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The problem of a plane unsteady potential flow of an ideal incompressible fluid bounded
by free boundary segments with a constant pressure and by solid walls moving in
accordance with a known law is considered. External forces are absent, and capillary
forces are neglected. An approach to constructing exact solutions for this type of problem
is proposed. The corresponding solutions can be treated as nonlinear perturbations
of a certain base flow. As an example of the application of this approach, nonlinear
perturbations in a known problem of a fluid flow with a linear velocity field in the region
bounded by a straight-line free boundary and parallel approaching or receding solid walls
are considered. It is demonstrated that perturbations grow, which leads to variants of the
formation of singularities on the free surface of the fluid within a finite time: formation of
droplets, bubbles or cusps. A solution describing the collapse of a bubble in a fluid layer
bounded by two approaching solid walls has also been found and studied. Thus, a new
method of studying nonlinear stability of complicated unsteady fluid flows with combined
boundary conditions is proposed and tested.
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1. Introduction

Only a limited number of examples of exact solutions are known for plane potential
fluid flows with a free boundary. In the absence of external forces and capillarity, exact
solutions with a linear velocity field were found by Dirichlet (1861). A classification of
such solutions for a two-dimensional case was performed by Ovsiannikov (1967) and
Longuet-Higgins (1972). Some interesting examples of unsteady flows with a nonlinear
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velocity field were obtained by John (1953) on the basis of an original semi-Lagrangian
method. A wide class of non-trivial unsteady flows was comparatively recently found and
studied (see Karabut & Zhuravleva 2014; Zubarev & Karabut 2018; Karabut, Zhuravleva &
Zubarev 2020). The main specific feature of these flows is the fact that they are described
by the Hopf equation for the complex velocity, which turns out to be compatible with the
initial equations of motion. Complete integrability of this equation made it possible to
construct numerous examples of unsteady flows with a free boundary. An advantage of the
proposed approach to the flow description is the simplicity of finding and studying singular
points of the velocity field; the importance of studying these points in the unsteady case
was apparently first noticed by Tanveer (1991). For potential flows of an incompressible
fluid, such singular points are located outside the fluid. However, they migrate with time
and can reach the free surface, leading to solution destruction (see Kuznetsov, Spector &
Zakharov 1993; Zubarev & Kuznetsov 2014; Lushnikov & Zubarev 2018; Liu & Pego 2019;
Dyachenko et al. 2021). Surface deformations induced by singularities are typical, e.g. for
the Stokes waves with an almost maximum amplitude (Lushnikov 2016). Singularities on
the free boundary of breaking standing waves were considered by Baker & Xie (2011). It
was demonstrated by Karabut, Petrov & Zhuravleva (2019) that singularities approaching
the free boundary can initiate the formation of cumulative jets.

The expediency of studying singularities is associated with the fact that a function
can be reconstructed if the location and character of the singularities are known. In
particular, this is valid for meromorphic functions. Therefore, if we have some information
on singularities located outside the fluid, we have a chance to find the exact solution of
the problem. It should be noted that a classification of singularities for the solution of
the complex Hopf equation was performed by Caflisch er al. (1993): it was shown that
isolated singular points are of the square root type. Similar studies were recently reported
by Gao, Gao & Liu (2020). Various types of the singular behaviour of solutions of the
homogeneous Euler equation were analysed in a recent publication (Konopelchenko &
Ortenzi 2021).

Studying the behaviour of singular points plays a key role in investigating the
integrability of a plane unsteady problem with a free boundary. In Dyachenko et al. (2019),
integration was performed around singularities located outside the fluid. It was shown that
new additional constants of motion can be obtained in this way.

In our previous studies (see Karabut & Zhuravleva 2014; Zubarev & Karabut 2018;
Karabut et al. 2020), we considered problems where the fluid boundary is completely free.
Here, we consider a case with a more complicated geometry, where the free boundary
is only some part of the entire boundary of the domain occupied by the fluid. The
remaining ‘non-free’ part of the boundary is assumed to be an impermeable wall moving
in accordance with a specified law. Figures 1(a) and 1(b) illustrate these two variants of
boundary conditions by an example of a fluid occupying a bounded domain. The usual
no-slip condition is satisfied on such a wall: at each point of the wall, the projections of
the wall velocity vector and fluid velocity vector onto the normal to this wall coincide. It
is demonstrated in the present paper that such flows, where some part of the boundary is
free and some part of the boundary is ‘non-free’, can also be (as in our above-mentioned
works) described by a complex Hopf equation. Its solutions can be interpreted as nonlinear
perturbations of the base flow with a linear velocity field in the domain bounded by
approaching solid walls and a straight-line free boundary (Ovsiannikov 1967). Note that
the problem with walls moving according to a given law has a certain relation to piston
and paddle wavemakers, which are widely used in experiments to generate surface water
waves; (see, for instance, Sinnis et al. 2021).
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Figure 1. Two variants of boundary conditions. (a) The entire boundary of the fluid is free. The fluid motion
occurs by inertia. (b) The fluid boundary consists of the free boundary and a solid wall. The fluid motion occurs
both by inertia and under the action of the solid wall.

It should be noted that perturbations of flows with a free boundary are traditionally
studied in the linear approximation. This means that, if the exact solution of the problem
of motion of the fluid with a free boundary is known in some form, it is possible to
consider the stability of this flow with respect to changes in the initial velocity field or
initial boundary of the domain. If these changes are small, then the problem of stability
can be solved within the framework of the linear theory.

We are not aware of publications that describe an effective method of studying
perturbations of an unsteady flow with a free boundary without using an assumption that
these perturbations are small. This is not surprising because it is necessary to know not
only the flow to be studied, but also a family of flows close to it. Finding such solutions is
an extremely complicated task. It turns out that such a problem can be partially solved for
flows where the complex velocity satisfies the Hopf equation. For such flows, it is possible
to study stability with respect to non-small nonlinear perturbations of the boundary and
velocity field (it is assumed that perturbed flows also satisfy the Hopf equation).

The idea of an algorithm for constructing exact solutions of the problem of the dynamics
of a fluid with a free surface located between two approaching walls was announced
by Zhuravleva et al. (2021). In the present work, in the development of this results, a
detailed analysis of the behaviour of singular points of solutions describing the formation
of bubbles, cuspidal points and droplets is carried out; without such an analysis it is
impossible to assert the existence of solutions. In addition, we demonstrated the possibility
of using the developed approach to study flows of fundamentally different topology: as an
example, the exact solution describing the collapse of a bubble located in an infinite layer
of fluid between two approaching solid walls was constructed and studied. The solutions
found have a clear physical meaning; they seem to us important for understanding the basic
scenarios for the formation of singularities at free boundaries. They can also be useful for
validating numerical codes in the most difficult-to-simulate situations, where an initially
smooth free surface becomes singular in a finite time.

2. Formulation of the problem and algorithm for finding solutions

The unknown function to be determined is the complex velocity
U(Z7 t) = u(xvyv t) _iv(x’y’ t) (21)

Here, u(x, y, t) and v(x, y, t) are the projections of the velocity vector onto the x and y axes
(the y and x axes are directed upward and rightward, respectively).
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The function U(z, t) is an analytical function of the complex variable z = x + iy because
the Cauchy—Riemann conditions are satisfied

uy+vy =0, wuy—vx=0. (2.2a,b)

The first equation of (2.2a,b) has the meaning of the condition of fluid incompressibility,
and the second one is the condition of flow potentiality.

We seek for the solution in the class of flows described by the Hopf equation (it is also
often called the Burgers—Hopf equation)

U, + UU, = 0. (2.3)

As was demonstrated previously by Karabut & Zhuravleva (2014), if U(z, ¢) satisfies (2.3),
then the condition v(x, y, f) = 0 defines the shape of the free boundary (i.e. the dynamic
and kinematic boundary conditions are automatically satisfied on the corresponding
curve). The solution of (2.3) within the framework of the method of characteristics is
written in the form

Uz, t) = G(z — Up), (2.4)

where the function G(z) defines the initial complex velocity. Let us rewrite (2.4) via the
inverse function F = G~!. We obtain

z=2U,t) =Ut+ FU). (2.5)
The solution is sought by the following algorithm.

(1) We specify an arbitrary analytical function F(U) satisfying the boundary conditions
on the solid walls.

(i) As v =0 on the free surface, then we find the parametric equation of the free
boundary from (2.5)

x=ut+ReF(u), y=ImF(u). (2.6a,b)

Together with specified laws of motion of the solid walls, this equation defines the
flow domain.

(iii)) We verify that the function U(z, ) defined by (2.4) is holomorphic in the flow
domain. The analyticity of this function is violated at those points where the
derivative U, does not exist, which means Zy = 0. It follows from (2.5) that
Zy =t + Fy(U); hence, the singular points are the solutions of the equation

Fy(U) = —t. 2.7)

Thus, the flow is completely defined by the form of the function F(U). If we specify
two close functions Fo(U) and F{(U), we obtain two flows close to each other. If
we assume that Fo(U) corresponds to the base flow, then F|(U) can be treated as
a certain perturbation of the base flow. In this study, we consider Fo(U) = 0O as the
base flow. In other words, we consider nonlinear perturbations of the self-similar
flow

U=17Z/t. (2.8)
Function (2.8) satisfies the Hopf equation (2.3). Therefore, the free boundary in the
plane U is a straight line v = 0. It is seen from (2.8) that v = —y/t; therefore, the free

boundary in the plane Z is a straight line y = 0. It should be noted that such a flow with
a free boundary was constructed for the first time by Dirichlet, who analysed flows with a
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Figure 2. Base solution at a certain time instant ¢ < 0.

linear velocity field, U ~ z. Later on, it was considered, e.g. by Longuet-Higgins (1982),
where it was called the ‘upwelling’ flow, which reflects the flow structure at ¢ > 0. It is
important that the flow described by (2.8) is consistent with the conditions v = £V at
x = =£V¢, which corresponds to a situation where the fluid is bounded from the sides by
vertical solid walls moving with velocities +V.

Thus, the base flow is assumed to be a two-dimensional plane unsteady flow of an ideal
incompressible fluid, where the fluid occupies a semi-infinite strip bounded on the sides by
two parallel walls approaching each other with a constant velocity V > 0; the positions of
these walls are defined by the equations x = £ V7. It is clear from the equation of motion of
the walls that they collide at = 0. We study the flow before the instant of the collision of
the walls, i.e. at t < 0. The fluid is unbounded from below; at the top, it is bounded by the
horizontal free boundary y = 0. It is easy to find the formula for the streamfunction and
demonstrate that the streamlines are hyperbolas. This solution is demonstrated in figure 2.
The domain occupied by the fluid is shown by the grey colour. It should be noted that
this flow is similar to that found by Ovsiannikov (1967) for which the rectangular domain
occupied by the medium is compressed by a pair of approaching walls (i.e. the fluid is
bounded by two linear segments of the free surface).

In the present study, among other results, we consider the nonlinear stability of the
flow described above. The presence of an arbitrary function in (2.5) allows us, in fact, to
consider non-small disturbances of an almost arbitrary shape for an initially plane free
boundary of the fluid. It should be noted that the entire domain of the perturbed flow in
the hodograph plane (1, —v) is constant because the free boundary v = 0 is fixed, while
the solid walls move with constant velocities u = £V. The domain corresponding to the
fluid in the hodograph plane is shown in figure 3.

3. Choice of the function F(U)
Let us consider the conditions to be satisfied by the function F'(U) in order for the boundary

conditions on the solid walls to be valid. On the right wall x = — V%, by virtue of the no-slip
condition, the horizontal component of the velocity is # = —V. Substituting it into (2.5),
we obtain Re F' = 0. Similarly, for the left wall x = V¢, where u = V, we obtain Re F' = 0.
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Figure 3. Flow domain in the plane of the complex velocity U.

Thus, the following condition has to be satisfied on the solid walls:
Re Fl=+v = 0. (3.1)

In addition to the conditions on the solid walls, the function U must have no singularities
in the flow domain. Therefore, the condition of existence of an inverse function to z(U, 1)
has to be satisfied, namely, the function z(U, t) has to be analytical, and its derivative
zy(U, t) must have no zeros in the domain occupied by the fluid. As ¢ € (—o0, 0) in
the problem considered here, it is sufficient to require that the real part of the derivative
Fy(U) should be bounded from above. Then it is possible to find a certain time interval
—o00 < t < T < 0 such that the right-hand side of (2.7) is greater than its left-hand side,
which means that there are no singular points in the flow domain at t € (—oo, 7). When
these singularities reach the fluid boundary at a certain time instant z, > 7, the solution
destruction occurs.

According to the known principle of symmetry, if the real part of an analytical function
is equal to zero on a certain straight line, then this function can be analytically continued
across this straight line. At points symmetric with respect to this straight line, the
imaginary parts are identical, while the real parts have identical absolute values, but
opposite signs. Thus, we can assume that F(U) is a 2V-periodic function on the entire
domain of its definition. Therefore, we can seek for it in the form of the Fourier series. In
view of the boundary conditions (3.1), we have

F(U)=1Y_ hyexp (W) . (3.2)
n=0

Here, h, are complex constants. One of the particular cases of this series is the function
ia

O = apanuvy

(3.3)

Let us consider this variant of the perturbation in more detail. It contains three real
parameters: a, b and V. The parameter V is the specified velocity of motion of the solid
walls (V > 0), which also defines the period of the function (3.3). The parameters a and b
define the perturbation shape.
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Figure 4. Variants of non-small perturbations leading to droplet formation (a) and bubble formation (b).

Three points of the free boundary play an important role in the analysis of the free
boundary evolution. The first point corresponds to x = 0. Two other points, which are
points of the free boundary, simultaneously belong to the moving solid walls; they
correspond to x = V. The function (3.3) has an interesting property: the ordinates y
of these three points remain unchanged with time despite the deformation of the free
boundary. The ordinate yq of the first point can be easily determined by substituting # = 0
into the second equation of the free boundary (2.6a,b). We get

yo=a/(b—1). (3.4)

The ordinate y, for two other points is obtained by substituting # = £V into the second
equation of (2.6a,b). We have

y«=a/(b+1). (3.5)
Under the conditions a > 0 and » > 1, (3.4) and (3.5) yield the inequality

Yo > Vs (3.6)

The situation corresponding to inequality (3.6) is illustrated in figure 4(a). This regime
can be called the droplet formation regime because not all the fluid is squeezed downward
by the approaching solid walls; some part of the fluid remains higher than the level y = y,
and forms a droplet.

With another choice of parameters, e.g. a < 0 and b < —1, an alternative flow regime is
realized; it is shown in figure 4(b). Here, instead of (3.6), we have the inequality yg < ys,
and a bubble below the level y = y, can be formed on the free surface.

Using the fact that the ordinate of the point of contact of the free boundary with the
solid wall y, is independent of time, we further assume that the solid walls are bounded
from above by y,. Previously, the walls were shown as straight lines parallel to the y axis.
Now they will be shown as rays parallel to the y axis and emanating from the point y,, i.e.
—00 <Y = Yx

4. Formation of a bubble

Let us first consider a situation corresponding to figure 4(b), i.e. a < 0, b < —1. In this
case, a pit is formed on the free surface. Two scenarios are possible depending on the
value of the parameter b: either a bubble or a cusp is formed on the free surface. By virtue
of symmetry, when the bubble is formed, i.e. when the free boundaries (2.6a,b) touch
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each other, the contact point has the abscissa x = 0, while the free boundary has a vertical
tangent line at this point. Therefore, the contact point satisfies the system of equations

ox(u, t) _0.
du 4.1)
x(u, t) = 0.

We find the real part of the function F(u) defined by (3.3) and substitute it into the first
equation of (2.6a,b). The resultant expression for x is substituted into system (4.1). As a
result, we have

o amcos(mu/V) 2abtm sinz(rm/V)
V(1 + b2 —2bcos(nu/V)) B V(1 + b% — 2bcos(nu/V))?’ 4.2)
o asin(mu/V) '

1+ 52— 2bcos(mu/V)’
Eliminating the variable ¢ from system (4.2), we obtain the equation for u

(urt cos(mtu/V) — Vsin(ru/V))(1 + b> — 2b cos(mu/V)) — 2bmu sin®(7u/V) = 0.
(4.3)
The roots of this equation reveal the position of the point of self-intersection on the free
boundary. Obviously, if such a point exists, there exist two symmetric (with respect to
the zero point) roots of (4.3). To study (4.3), it is convenient to introduce an additional
variable £ = mu/V. Let us recall that u € (—V, V) in the general case; therefore, we have
& € (—m, 7). Let us find the values of the parameter b at which the function

R(E) = (Ecos& —sin&)(1 + b*> — 2bcos &) — 2bE sin €, (4.4)

has non-zero roots. Using the fact that the function R(§) is odd, we study it on the interval
& € (0, m). It should be noted that R(0) = 0, R(wt) = —7t(1 + b)? < 0; therefore, if R(§)
has a positive maximum point on the interval & € (0, 1), it has a root on this interval as
well. For this the derivative

R'(&) = —sin&[(1 + b2)E + dbsin&], (4.5)

has to vanish. The first term is always negative at £ € (0, m) and equal to zero at the ends of
the interval. Vanishing of the second term means the existence of a point of intersection of
the straight line y = (1 + b*)& and the sinusoid y = —4bsin& on the interval £ € (0, 7).
Clearly, such a point exists if the slope of the sinusoid at £ = 0 is greater than the slope of
the straight line. We obtain a quadratic inequality for the parameter b

(—4bsing) |s—g = —4b > 1 + b, (4.6)

Solving this inequality with allowance for b < —1, we obtain —2 — v/3 < b < —1. Thus,
there exists only one extremum point on the interval £ € (0, m) at b € (-2 — V3, —1).
Analysing the signs of R'(£), we can easily show that this is a maximum point. Therefore,
the point of self-intersection of the free boundary appears only at b € (—2 — +/3, —1). At
b < —2 — /3, there are no such points and, hence, the bubble is not formed.

Figure 5 illustrates the evolution of the flow domain at ¢ = —1/10,b = —3/2 and
V = 2. It can be seen that the bubble is formed at the moment 7 when the free boundary
self-intersects. A similar situation of solution destruction due to self-intersection of the
free boundary, called by the authors the ‘splash’ singularity, was studied by Castro et al.
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Figure 5. Formation of a bubble on the free boundary.

(2012). A theorem was proved on the existence of such singularities in a finite time interval.
In fact, we managed to construct a concrete example of the splash singularity formation.
The value of 7 is the result of the numerical solution of system (4.2). For the chosen
values of parameters, we have 7 ~ —0.0462879. The positions of the singular points of the
solution are marked. It is seen that these points are always outside the flow domain, and
it is because of self-intersection of the boundary that the solution is destroyed. However,
this is not always the case. Let us analyse the behaviour of singular points in more detail.

5. Analysis of the behaviour of singularities; plane p

Let us recall that singular points are determined as solutions of (2.7). For type (3.3) of the
function F(U) considered here, (2.7) takes the form

naexp(inlU/V)

- =1. (5.1)
V (b —exp(iU/V))?
It is more convenient to continue investigations by introducing an additional notation
w=exp@inU/V). 5.2)
Then (5.1) after several transformations takes the form
2Vth + an
n— " u+v=0. (5.3)
\%;
Solving this quadratic equation, we obtain
am + 2btV + /v a*m + 4abtV
w12 = . (5.4

2tV

Hence, there are two singular points 1t 2 in the auxiliary plane p, whose positions are
determined by (5.4). Let us denote the time instant when the roots are identical (111 = w2)
by
am

to=———. 55

T 4y )
At t > t., the roots of the quadratic equation are real. Returning to the replacement (5.2),
we find the positions of the singular points in the plane U and then, using (2.5), determine

953 A1-9


https://doi.org/10.1017/jfm.2022.918

https://doi.org/10.1017/jfm.2022.918 Published online by Cambridge University Press

E.A. Karabut and others

(@) y (b)
0.03 0.03}
2002 001 0 001 002 [x 2001 0 0.01
0.01 0.01
(c) (d) (e)
0.03 0.03 Q.03
0.0l 0.01 20.01 0.01 Z0.01 0.01
0.01 0.01 0.01

Figure 6. Formation of a cusp point on the free boundary.

the positions of two singularities in the physical plane Z

x =0,

(5.6)

a Vit
y=-——— —In|u|, wherei=1,2.
b—lwl =
Thus, at ¢ > f., the singular points move along the y axis. Similar formulas can be
derived for ¢ < t., when the roots of (5.4) are complex, but these formulas are much more
cumbersome.

Figure 6 shows the positions of the free boundary and singular points for some
consecutive time instants for V= 2,a = —1/10 and b = —4. Figure 6(a) corresponds to
the time ¢ < .. The singularities are located symmetrically with respect to the y axis. They
move toward each other and collide at the time instant r = ¢, shown in figure 6(b). As is
further seen from figure 6(c), the singular points again separate and move along the y
axis; one of them is already visually seen on the free boundary. However, the formation of
some singularity in the shape of the free boundary is not observed. Figure 6(d) displays
some intermediate situation: one singularity is above the free boundary, and the other
one is under the free boundary. Finally, at the time instant illustrated in figure 6(e), the
second singular point is seen to reach the free boundary clearly forming a cusp on the
boundary. The first singular point is still visualized in the flow domain. As is known, for
the solution to exist, the functions should be analytical in the domain occupied by the fluid.
Therefore, the following question arises: Is the formation of a cusp on the free boundary
really possible or does solution destruction occur earlier, at the time instant shown in
figure 6(c)?

In our previous studies, we often encountered a situation where the singular point was
visually seen to be in the fluid, but it actually was located on another sheet of the Riemann
surface. However, in the present study, a direct analysis of the Riemann surface turns out
to be rather difficult. For this reason, we propose to consider the auxiliary plane p. This
variable (5.2) appeared as an additional notation in calculating the singular points of the
function.
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Figure 8. Motion of singular points in the auxiliary plane .

It can be easily shown that the domain occupied by the fluid in the hodograph plane U
(upper half-strip in figure 7a) is mapped onto the domain in the plane p in the form shown
in figure 7(b). In the plane p, the singular points ©1 and wy (5.4) at ¢ < . are shifted over
the arcs of a circumference of radius |b| with the centre at the origin until the collision at
the point u = —b at ¢t = t.. It should be noted that, once reaching the real axis, the singular
points remain on it. One of them moves toward the infinity, and the other one moves toward
the origin. Figure 8 shows the positions of two singular points 1 (red star) and po (blue
circle) for different time instants: positions 1-4 correspond to ¢ < f., while positions 6
and 7 correspond to 7 > ¢.. Position 5 corresponds to merging of the singular points at
the time instant ¢t = ¢,. It is clearly seen in this plane that only one singular point reaches
the free boundary; see position 7. It can be easily determined from (5.4) that u; =1 at
t=t,=an/(V(b— 1)?) (we always have |t,.| < |7.|). This means that the singularity
reaches the free boundary at ¢ = ¢,. It is this time instant that is shown in figure 6(e);
the second singular point reaches the free boundary. Thus, we confirmed the assumption
that solution destruction occurs at b < —+/2 — 3 owing to formation of a cusp on the free
boundary.
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6. Formation of a droplet

Let us now consider a situation with positive values of the parameters a > 0 and b > 1 for
the flow corresponding to (3.3). In this case, yo > y, (figure 4a), and a droplet is formed
on the free surface. Similar to the case with negative parameters, we analyse the positions
of singular points. By virtue of periodicity of the logarithmic function of the complex
variable, the pair of roots w1 determined by (5.4) at ¢t > t. corresponds to an infinite
number of the values of the function U = —iV/m In || + V(1 + 2n), where n is integer.
In the domain considered here (figure 3), we have Re U = u € (—V, V); therefore, n can
take the value of either O or —1. Thus, the motion of singularities in the physical plane at
t > t. is described by the system of equations

x=Vt(14+2n), n=0o0rn=—1;

(6.1)

Vit
y — —Inful.

R
Analysing (6.1), we notice that the singularities are always located on vertical straight lines
passing through the solid walls. Indeed, if » = 0 in the first equation of system (6.1), then
we obtain x = V ¢, which is the equation of motion of the left solid wall bounding the flow
domain; if n = —1, then x = —V ¢, which is the equation of motion of the right solid wall.
There are two singular points on each vertical line at # > .. The time instant ¢ = ¢, is the
instant of their separation. Figure 9 shows the shape of the flow domain and the positions
of the singular points for some time instants ¢ such that ¢, < ¢ < 0. Some of the singular
points are located inside the droplet, i.e. in the domain occupied by the fluid. Let us analyse
this situation somewhat later. Now we consider the limiting case ¢t = 0. The solution has
an interesting property: in the limit # — 0 (when two plates collide), the free surface takes
the shape of a circumference. This can be seen from (2.5) with ¢ = 0 being assumed; then
the equation of the free boundary v = 0 can be written as
ia

b — exp(imu/V)’
Identifying the real and imaginary parts, we can easily show that we obtain an equation of
a circumference

x+iy=Fu) = (6.2)

2
2 (y—m> — R, R=2" (6.3a,b)
2 2

Figure 9 shows the results of calculations for the fluid boundary shape and positions
of singular points performed for V =2,b = 3/2 and a = 1/10. The process resembles
squeezing of ice cream from a wafer briquette. Let us recall that it is insufficient to find
the free boundary position to solve the problem; it is also necessary to prove analyticity of
the function of the complex variable inside the flow domain. Figure 9 shows only the free
boundary profiles at certain time instants, and we do not argue yet that they correspond to
the solution of the fluid flow problem. Below we consider the analyticity of the complex
velocity and demonstrate that the solution exists not for all time instants shown in the
figure.

The formulas that describe the positions of singular points at ¢ < ¢, are more
cumbersome and less informative; therefore, we only provide the calculated positions of
the free boundary and singularities for some consecutive time instants ¢t < t.. We see in
figure 10 that, with increasing ¢, the singularities gradually approach the free boundary and
change its shape, but still remain outside the flow domain. Therefore, the solution exists at
t < t.. Let us return to the case with ¢ > 7. and consider it in more detail.
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Figure 9. Positions of the free boundary and singular points for several time instants 7. <t < 0.

? *

70.' |—q.05 0 0(]5 Ile

Figure 10. Positions of the free boundary and singular points for several time instants < 7. < 0.

Figure 11(a) shows the left half of the flow domain and the singular point at the time
instant 7.. The solid wall is marked by the dotted line. By enlarging the rectangular area
marked in figure 11(a) (figure 11b), we can see that the singular point is located outside
the fluid. We know from the analysis of the behaviour of singularities at ¢ > ¢, that they
move along the vertical line x = Vz. Figure 11(c) shows the next time instant t = 0.981,; it
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Figure 11. Behaviour of singular points for the time instants r = ., 0.98¢., 0.96¢, and 0.9z,.

is seen that the singular points have separated and move downward; one of them is already
on the solid wall, while the other approaches the free boundary.

The time instant ¢ = 0.96¢, shown in figure 11(d) visually corresponds to the time when
the second singular point reaches the free boundary. Finally, it is clearly seen in figure 11(e)
(t = 0.9¢,) that one of the singular points is located in the domain occupied by the fluid.
It can be assumed that the singular point does not enter the fluid domain in reality; it is
located on another sheet of the Riemann surface; for this reason, solution destruction does
not occur. An additional study is needed to resolve this issue. The results of such a study
are reported below.

7. Analysis of the Riemann surface

Our goal is to find the Riemann surface for the function U(z, #). In other words, we have to
plot the dependence of 1 and v on the variables x and y at a certain time instant r. However,
the corresponding surface can be plotted only in a four-dimensional space; therefore, a
projection onto a three-dimensional space is usually used for simplicity. Let us identify
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the real and imaginary parts in (2.5). As a result, we obtain two real equations

x=x(u,v); y=yu,v). (7.1a,b)
Eliminating u from system (7.1a,b), we obtain the equation
v =h(x,y), (7.2)

which describes the Riemann surface in a three-dimensional space x, y, v. With such an
approach, it is convenient to construct the free boundary, resulting from intersection of
the surface (7.2) by the plane v = 0. The analysis of the Riemann surface allows us to
determine whether the singularities and the domain occupied by the fluid are located on
one sheet of the Riemann surface.

Let us consider the cross-section of the surface (7.2) by the plane x = V¢ corresponding
to the left wall. Substituting x = V¢, u =V and F(U), defined by (3.3), into (2.5), we
obtain an equation for implicit definition of the function v(y, 1)

Y+ vt — (7.3)

a
bt oV
Figure 12 shows the dependence of v on y for several time instants: t = 1.5¢, &~ —0.04, ¢t =
0.96¢, = t, &~ —0.025 and t = 0.87, & —0.02. The curves were obtained for the following
values of parameters: b = 3/2,a = 1/10 and V = 2. The vertical tangent line is shown
by the dotted curve. At the time instant # = 7, there appears a vertical tangent line of the
function v(y) at v =0 (v = 0 is the equation of the free boundary). This time instant
exists for any positive b; it can be calculated analytically. For this purpose, we consider the
implicitly defined function v(y) in the form

a
G(y, v, I)Ey+vt—m=0, (74)
and calculate v; for this function
dG 3G 9G @ B] G,
SR AT A N L (7.5)
dy ay dv dy ay G,

Therefore, for the plot of the function to have a vertical tangent line, it should be G; =0.
Let us calculate this derivative and equate it to zero on the free boundary, i.e. at v =0

ae™V . /v am 0 am 76
TENSTA ve+ 2 T v 79
It should be noted that the value ¢ = t, coincides with the previously calculated time
instant when the singular point reaches the free boundary, see figure 11(d) (|t«| < |t.|
always). In our opinion, the many valuedness of the function v(y,?) at ¢ > t. (see
figure 12) testifies to solution destruction associated with reaching the free boundary by
the singular point.

Thus, solution destruction occurs earlier than the walls collide at = 0, namely, at the
time instant 7, < O when the singularity passes from the domain outside the flow to the
contact point of the free boundary and moving wall. Figure 13 demonstrates the final
(those that refer to the time instant #,) shapes of the fluid boundary for different values
of b. Here, we take a = b*> — 1, which ensures an unchanged (equal to 2) difference in
the fluid height on the free surface (yg — y,) with variation of the parameter b. As b
decreases, the tendency to droplet formation becomes more pronounced. The width of
its neck d is determined from the positions of the walls at the time f, i.e. is defined by
the formula d = —2Vt, = 2ma/(1 + b)?. In the limit b — 1 at a = b> — 1, we obtain a
circular droplet with a unit radius, while the neck width d &~ 7(b — 1) tends to zero.
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Figure 12. Cross-sections of the Riemann surface for some time instants.
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Figure 13. Final (those that refer to the solution breakdown times #..) shapes of the domain occupied by the
fluid for different values of b, a = b*> — 1 and V = 2.

8. Collapse of a bubble

Let us consider one more variant of the function F(U) providing a principally different
flow topology as compared with the examples considered above

R in®(nU/2V) —
F(U) = —— arcsin sin” (nU/2V) a’ where b = arsinh, | —— . (8.1)
b 1 —a l1—a

Here, V > 0 is the wall motion velocity, as previously; 0 <a < 1 and R > 0 are the
parameters characterizing the bubble shape and size. To avoid many valuedness of the
function of the square root, we choose its branch that converts the point U = 0 in the
hodograph plane after the mapping Z = Ut + F(U) to the point Z = —iR in the physical
plane.

It should be noted that this problem can be interpreted as one more variant of the
non-small perturbation F'(U) superimposed onto the self-similar flow U = Z/t; however,
it can be also considered as an independent exact solution that describes a collapse of a
bubble located in the fluid between two parallel solid walls approaching each other with
a constant velocity V. Looking ahead, we can note that the collapse occurs at the time
instant r = 0, while the walls collide later, at the time instant

R
f=ty= 2 2 0. (8.2)
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Figure 14. (a) Part of the hodograph plane under consideration. (b) Mapping onto the auxiliary plane p.

We assume that the flow under study is symmetric with respect to the x and y axes;
therefore, it is sufficient to study the problem in the domain x < 0,y < 0, which
corresponds to the half-strip 0 < u < V, v < 0, in the hodograph plane, see figure 14(a).
First, we verify that definition of F(U) by (8.1) is consistent with the no-slip condition on
the moving solid wall, i.e. its velocity coincides with the normal component of the fluid
velocity. Let us see what happens to the wall u = V after the mapping Z = Ur + F(U).
For this purpose, we calculate F(V — iv)

Lo (T T 5 [TV
R sin (5—1ﬁ)—a R cosh <ﬁ>—a
F(V —iv) = —— arcsin = ——arcsin | ———="—"——
b 1—a 1—a
2 2
7R R cosh ﬁ—a cosh ﬁ_l
=—— +i—1 . 8.3
» " —a I—a 8.3)

As 0 < a < 1, the expression in the argument of the logarithm (8.3) is a positive real
number. Substituting (8.3) into (2.5) and assuming that u = V, we obtain

Vit Re[F(V—iv)]=Vi— X _y (i TR (8.4)

= e —1)]=Vt— — = - . .

g 2 2V

Therefore, the motion of the solid wall in the physical plane is described by the equation
x=(t—1)V. (8.5)

We assume that ¢ < 1, so that the wall moves toward the y axis and reaches it at the time
instant #y. Expression (8.5) differs from that used in the previous paragraphs by a time shift
by fo.

The free boundary v = 0 is defined in the physical plane by the parametric equations
(2.6a,b) where u € (0, V). Together with the equation of solid wall motion (8.5), these
equations describe the domain occupied by the fluid. It is shown in figure 15 at t = —#p/2
fora=1/2,V =1 and R = 1. The line ABC corresponds to the free boundary, and it is
seen that the free boundary is not smooth. It consists of a curvilinear segment AB and a
straight-line segment BC, which meet at the point B. It is seen that there is a singularity at
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-2 -1 0 X

D

Figure 15. Domain occupied by the fluid in the quadrant x < 0 and y < O at the time instant = —1p/2.

this point (corner): the boundary turns at this point by /2. The presence of the singular
point B is inherent in the structure of the function F(U). Indeed, let us find the points
where the function is not differentiable. Its derivative is defined by the expression

. U
fo sin (_2V )
(8.6)

.9 U
sin“{ — ) —a

2V
It turns to infinity when the denominator turns to zero. As previously (see (5.2)), the
analysis is performed in terms of the auxiliary variable 1 = ¢/™Y/V. This mapping converts
the flow domain in the hodograph plane (half-strip 0 < u < 1, v < 0, see figure 14a) to
the upper half of a unit circle with the centre at the origin, see figure 14(b). The position

of the point B in figure 14 corresponds to a = 1/2.
Two singularities arising due to vanishing of the denominator in (8.6) have the form

m12=1-2a=+£2i/a(l —a). (8.7)

One of them, w,, has a negative imaginary part; therefore, it is located outside the
flow domain. The absolute value of the second singularity is || = 1, therefore, it is a
stationary point in the plane w, which is always located on the free boundary. It should
be noted that the singular point on the free boundary does not contradict the existence
of the solution because the function remains analytical inside the flow domain. In the
physical plane, the location of the singular point on the free boundary leads to the loss of
smoothness and to the emergence of a corner of 7/2 on the free boundary (see figure 15).

Let us consider now whether the condition that the complex velocity function for the
chosen function F'(U) should be holomorphic in the flow domain is satisfied. The singular
points are defined as solutions of (2.7), which takes the following form for (8.1):

U U
tosin (22 ) = ¢ [sin2 (22 ) — & (8.8)
2V 2V

Raising both sides of (8.8) to the second power and replacing the variables U — u, we
obtain the quadratic equation

Fy=-—

(2 — P)® + 221 = 2a) — )+ @3 — %) = 0. (8.9)
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We are interested in the evolution of the solution at times close to the collapse instant
t =0, and we can choose an arbitrary value of ¢ as the initial time instant. We choose
the interval —ty < t < 0 on which the higher coefficient of (8.9) retains its sign. On this
interval, (8.9) has two real roots

R+ Qa— D £2a@} — (1 - )

2 _ 2
Iy—t

U4 = , (8.10)

for which

lim w3 =0, lim pq4 =400, limpuz=I1impuqg=1. (8.11a—c)

t——ty+0 t——1t9+0 t—0 t—0
Thus, at t € (—t9, 0), the singular point p3 runs over a segment of the real axis from the
point D to the point A (see figure 145), while the point w4 moves outside the flow domain
over the real axis and approaches point A from the outer side of the circle. It should be
noted, however, that the points 3 4 found here are roots of the equation corollary obtained
by raising the initial (8.8) to the second power. Let us demonstrate that @3 is not a root of
the initial equation. For this purpose, we return to the variable U. As u3 € R and 3 > 0,
then In w3 = In |u3|. We have

: % U 1
u:emU/V=>U=—i—ln|M3|:>sinn—=—isinh nus|
U 2V 2

[ a0 [ (Il
= ,/sin X a_1\/smh( > + a. (8.12)

Substituting the resultant expression into the initial equation (8.8), we find

— 1o sinh(In |3]/2) = t\/ sinh?(In |p3|/2) + a. (8.13)

However, the equality is invalid because 3 < 1 and, therefore, the left-hand side of (8.13)
is positive, whereas the right-hand side is negative. Therefore, 13 is not a root of (8.8),
and its position in the flow domain does not violate the analyticity of the complex velocity
function.

Thus, we proved the existence of the solution at ¢ € (—#p, 0). Let us now use the
property of symmetry and continue this solution (figure 15) across the x and y axes. As a
result, we obtain a flow that can be treated as a collapse of the bubble located in the fluid
between two parallel walls moving toward each other with a constant velocity. Figure 16
shows the evolution of this flow for the following values of the parameters: R =1,V =1
and a = 1/2. The positions of the singularities are marked. One of them marked by the
circle corresponds to the root 141, and the other one marked by the star corresponds to the
root fi4.

Att = 0, the bubble completely collapses to a segment [—R, R] located on the imaginary
axis. This occurs at the time instant when the singularity 4 passes from the domain
outside the fluid to the free boundary, which is accompanied by the formation of a
singularity, i.e. a point with an infinite curvature corresponding to the end of the segment.

9. Conclusions

A number of new exact solutions of the classical problem of the hydrodynamics on a
plane unsteady potential flow of an ideal incompressible fluid with a free boundary are
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Figure 16. Evolution of a bubble.

constructed and studied. In our earlier investigations (see Karabut & Zhuravleva 2014;
Zubarev & Karabut 2018; Karabut et al. 2020), we considered a situation where the entire
boundary of the fluid is free. For this case, an algorithm for constructing exact solutions
was proposed for situations where the domain corresponding to the fluid does not change
with time in the plane of the complex velocity U (hodograph plane). The solution z(U, t)
is found by the compact formula

z=Ut+ F(U), 9.1

where F(U) is a sufficiently arbitrary function holomorphic in the flow domain.

It is demonstrated in the present paper that presentation (9.1) remains valid if some of the
fluid boundaries are solid walls moving with a constant velocity. In this case, the function
F(U) has to satisfy additional boundary conditions on the walls. Note that some solutions,
such as those shown in figures 5 and 6, allow analytical continuation beyond the solid
walls. In this case, we obtain rather exotic periodic solutions of the problem for a purely
free surface flow; the spatial period |2V?| of boundary perturbations changes linearly with
time.

Dividing the function F(U) into a pair of functions, F(U) = Fo(U) + F1(U), (9.1) can
be considered as a solution that describes a perturbation of a certain base flow z = Ur +
Fo(U). In this case, the perturbations are defined by the function F (U). As our approach
does not require that F' should be small and, as a consequence that Fy and F| should be
small, it actually offers new possibilities of studying the stability of unsteady flows with a
free boundary to non-small nonlinear perturbations.

It is clear from general considerations that the complete solution of the problem under
consideration has to contain a pair of arbitrary functions: one of them is responsible for
the initial shape of the free boundary, and the other is responsible for the initial velocity
perturbation. A solution of the form of (9.1) is a particular solution because it contains
only one arbitrary function F. As a result, it is possible to specify an arbitrary shape of the
boundary, but the velocity field is not arbitrary; it is defined by relation (9.1). A specific
feature of the class of solutions described by (9.1) is the absence of the vertical component
of velocity on the free boundary, which certainly imposes significant constraints on the
types of flows described by our approach, and thus leaves the possibility of a qualitatively
different behaviour for a more general class of perturbations. However, the presence of
even one arbitrary function can be considered as a noticeable achievement. As was shown
by several examples, our solutions allow one to describe various important processes, such
as the formation and collapse of bubbles and the formation of droplets and cusps. The
question about the possibility of complete integration of equations of motion is still open.
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Probably, the general solution being presented in the form
z=Ut+F(U, 1), (9.2)

can be constructed in the form of a formal series as an expansion of the function F U,
in powers of ¢, where the function F(U) included in (9.1) plays the role of the zeroth
approximation. For a fluid not bounded by walls, the possibility of implementation of
an iterative procedure for constructing the general solution was discussed by Zakharov
(2020). In that case, an approach based on conformal mapping of the domain occupied
by the fluid onto a half-plane was applied (see Dyachenko et al. 1996; Dyachenko 2001),
which differs from the hodograph transform used in our study. It should be noted that
integrability is supported by the presence of new integrals of motion arising in the course
of integration around singularities located outside the fluid, which was noted in Dyachenko
et al. (2019, § 1). The theory here is based on assumptions about a certain behaviour of the
singularities and their type (see also the recent publication Lushnikov & Zakharov 2021).
The validity of the assumptions and results (Dyachenko ez al. 2019) can be verified through
comparisons with solutions derived in the present study.
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