:

f (bi |b(i), c,d,λ, η, x, y, z;α,β) ∝ bx+i+αi−1
i

(1 + a1bi )mxy (1 + a2bi )mxz

which classifies as a rational distribution.
With a further transformation of variables used

δi = − ln(bi )

we obtain

f (δi |b(i), c,d,λ, η, x, y, z;α,β) ∝ exp(−[x+i + αi ]δi )
(1 + a1 exp(−δi ))

mxy (1 + a2 exp(−δi ))mxz

It is readily found that the natural logarithm of this distribution is concave and has linear tails and
a single mode:

∂

∂δi
ln( f (δi |b(i), c,d,λ, η, x, y, z;α,β))

→
{

−(x+i + αi ) as δi → ∞
(mxy + mxz) − (x+i + αi ) as δi → −∞ (21)
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Figure 5.
The solid line (in both panels) gives the log full conditional in a NEAT design. In the left panel, the dashed line gives the
log of our proposal. In the right panel, the dashed line gives the upper hull and the dotted line the lower hull for adaptive
rejection sampling density.

Since the distribution is log-concave, we may use the adaptive rejection sampler from Gilks and
Wild (1992). As an alternative, we propose a Metropolis sampler with a proposal distribution that
closely matches the full conditional distribution.

As a proposal distribution we consider the following distribution:

g(δi ) ∝ exp(−[x+i + αi ]δi )
(1 + c exp(−δi ))

mxy+mxz

the logarithm of which has linear tails with the same slope, which is recognized to be of the
same form as the full conditional distribution for bi found with a complete design (i.e. Eq. 16
with a transformation of variables). We propose to choose the parameter c in such a way that the
derivative of the logarithm of the proposal distribution with respect to δi matches the value found
for the target full conditional distribution, at its current value in the Markov chain. This proposal
distribution closelymatches the target full conditional distribution, as is illustrated in Figure 5 (left
panel), which ensures that the resulting Metropolis-within-Gibbs algorithm will converge rapidly
to its invariant distribution. For comparison, the right panel in Figure 5 gives the outer and inner
hull for an adaptive rejection sampler based on three support points. Based on this comparison,
we expect our Metropolis algorithm to outperform the adaptive rejection sampler, although either
algorithm will work.

5.2. Multidimensional Model

A second generalization we want to consider is a situation where we have two tests measur-
ing different constructs administered to a group of students. That is, we consider the following
marginal likelihood:

P(x, y) =
∫ ∞

−∞

∫ ∞

−∞

∏
i

exp(xi (θ − δi ))

1 + exp(θ − δi )

∏
j

exp(y j (η − βi ))

1 + exp(η − βi )
f (θ, η)dθdη

Using the same approach as taken for the marginal Rasch model we obtain the following repre-
sentation:
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P(x, y) =
∏
i

exp(−xiδi )
∏
j

exp(−y jβ j )E(exp(x+� + y+H |X = 0,Y = 0)

P(X = 0,Y = 0)

which may be reparameterized to

p(x, y|b, c,λ) =
∏

i b
xi
i

∏
j c

y j
j λx+,y+∑

s,t γs(b)γt (c)λs,t

We readily find that all full conditionals will be of the same general form as those for the marginal
Rasch model.

5.3. Polytomous Responses

As a generalization of the Rasch model for polytomous items we consider a special case
of the Nominal Response Model (Bock, 1972) namely one with a fixed scoring rule. The Gibbs
sampler for this model will be developed along the same lines as that for the Rasch model.

Consider an item i with Ji + 1 response alternatives j = 0, . . . , Ji ; one of which is chosen.
Let X pi denote the response alternative and for practical reasons we also consider the dummy
coded variables Yi j = 1 if category j was chosen and Yi j = 0 otherwise. The category response
function of the NRM is given by

P(Xi = j) = P(Yi j = yi j |θ) = exp
[
yi j (ai jθ − δi j )

]
∑

h exp(aihθ − δih)
(22)

where ai0 = δi0 = 0 for identification. We assume that the parameters ai j are known integer con-
stant and the NRM specializes to an exponential family model in which y++ = ∑

i
∑

j ai j yi j =∑
i ai,xpi is a sufficient statistic for θp. Among others theOne Parameter Logistic Model (OPLM:

Verhelst & Glas, 1995) and the partial credit model (e.g. Masters, 1982) are special cases that
satisfy these additional constraints.

A derivation of the Gibbs sampler for this model proceeds along the same lines as before.
First, with

∏
i, j as a shorthand notation for the product

∏
i
∏Ji

j=1

P(y) =
⎛
⎝∏

i, j

b
yi j
i j

⎞
⎠ E (

ey++�|X = 0
)
P(0) (23)

where bi j = exp(−δi j ) and X = 0 denotes a response pattern where zero credit was earned on
each of the items. Thus, we obtain the following parametrization of the marginal model:

P(x) =
∏

i j b
yi j
i j∑

s γs(b)λs
(24)

where
γs(b) =

∑
y→s

∏
i, j

b
yi j
i j (25)
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are the elementary functions which satisfy the recursion

γy++(b) = γy++(b(i)) +
Ji∑

h=1

bihγy++−aih (b
(i)) (26)

Note that all formulae specialize to those for the dichotomous Rasch model when Ji = 1 for all
i , and ai j = 1 for j = 1. Using the recursive property of the elementary symmetric functions, it
follows that the denominator in the expression for P(x) is linear in individual parameters which
means that the Gibbs sampler for the polytomous model will be similar to the one for the Rasch
model. The difference is in the normalizing constants for the full conditional distributions.

5.4. Parameter Constraints

As observed above, the extended Rasch model reduces to the marginal Rasch model if, and
only if, certain constraints on the λs parameters are met. Here we consider how parameter con-
straints can be incorporated in the Gibbs sampler. We focus on two different types of constraints.
On the one hand we consider imposing some of the moment constraints on the λs parameters.
On the other hand we show how to constrain the λs parameters such that the model reproduces
moments of the score distribution, rather than the complete score distribution.

Before, we found that λ2 − λ21 ≥ 0, is one (and probably the simplest) of the moment
constraints. However, all constraints are formulated as a function of a set of λs parameters that
needs to be non-negative. Hence, the marginal Rasch model corresponds to an extended Rasch
model with particular inequality constraints on the λs parameters.

In contrast to maximum-likelihood-based inference, Bayesian MCMC algorithms are partic-
ularly well suited for incorporating inequality constraints between parameters for the purpose of
parameter estimation. Before illustrating this, we first recast the moment constraints in a different
form, which is important for educational measurement purposes.

Using Eq. 11, we obtain from the non-negativity of the (posterior) variance (for every score)
that

λs+2

λs
≥

(
λs+1

λs

)2

(27)

which we can equivalently express as

E (exp(�)|X+ = s + 1) = λs+2

λs+1
≥ λs+1

λs
= E (exp(�)|X+ = s) (28)

This expression is important, as it implies that the τ parameters are a monotone function of
the score, which is the minimal constraint on the extended Rasch model needed for educational
measurement purposes.

We now consider how the Gibbs sampler can be adapted, to incorporate the inequality con-
straints in Eq. 28. In a Bayesian framework, inequality constraints are introduced through the
prior distribution. Specifically, we obtain the following prior distribution for the λ parameters:

f (λ) ∝
(∏

s

βsλ
βs−1
s

) (
λ1

λ0
≤ λ2

λ1
≤ λ3

λ2
≤ · · · λn

λn−1

)
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With this prior distribution, the full conditional distribution for, say, λ2 becomes

f (λ2|b,λ(2), x;α,β)

∝ λ
m2+β2−1
2(∑n

s=0 γs(b)λs
)m

(
λ1

λ0
≤ λ2

λ1
≤ λ3

λ2
≤ λ4

λ3

)

∝ λ
m2+β2−1
2(∑n

s=0 γs(b)λs
)m

(
max(

λ21

λ0
,
λ23

λ4
) ≤ λ2 ≤ √

λ1λ3

)
(29)

We find that all that is needed is an algorithm for sampling from a double-truncated scaled Beta
prime distribution, which is a fully tractable problem.

The extended Rasch model is an exponential family model with as sufficient statistics the
observed number of students answering each item correct, and the observed score distribution. If
we impose a log-polynomial constraint on the λs parameters:

log λs =
J∑

j=0

α j s
j

we effectively replace the entire score distribution as sufficient statisticswith the first J non-central
moments of the score distribution. This effectively smooths the observed score distribution.

6. Discussion

The algorithm proposed in this paper provides a flexible, robust, and highly efficient approach
to Bayesian inference for the marginal Rasch model.

Asopposed tomaximum-likelihood estimation, ourBayesian approach (a) allows for account-
ing for all sources of uncertainty in the model parameters (especially in the posterior expectation
of ability), (b) does not need computation and inversion of the information matrix (both of which
are computationally expensive) and (c) allows for imposing moment constraints. This last point
allows for considering models that are more restrictive than the extended Rasch model, yet less
restrictive than the typical marginal Rasch model (i.e. assuming a normal distribution for ability).

The various generalizations we considered (incomplete data, polytomous responses, mul-
tidimensional marginal Rasch models, moment constraints) demonstrate the flexibility of our
approach. The efficiency of our approach derives from the fact that no form of data augmenta-
tion is used. This not only is highly beneficial in terms of the resulting autocorrelation of the
Markov chain, but also in terms of the computational cost. To be explicit, the computational cost
is independent of the number of respondents, which makes our approach ideally suitable for large-
scale educational measurement applications involving hundreds of thousands of respondents. The
efficiency derives from our starting point, the closed form representation of the marginal Rasch
model fromCressie and Holland (1983), that removes the need for any form of data augmentation.
Because no assumptions need to be made regarding the distribution of ability, our approach is
robust compared to other approaches that do rely on such assumptions. To wit, without assump-
tions there can also be no wrong assumptions, and hence no bias that may result from them.
Because we in fact set up a Markov chain for the extended marginal Rasch model, we do not
even have to assume that a distribution exists. The extended marginal Rasch model is a proper
statistical model in its own right.

The alternative parametrization of the extended Rasch model in terms of the posterior expec-
tations corresponding to the different scores (τs) shows that the least assumption we would want
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to add to the model, in most educational measurement contexts, is that the sequence τs is non-
decreasing in s. This assumption ensures that all the item-rest regression functions are non-
decreasing, which is what we would expect from a test intended to measure a single construct.
This additional assumption is easily imposed and/or tested in a Bayesian framework.

This last remark being true, it is still worthwhile not only from a theoretical, but also from
a practical, point of view to keep the distinction between the proper marginal Rasch model and
the extended marginal Rasch model in mind. Much of the power of latent trait models such as
the marginal Rasch model derives from the fact that a complex multivariate distribution may be
reduced to a single (latent) variable, the relation of which with all sorts of other variables (both as
explained and as explanatory) is an important field of research. Keeping the distinction between
the proper and extended marginal Rasch model in mind, we can have two distinct meanings.

First, we may impose on the algorithm for the extended marginal Rasch model, the proper
constraints to ensure that the parameters correspond to the marginal Rasch model. The simplest
approach involves imposing the inequality constraints from the reduced moment problem via the
prior distribution, as we illustrated. This approach is easily implemented and only requires an
efficient algorithm for sampling from a truncated beta distribution.

Second, we may want to test the fit of the proper marginal Rasch model against the extended
marginal Rasch model. That is, we want to test the hypothesis λ ∈ � (where � indicates the
subset of the parameter space consistent with the reduced moment problem). This takes the form
of testing a set of inequality constraints. In principle, this can be accomplished using Bayes factors
or via evaluating the posterior probability of�. As this topic deserves attention in its own right, and
its details extend well beyond the scope of this paper, we leave this as a topic for future research.

We perceive the use of our approach as being part of a plug-and-play divide-and-conquer
approach to statistical inference for the Raschmodel. The algorithm developed in this paper allows
us to evaluate the fit of the marginal Rasch model, and allows for sound statistical inference on
the item parameters, without the need for modelling the distribution of a latent trait. In a second
step, after having concluded that the marginal Rasch model fits the data, we can start modelling
the latent trait distribution. This topic will not be developed further in this paper and is also left for
future research. Considering the representation of the marginal Rasch model in Eq. 6, this entails
setting up a parametric model for the score distribution (π). Such a model is useful for the purpose
of relating the latent trait to explanatory variables (e.g. for latent regression). Combining draws
from the posterior distribution of the item parameters (integrating out the λ parameters), with
draws from the posterior distribution of population specific parameters (in a parametric family
of population distributions), conditionally on the item parameters, allows for the construction of
simple and robust plug-and-play algorithms for survey research.
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Appendix: Illustrative R Code

n=30
m=100000
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# simulate true parameters
theta=rnorm(m,0,1)
delta=runif(n,-1,1)

# simulate data and compute sufficient statistics
x=matrix(NA,m,n)
for (i in 1:n) x[,i]=1*(rlogis(m,0,1)<=(theta-delta[i]))
sufI=colSums(x)
sufP=rowSums(x)
score=sapply(0:n,function(p)sum(sufP==p))

# auxiliary routines used in MCMC algorithm
elsym<-function(b)
{
N=length(b)
g=matrix(0,N+1)
g[1]=1
g[2]=b[1]
for (j in 2:N)
{
for (s in (j+1):2)
{
g[s]=g[s]+g[s-1]*b[j]

}
}
return(g)

}

c.item<-function(b,lambda)
{
N=length(b)
g=elsym(b)
num=0
denom=g[1]*lambda[1]
for (s in 2:(N+1))
{
num=num+g[s-1]*lambda[s]
denom=denom+g[s]*lambda[s]

}
return(num/denom)

}

c.score<-function(b,lambda,t)
{
N=length(b)
g=elsym(b)
num=g[t]
denom=0
for (s in 1:(N+1))
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{
if (s!=t) denom=denom+g[s]*lambda[s]

}
return(num/denom)

}

# MCMC algorithm
b=runif(n,0,1)
lambda=runif(n=1,0,1)
B=b
Lambda=lambda
for (iter in 1:100)
{
# items
for (i in 1:n)
{
y=rbeta(1,sufI[i]+1,m-sufI[i]-1)
c=c.item(b[-i],lambda)
b[i]=(1/c)*(y/(1-y))

}
# scores
for (s in 1:(n+1))
{
y=rbeta(1,score[s]+1,m-score[s]-1)
c=c.score(b,lambda,s)
lambda[s]=(1/c)*(y/(1-y))

}
# impose identifying restrictions
lambda=lambda*b[1]ˆ(0:n)
b=b/b[1]
lambda=lambda/lambda[1]
B=cbind(B,b)
Lambda=cbind(Lambda,lambda)
plot(delta-mean(delta),-log(b)-mean(-log(b)))
abline(0,1)

}
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