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The decontamination of hazardous chemical agents from porous media is an important and critical
part of the clean-up operation following a chemical weapon attack. Decontamination is often
achieved through the application of a cleanser, which reacts on contact with an agent to neutralise it.
While it is relatively straightforward to write down a model that describes the interplay of the agent
and cleanser on the scale of the pores in the porous medium, it is computationally expensive to solve
such a model over realistic spill sizes.

In this paper, we consider the homogenisation of a pore-scale model for the interplay between
agent and cleanser, with the aim of generating simplified models that can be solved more easily on
the spill scale but accurately capture the microscale structure and chemical activity. We consider two
situations: one in which the agent completely fills local porespaces and one in which it does not. In
the case when the agent does not completely fill the porespace, we use established homogenisation
techniques to systematically derive a reaction–diffusion model for the macroscale concentration of
cleanser. However, in the case where the agent completely fills the porespace, the homogenisation
procedure is more in-depth and involves a two-timescale approach coupled with a spatial boundary
layer. The resulting homogenised model closely resembles the microscale model with the effect of
the porous material being incorporated into the parameters. The two models cater for two different
spill scenarios and provide the foundation for further study of reactive decontamination.

Key words: Homogenisation, equations in media with periodic structure, diffusion and convection,
reaction effects in flows, interface problems

2010 Mathematics Subject Classification: 35B27 (Primary); 76Rxx (Secondary)

1 Introduction

During a liquid chemical weapon attack in an urban environment, the chemical agent often lands
on, and seeps into, porous building materials such as concrete or tarmac. In order to decontami-
nate the material, any agent present on the surface is removed, and then a cleaning solution (the
‘cleanser’) is applied to the top of the porous substrate (often using a mop), which reacts with the
agent trapped within the pore structure. Often the agent and the cleanser are immiscible fluids
(typically one is oily and one is aqueous), which means that the decontamination reaction occurs
at the interface between the two fluids. It is crucial for public safety that all the agents are reacted
away, but it is difficult to tell from surface measurements whether or not any agent remains
unreacted inside the material. It is also difficult to predict the time it takes for all the agents to be
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reacted away: while reaction times may (or may not) be known for the cleanser–agent pair in the
laboratory, it is unclear how the porous material and initial three-dimensional shape of the spill
affect the process.

The problem of reactive decontamination within a porous medium has been previously studied
in [3] and [6]. In [3], flow of a chemical agent into a porous medium is considered; the two-
dimensional analogue is studied in [10].1 After a discussion of the flow of agent into the porous
material, [3] and [6] consider the reactive decontamination process in which the cleanser is
assumed to be in aqueous solution and the agent is assumed to be oil-based, and they study
the diffusion of cleanser and the (harmless) product of the reaction through the aqueous solution,
and the chemical reaction at the interface. They derive appropriate interface conditions by con-
servation of chemical arguments. The decontamination times are found in two cases: (i) when the
limiting step is the diffusion of product away from the reaction front, and (ii) when the limiting
step is the diffusion of cleanser to the front. The key result is that, in certain parameter regimes,
increasing the cleanser concentration does not decrease the overall time to decontaminate all the
agents. However, the models in [6] do not explicitly take into account the porous structure in
which the process occurs.

Given that a typical chemical spill can be tens of centimetres across but the pores of the mate-
rial are typically of micron size, it is unfeasible to keep explicit track of the local concentration of
cleanser everywhere within the porous structure. There is a clear need to build simple models that
hold over the whole of the spill, which take into account the effect of the fine-scale structure of
the porous medium and the localisation of the decontamination front to the cleanser–agent inter-
face. We will use homogenisation theory to derive ‘averaged’ equations, valid over the entire
spill but which take the pore-scale structure and chemistry into account. Homogenisation tech-
niques have been used very successfully for numerous diffusion-based problems. For instance,
[4] and [5] consider the diffusion (and advection) of particles suspended in solution through a
filter and they allow the porosity of the filter to change over the macroscale, while in [1] the
diffusion through a medium with varying porosity is studied and the effective macroscale diffu-
sion coefficient is computed, for both periodic and random microstructures. Similar techniques
have been used to study the growth of biofilms within a saturated porous medium. For example,
Schultz et al. [14, 15] use homogenisation to derive macroscale models for the growth of biofilms
and the fluid flow through the medium. The incorporation of chemical reactions into the body
of the fluid is studied in [7], where corrosion of the microstructure occurs. They homogenise
appropriate microscale models and determine effective reaction and transport coefficients.

Homogenisation methods may also be used to derive macroscale boundary conditions. For
instance, the Beavers and Joseph boundary condition at a (static) boundary of a porous medium
can be derived via homogenisation (see, e.g., [13]). However, the homogenisation of processes
happening at a non-static, fluid–fluid interface is a less standard problem.

The progression of the decontamination reaction through the porous substrate depends funda-
mentally on how the agent is distributed in the medium. For example, it might coat the walls of
the pores, or it might completely fill the porespace, as shown in Figure 1. We expect that the
resulting macroscale model will be different in each of these two canonical scenarios.

1More generally, the motion of fluids through porous media, often known as ‘gravity-driven flows’, are
well-studied problems, with notable papers including [9] and [12].
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FIGURE 1. Schematic of the two possible scenarios that we will consider. On the left the agent (green)
coats the pore walls, while on the right the agent fills the porespace in some region of the domain. We refer
to these as the ‘unsaturated’ and ‘saturated’ models, respectively. The cleanser solution (white) fills the
remaining porespace.

In this paper, we will build microscale mathematical models for these two scenarios, which we
will homogenise to generate macroscale models that will be applicable on the spill scale. We will
then compare and contrast the behaviour of these models in a simple scenario. In more detail,
in Section 2, we will build the model that holds within the fluid-filled pores of the substrate. In
Section 3, we will perform a homogenisation of these equations, looking at the case in which
the chemical agent coats the solid structure, while in Section 4 we will perform the homogeni-
sation in the case where the agent fills the pores. In Section 5, we will compare the two models
qualitatively. Concluding remarks are given in Section 6.

2 Mathematical model

In this section, we present a model for the decontamination process. We assume that the agent is
a neat oily chemical, the cleaning fluid consists of an aqueous solution of the cleanser chemical,
and that the two fluids are immiscible so that the decontamination reaction only takes place at the
interface between the two fluids. We further assume that the product(s) of the decontamination
reaction are only soluble in the aqueous phase so that the agent phase remains undiluted and
is depleted during the reaction. We focus on decontamination situations in which the agent has
already soaked into a porous substrate and assume that the transport of cleanser is purely due to
diffusion within the aqueous solution, so that there is no fluid flow of either agent or cleanser.

We consider a two-dimensional porous medium, with x̂ and ŷ the horizontal and vertical
coordinates, respectively, as shown in Figure 1. Here and henceforth, we use hat-notation
( ˆ ) to signify dimensional variables. We denote the solid structure by the region �̂s, the solid–
fluid boundary by ∂�̂s and the porespace occupied by fluid by �̂=R

2 \ �̂s. We denote the
region of the porespace occupied by cleanser fluid by �̂c ∈ �̂, and that occupied by agent by
�̂a = �̂ \ �̂c. The fluid–fluid interface between agent and cleanser is denoted ∂�̂i. The con-
centration of cleanser, ĉ, measured in mol/m3, and the volume fraction of agent, â, therefore
satisfy

â = 1, ĉ = 0, in �̂a, (2.1)

â = 0, ĉt̂ = D̂∇̂2ĉ, in �̂c, (2.2)
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where D̂ is the spatially uniform diffusivity of the cleanser within the solution. At any interface
between the agent and cleanser ∂�̂i, the decontamination reaction occurs and, remembering that
we have assumed that there is no fluid flow, conservation of cleanser at this interface reads

+ĉv̂ · n + D̂∇̂ ĉ · n = −ĵ, (2.3)

where v̂ is the velocity of the interface, n is the unit normal to the interface pointing into the
chemical agent and ĵ is the flux of cleanser molecules into the reaction. Assuming that no voids
are created by the decontamination reaction, conservation of volume reads

−v̂ · n = −χ̂ ĵ, (2.4)

where χ̂ is the molar volume of agent, measured in m3/mol. We assume that the chemical
reaction between agent molecule A and cleanser molecule C is described by

λaA+ λcC → product, (2.5)

where λa, λc ∈N are the stoichiometry constants. For simplicity, we assume that λa = λc = 1,
although the results could be easily extended to other values. We use the Law of Mass Action to
determine the flux ĵ, and write

ĵ = k̂ĉ, (2.6)

where k̂ is the mass transfer coefficient for the reaction, measured in m/s. Finally, we assume
that there is no flux of cleanser molecules into the solid, and so we write

∇̂ ĉ · ns = 0 on ∂�̂s, (2.7)

where ns is the normal to the solid. In summary, our model reads

ĉt̂ = D̂∇̂2ĉ in �̂c, (2.8)

+ĉv̂ · n + D̂∇̂ ĉ · n = −k̂ĉ on ∂�̂i, (2.9)

−v̂ · n = −χ̂ k̂ĉ on ∂�̂i, (2.10)

∇̂ ĉ · ns = 0 on ∂�̂s, (2.11)

which must be coupled with appropriate boundary conditions on ĉ (e.g., at the top of the porous
medium), and an initial condition. This model holds within the complicated domain �̂ around the
solid structure of the porous medium. We wish to homogenise this model, and derive averaged
equations that hold over the whole domain and take into account the solid microstructure.

Before proceeding, we note that the ratio of the pore lengthscale, d̂, to the spill lengthscale,
L̂, is small, ε = d̂/L̂ � 1, which is necessary for our homogenisation analysis. As is standard
in multiple-scale analyses, we will make the key assumption that the dependent variables (e.g.,
ĉ) can vary on both the pore scale and on the spill scale independently, and we will relate our
spatial variables on the macroscale to the microscale using ε. We will zoom in to a single ‘cell’
on the microscale, and analyse the behaviour at this level, before averaging to obtain equations
that hold on the macroscale, with the explicit microscale dependence averaged out. As described
in [8], the macroscale model derived by this method holds in the limit as ε→ 0, and so is a very
good approximation for situations in which ε is very small.
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FIGURE 2. Schematic of the porous structure, and the layer of agent coating the solid in dimensionless
variables, introduced in (3.2); (x, y) are microscale variables, while (X , Y ) are macroscale variables defined
in (3.7).

In the next two sections, we will consider two canonical scenarios, one in which the agent
coats the solid microstructure and another in which the agent completely fills the porespace.

3 Agent coats the solid microstructure

In this section, we will use the model (2.8)–(2.11) to describe decontamination in the case where
the agent has coated the pores (as shown in Figure 2), and we will homogenise the equations to
find the leading-order macroscale behaviour. We will follow the argument presented in [4], in
which the mathematical problem is similar but the application (adsorption of particles onto the
solid structure in a filter) is fundamentally different.

For simplicity, we suppose that the microscale solid structure consists of a periodic square
lattice of circular solids, each with constant radius r̂ and located in the centre of each cell, size
d̂. The square array periodicity may be relaxed to allow for a more realistic quasiperiodicity but
the methodology is similar [11]. We assume that the solid structure is coated by a layer of the
agent, thickness R̂, which is reacted away by the surrounding cleanser. The interface speed v̂ is
thus given by

v̂ = −R̂t̂n, (3.1)

since n points into the agent. We note that, while the local normal to the agent–cleanser interface
is in the direction er (the unit vector in the radial direction from the centre of the solid circle),
we will later allow the interface to depend on both the macroscale and microscale variables. A
key facet of the model will be to allow R̂ to vary over the macroscale, and the derivatives in the
definition of the normal will need to be altered to account for the dependence of the interface on
both the microscale and macroscale; thus the normal n is not simply er.

3.1 Dimensionless model

We choose to nondimensionalise the model (2.8)–(2.11) using the pore lengthscale (since our
equations hold within the fluid region of a pore) but using the timescale associated with diffusion

https://doi.org/10.1017/S0956792519000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000263


Homogenisation problems in reactive decontamination 787

over the spill scale (since we are interested in overall clean-up), and thus we choose

(x̂, ŷ, R̂) = d̂(x, y, R), ĉ = c∗c, t̂ = d̂
2

ε2D̂
t, (3.2)

where c∗ is the initial concentration of cleanser in the cleaning solution and subscripts denote
differentiation. The dimensionless model in the cleanser fluid reads

ε2ct = ∇2c, (3.3)

while at the agent–cleanser interface located at |x| = r + R, we have

ε2cRt − ∇c · n = ε2βc, ε2Rt = −ε2βγ c, (3.4)

when R> 0 and

∇c · er = 0, (3.5)

when R = 0, where n is the dimensionless normal to the interface. We have introduced three
dimensionless parameters:

β = d̂k̂

ε2D̂
, γ = χ̂c∗, r = r̂

d̂
, (3.6)

which represent the ratio of the diffusion timescale over the macroscale to the chemical reac-
tion timescale on the microscale, the amount the interface moves due to these effects and the
dimensionless microscale solid structure radius, respectively. We assume that both β and γ are
order-one constants, so that the resulting model corresponds to the distinguished limit in which
the diffusion and reaction terms are both present. This regime also caters for situations in which
β and γ are smaller than O(1). Another asymptotic limit occurs when β ∼ ε−2, in which all the
action takes place on the microscale, but we do not consider this here.

3.2 Homogenisation

We now homogenise (3.3)–(3.5) to find the macroscale behaviour. We assume that c varies over
both the microscale and macroscale and that R varies over the macroscale. We introduce the
macroscale variables

X = εx, Y = εy, (3.7)

and thus write c = c(x, y, X , Y , t) and R = R(X , Y , t). We expand the spatial derivatives using the
chain rule to account for both sets of variables and replace ∇ with ∇x + ε∇X . Since we assume
that the microscale solid structure is periodic, we consider a canonical microscale problem that
consists of a solid particle coated in agent and surrounded by cleanser solution, as shown in the
insert of Figure 2. This is called the ‘unit cell’ for this problem, which we denote by ω= [0, 1]2.
We impose that c is locally periodic in the microscale variables by enforcing periodicity over ω.
Since we assume that the microscale and macroscale variables are independent, this periodicity
condition does not affect the variation of the cleanser concentration over the macroscale. Further,
since R = R(X , Y , t), the part of the cell occupied by cleanser, which we call ωc(X , Y , t), is also
a function of X , Y and t.
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Substituting this change of variables into (3.3)–(3.5), and taking care to remember that the
normal to the interface |x| = r + R is

n = ∇(r + R − |x|)
|∇(r + R − |x|)| = (∇x + ε∇X )(r + R − |x|)

|(∇x + ε∇X )(r + R − |x|)| , (3.8)

in this revised coordinate system, the model becomes

ε2ct = ∇2
x c + ε(∇x · ∇X + ∇X · ∇x)c + ε2∇2

X c, (3.9)

in ωc ×R
2, with boundary conditions on |x| = r + R, correct to O(ε2), reading

ε2
(
cRt − βc

)= (∇x + ε∇X )c · (∇x + ε∇X )(r + R − |x|), (3.10)

ε2Rt = −ε2βγ c, (3.11)

when R> 0 and

(∇x + ε∇X )c · er = 0, (3.12)

when R = 0. We seek asymptotic expansion solutions of (3.9)–(3.12) of the form

c = c0(x, y, X , Y , t) + εc1(x, y, X , Y , t) + ε2c2(x, y, X , Y , t) + · · · , (3.13)

R = R0(X , Y , t) + εR1(X , Y , t) + · · · , (3.14)

and we note that we apply the boundary conditions (3.10)–(3.12) on ∂ωi0 = {|x| = r + R0} rather
than ∂ωi = {|x| = r + R}. This requires us to Taylor expand

f
∣∣|x|=r+R

=f
∣∣|x|=r+R0

− (εR1 + ε2R2 + · · · )er · ∇xf
∣∣|x|=r+R0

(3.15)

+ 1

2

(
(εR1 + ε2R2 + · · · )er · ∇x

)2
f
∣∣|x|=r+R0

+ · · · ,

for any function f depending on x, y in the interface conditions (3.10)–(3.11). We denote the
cleanser-occupied region of a cell outside of ∂ωi0 by ω0(X , Y , t) (instead of the region ωc outside
of ∂ωi).

We find that the leading-order problem in ω0(X , Y , t) is

∇2
x c0 = 0, (3.16)

with, on ∂ωi0

−er · ∇xc0 = 0, (3.17)

coupled with periodic boundary conditions on the edge of the unit cell. We note that, at this
order, the interface condition (3.10) has reduced to the condition of no flux (3.17) and so the
same condition holds whether R0 = 0 or R0 > 0.

We multiply (3.16) by c0 and integrate over ω0(X , Y , t) to find that

0 =
∫∫

ω0

c0∇2
x c0 dxdy = −

∫∫
ω0

|∇xc0|2 dxdy +
∫
∂ω0

c0∇xc0 · n ds, (3.18)

where the boundary ∂ω0(X , Y , t) is the union of the edge of the cell ∂ω and the interface/solid
boundary. By periodicity of c0, the line integral around the edge of the cell evaluates to zero,

https://doi.org/10.1017/S0956792519000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000263


Homogenisation problems in reactive decontamination 789

and using the no-flux interface condition the line integral along ∂ωi0 is also zero. Hence for all
times t,

0 = −
∫∫

ω0(X ,Y ,t)
|∇xc0|2 dxdy, (3.19)

and we thus conclude that c0 = c0(X , Y , t) is independent of the microscale. To close the model
for c0, we must proceed to higher order in ε. The O(ε) problem in ω0(X , Y , t) reads

∇2
x c1 = 0, (3.20)

with, on ∂ωi0,

−er · (∇xc1 + ∇X c0) = 0, (3.21)

again coupled with periodic conditions for c1 on the boundary of the cell. The linearity of the
O(ε) problem means that we can construct a solution of the form c1 = w · ∇X c0, where we choose
the components of w = (

w1(x, y, X , Y , t), w2(x, y, X , Y , t)
)

to solve the cell problems

∇2
x wi = 0 in ω0(X , Y , t), (3.22)

−er · (∇xwi + ei) = 0 on ∂ωi0, (3.23)

with wi periodic over the unit cell, for i = 1, 2 where e1, e2 are the unit vectors in the x and y
directions, respectively. Thus, we can determine c1 in terms of c0 and the solution of the cell
problem, which we note depends on R0(X , Y , t).

The O(ε2) problem is more complicated. The governing equation, to be solved in ω0(X , Y , t),
reads

c0t = ∇2
x c2 + (∇x · ∇X + ∇X · ∇x)c1 + ∇2

X c0, (3.24)

with, when R0 > 0, the boundary conditions

c0R0t − βc0 = ∇X R0 ·
(
∇X c0 + ∇xc1

)
− er ·

(
∇xc2 + ∇X c1

)
, (3.25)

R0t = −βγ c0, (3.26)

on ∂ωi0 while, if R0 = 0, we have the boundary condition

(∇xc2 + ∇X c1) · er = 0, (3.27)

with c2 periodic over the unit cell in both cases. We note that we have used the O(ε) boundary
condition (3.21) to simplify (3.25). We integrate (3.24) over ω0(X , Y , t), and, using the fact that
c0 is independent of x and y along with the divergence theorem, obtain

V(R0)c0t =
∫∫

ω0

∇X · (∇X c0 + ∇xc1) dxdy +
∫
∂ω0

(∇xc2 + ∇X c1) · n ds, (3.28)

where V(R0) is the area of the cleanser-occupied region, given by

V(R0) = V(X , Y , t) :=
∫∫

ω0(X ,Y ,t)
dxdy = 1 − π (r + R0)2, (3.29)
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in our circular geometry. We first look at the situation where R0 > 0. The area integral in (3.28)
may be rewritten using a transport theorem, namely:

∇X ·
∫∫

ω0(X ,Y ,t)
f (x, y, X , Y , t) dxdy =

∫∫
ω0

∇X · f dxdy −
∫
∂ωi0

∇X R0 · f ds, (3.30)

for any function f . The line integral in (3.28) may be split into two parts: the edge of the cell
∂ω and the fluid–fluid interface ∂ωi0. The integral around the edge of the cell evaluates to zero
because of the periodicity of c1 and c2, while the integral over the fluid–fluid interface is∫

∂ωi0

(∇xc2 + ∇X c1) · nx ds =
∫
∂ωi0

−βc0 + c0R0t − ∇X R0 · (∇X c0 + ∇xc1) ds

= −L(R0)
(
βc0 + βγ c2

0

)−
∫
∂ωi0

∇X R0 · (∇X c0 + ∇xc1) ds, (3.31)

where we have used (3.25), (3.26), and the fact that c0 is independent of x and y. We have also
introduced the local length L(R0) of the agent–cleanser interface ∂ωi0, defined by

L(R0) :=
∫
∂ωi0

ds = 2π (r + R0), (3.32)

in our circularly symmetric geometry. We use (3.30) to manipulate the double integral in (3.28)
and substitute (3.31) and c1 = w · ∇X c0 to find that (3.28) reduces to the reaction–diffusion
equation

V(R0)c0t = ∇X ·
(

D(R0)V(R0)∇X c0

)
−L(R0)

(
1 + γ c0

)
βc0, (3.33)

where the entries in the diffusivity tensor D are given by

Dij = δij + 1

V(R0)

∫∫
ω0(X ,Y ,t)

∂wj

∂xi
dxdy. (3.34)

We note that D depends on R0 via the integral over ω0(R0) and that, due to the pore-scale sym-
metry of the problem, D is proportional to the identity matrix. Had we assumed a different pore
geometry, we would have obtained the same form for (3.33), but with different formulae for D,
V and L.

Finally, we study the situation with R0 = 0. The analysis is simpler than in the R0 > 0 case and,
instead of (3.25) and (3.26), we substitute (3.27) into (3.28) and the line integral immediately
evaluates to zero. Since the cell domain ω0 no longer depends on X or Y , the area integral in
(3.28) may be rewritten by moving the derivatives to the outside of the integral, and we find that

c0t = ∇X ·
(

D0∇X c0

)
, (3.35)

where D0 is given by (3.34) evaluated at R0 = 0.

3.3 Summary

In summary, we have derived a macroscopic model for the leading-order cleanser concentration
c := c0(X , Y , t) and the leading-order thickness of the agent layer R := R0(X , Y , t), which depend

https://doi.org/10.1017/S0956792519000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000263


Homogenisation problems in reactive decontamination 791

only on macroscale variables X and Y , but incorporate the microscale effects. Our model reads

ct = 1

V(R)
∇X ·

(
DV(R)∇X c

)
−F(R) (1 + γ c) βc, Rt = −βγ c, (3.36)

when R> 0, where F(R) =L(R)/V(R), and reduces to

ct = ∇X ·
(

D0∇X c
)

, (3.37)

when R = 0. Our model must be solved with appropriate (macroscopic) boundary conditions for
c and initial conditions for c and R. These will depend on the decontamination scenario under
consideration.

4 Agent saturates the porespace; sharp interface on the macroscale

In this section, we consider the situation where the agent saturates the porous medium in some
regions and the cleanser solution saturates the porous media in other regions, and there is a sharp
interface between the regions, as shown in Figure 1 (right). We assume that the porous medium
has the same microscale structure as introduced in section 3, but instead of tracking the thickness,
R̂, of the layer of agent around each inclusion, we track the position of the microscale interface
between the two fluids, which we assume to be located at ŷ = ĥ(x̂, t̂), with cleanser diffusing in
ŷ> ĥ and neat agent in ŷ< ĥ.

4.1 Dimensionless model

We choose to nondimensionalise the model (2.8)–(2.11) using the pore lengthscale and an inter-
mediate timescale lying between that for diffusion over the pore scale and diffusion over the spill
scale,

(x̂, ŷ, ĥ) = d̂(x, y, h), ĉ = c∗c, t̂ = d̂
2

εD̂
t. (4.1)

The timescale, d̂2/εD̂, is chosen to match the movement of the microscale interface due to the
chemical reaction. The other process present in our model is diffusion, which, on the pore scale
occurs on the much shorter timescale d̂2/D̂. Unlike in Section 3, we do not need to specify the
shape of the porous microstructure and only require that it is locally periodic. The choice of
circular microstructure in Figures 1 and 3 is for illustration only.

The dimensionless model reads

εct = ∇2c, (4.2)

in the region of space occupied by cleanser (�h =�∩ {y> h(x, t)}) with, on the agent–cleanser
interface y = h(x, t),

−εc
ht√

1 + h2
x

+ nf · ∇c = −εβ∗c, (4.3)

where nf is the dimensionless downward pointing normal to the interface which can be written as

nf = 1√
1 + h2

x

(
hx

−1

)
, (4.4)
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FIGURE 3. Schematic for the agent-saturated model, with the microscale cells both at (ωh) and away from
(ωc) the interface.

and

ht√
1 + h2

x

= −γβ∗c. (4.5)

Where the cleanser meets the surface of the substrate, ∂�s ∩ {y> h(x, t)}, we have

∇c · ns = 0. (4.6)

In this case, we have introduced the dimensionless parameter

β∗ = d̂k̂

εD̂
, (4.7)

and γ = χ̂c∗ as in Section 3. As in Section 3, γ represents the amount the interface moves due
to the chemical reaction, but now β∗ is the ratio of the diffusion timescale on the macroscale to
the chemical reaction timescale, also on the macroscale (rather than using the chemical reaction
timescale on the microscale as we used to define β in (3.6)). This is because, rather than the
cleanser–agent interface moving on the microscale due to the chemical reaction as in Section 3,
we are now interested in the chemical reaction-driven motion of a macroscale boundary. If we
assume that β∗ and γ are order one, then this macroscale boundary will move at an order-one
velocity over the macroscale.

4.2 Homogenisation

Our aim is to homogenise the equations and derive the leading-order behaviour of the cleanser
concentration and the movement of the macroscale interface over the large lengthscale of the
spill. We use the same macroscale spatial variables as used in Section 3 but we also introduce a
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macroscale time variable T = εt, which is the timescale for diffusion over the macroscale, and
(as we shall see later) also the timescale over which the macroscale interface moves. Multiple
timescales are necessary for this homogenisation as the timescale T of the macroscale problem
is much longer than the timescale t over which the interface speed oscillates on the microscale
(due to the porous structure interfering with the chemical reaction at the interface).

If we consider the problem in terms of the macroscale variables, we see that there are (at
least) two different regions in the domain. Firstly, far enough away from the agent–cleanser
interface, the problem becomes the standard problem of diffusion in a porous medium, which we
may homogenise to give an adapted diffusion equation. Secondly, there is the interface region
itself. The agent–cleanser interface is necessarily a microscale structure, since the interface only
exists in the pores between the solid structure. However, we wish to define a boundary for the
macroscale problem, moving at an average velocity which does not vary over the timescale of
the microscale interface moving through a cell. Due to the fast variation in the interface region,
we will consider this as a boundary layer of the macroscale problem. Hence, we will refer to
the ‘far-field’ region as the outer problem, and the interface region as the inner problem. We
will see that the boundary layer width is order ε in terms of the outer/macroscale variables. In
the outer problem, we assume periodicity of the microscale problem over a unit cell, as usual.
In the inner problem this clearly cannot hold, and we only assume periodicity across a unit cell
in the direction parallel to the macroscale interface, while the microscale variable perpendicular
to the interface will be matched to the outer problem.

As we will see, we cannot directly match the inner and outer solutions. This is because, at the
interface, the pore lengthscale is too small for the oscillations due to the interface motion to be
smoothed out by diffusion. We, therefore, require an intermediate region between the inner and
outer problems, with lengthscale ε1/2 (which is the diffusion lengthscale over the fast timescale),
over which the interface oscillations smooth out to match to the outer problem. A schematic in
shown in Figure 3.

Specifically, we first consider the problem in terms of macroscale variables X = εx, Y = εy
and T = εt. For simplicity, we assume that the macroscale fluid–fluid interface is flat and is
given by Y = H(T); a non-flat macroscale interface would be given by H = H(X , T). The speed
of the interface, v(T) := HT (T), will be determined during the homogenisation. Note that v is a
function of the slow timescale T only, since we will average over the fast timescale. We change
variables to move with this interface, setting Z := Y − H(T).

Far away from the interface, now located at Z = 0, we have a standard diffusion in porous
media problem, and hence introduce microscale cell variables η= Z/ε, ξ = X/ε. We must also
take into account variation on the fast timescale t = T/ε. In this outer region, the concentration
C satisfies

ε(Ct + εCT − HT Cη − εHT CZ) = ∇2
ξC + ε

(
∇ξ · e2

∂

∂Z
+ e2

∂

∂Z
· ∇ξ

)
C + ε2CZZ , (4.8)

when (ξ , η, X , Z) ∈ωc(t) ×R
2, with(

∇ξ + εe2
∂

∂Z

)
C · ns = 0 (4.9)

on the solid surface. Since this coordinate system is moving with the interface, the solid surface
is moving up through the microscale cell ωc, with speed HT (T). Here, e2 is the unit vector in the
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Z, or η, direction. We assume that the function s, where s(x, y) = 0 defines the solid boundary
∂ωs, is 1-periodic in both arguments, so that the solid part of the cell is everywhere periodic. The
normal to the solid, ns is given by

ns(x, y) = ∇xs(x, y)

|∇xs(x, y)| = ∇ξ s(ξ , η+ HT t)

|∇ξ s(ξ , η+ HT t)| , (4.10)

and is independent of the spatial macroscale variables. We assume that C is periodic in ξ and η
with period 1 and also in t with period 1/HT , which will allow us to average over the microscale.

Near the interface Z = 0, we have a boundary layer where microscale effects are important.
We change variables by defining z := Z/ε and also introduce the microscale variable x := X/ε.
We denote the variation in the interface position due to microscale effects by z = h̄(x, t), which is
independent of the macroscale, and periodic in both x (period 1) and t (period 1/HT ), so that the
interface speed HT (T) is truly the locally averaged interface speed. Since none of the variables
depend on X , the only spatial derivatives are ∇x = (∂x, ∂z). The equations in this inner region are
therefore

ε
(
ct + εcT − HT cz

)= ∇2
x c, (4.11)

in ωh(t) with, on the microscale boundary ωh(t) ∩ {z = h̄}

−εc
(HT + h̄t)√

1 + h̄2
x

+ n · ∇xc = −εβ∗c, (4.12)

(HT + h̄t)√
1 + h̄2

x

= −γβ∗c, (4.13)

and with, on the solid surface ∂ωs(t),

∇xc · ns = 0. (4.14)

We further impose that c is periodic in x with period 1, and in t with period 1/HT .
As previously discussed, it transpires that we also require an intermediate layer between the

outer and inner problems, with lengthscale chosen to balance diffusion on the t-timescale. In
this intermediate layer, fast variations from the inner problem are smoothed out by diffusion in
order to correctly match with the outer problem. For our intermediate spatial variable, we define
z̃ := ε−1/2Z and x̃ := ε−1/2X (although in our case there is no dependence of any variables on x̃,
because there is no dependence on X ). We again introduce microscale variables ξ and η as for
the outer problem in order to homogenise over the microscale effects. The cleanser concentration
c̃ in this intermediate layer therefore satisfies

ε(c̃t + εc̃T − HT c̃η − ε1/2HT c̃z̃) = ∇2
ξ c̃ + ε1/2

(
∇ξ · e2

∂

∂ z̃
+ e2

∂

∂ z̃
· ∇ξ

)
c̃ + εc̃z̃z̃, (4.15)

with, on ∂ωs, (
∇ξ + ε1/2e2

∂

∂ z̃

)
c̃ · ns = 0, (4.16)

and we assume that c̃ is periodic in ξ and η, with period 1, and in t, with period 1/HT .
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FIGURE 4. A flow chart displaying the information flow for the sharp interface homogenisation. The arrows
show the direction of flow, and the red boxes highlight the crucial results that form the macroscale model.

Since we have ε1/2 terms in the intermediate region, we expand all the dependent variables in
powers of ε1/2 in all regions, in the form

f = f0 + ε1/2f1/2 + εf1 + ε3/2f3/2 + ε2f2 + · · · , (4.17)

remembering that c = c(x, z, t, T), h̄ = h̄(x, t), C = C(ξ , η, t, Z, T) and c̃ = c̃(ξ , η, t, z̃, T), with
these forms retained at all orders in the expansion. For ease of notation, we drop the overbar
for h. A flow chart showing the information flow through the homogenisation process is shown
in Figure 4; this may be helpful to refer to through the analysis that follows.

4.2.1 The outer problem

We begin by considering the outer problem, given by (4.8)–(4.9) along with the periodicity
conditions. The leading-order problem reads

∇2
ξC0 = 0, (4.18)

in ωc(t) with, on ∂ωs,

∇ξC0 · ns = 0, (4.19)

along with the periodicity of C0 over ωc, and in t with period 1/HT . Multiplying (4.18) through
by C0, integrating over ωc, and applying the boundary condition on ∂ωs and the periodicity
at the edge of the cell, we find that C0 = C0(t, Z, T) is independent of ξ and η. Appealing to
the linearity of the outer problem and the fact that ε1/2 does not appear in the outer problem,
we obtain the same problem for C1/2 at O(ε1/2) as for C0 at O(1), and likewise conclude that
C1/2 = C1/2(t, Z, T).

At O(ε), we have

C0t − HT C0η = ∇2
ξC1 +

(
∇ξ · e2

∂

∂Z
+ e2

∂

∂Z
· ∇ξ

)
C0, (4.20)
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in ωc(t), with, on ∂ωs, (∇ξC1 + e2C0Z

) · ns = 0, (4.21)

with C1 periodic in ξ and η with period 1, and in t with period 1/HT . Since C0 is independent of
ξ and η, we integrate (4.20) over ωc(t) to find that

VC0t =
∫∫

ωc(t)
∇ξ · (∇ξC1 + e2C0Z

)
dξdη=

∫
∂ωc(t)

(
∇ξC1 + e2C0Z

)
· n ds = 0, (4.22)

where we have used (4.21) on ∂ωs and the periodicity of C1 and C0 on the cell boundary, and we
introduce the notation

V =
∫∫

ωc(t)
dξdη, (4.23)

for the cleanser-occupied area of the unit cell. We note that, although the solid is still moving up
through the cell at speed HT because of the travelling wave coordinates, due to the periodicity of
the solid structure, the area V is independent of t.

From (4.22) we conclude that C0t = 0, that is, C0 is independent of the fast timescale t. This
simplifies the O(ε) problem greatly. Appealing to the linearity of this problem and the fact that
C0 is independent of ξ and η, we write C1 = WC0Z , where W (ξ , η, t) is the solution of the cell
problem:

∇2
ξW = 0, (4.24)

in ωc(t), with, on ∂ωs (
∇ξW + e2

)
· ns = 0, (4.25)

and with W periodic in ξ and η with period 1, and in t, with period 1/HT .
By direct analogy with the O(ε) problem, the O(ε3/2) equations and boundary conditions give

that (C1/2)t = 0, and that C3/2 = WC1/2 with W the solution of (4.24)–(4.25), although we will
not need C1/2 or C3/2 for the rest of the problem. At O(ε2), the problem reads

C1t − HT C1η + C0T − HT C0Z = ∇2
ξC2 + ∇ξ · e2C1Z + e2

∂

∂Z
· ∇ξC1 + C0ZZ , (4.26)

in ωc(t) with, on ∂ωs, (∇ξC2 + e2C1Z

) · ns = 0. (4.27)

Since the solid ωs moves through the cell with velocity −HT e2, Reynolds Transport Theorem
gives that, for any function F which is periodic over the cell,

d

dt

( ∫∫
ωc

F dξdη

)
=
∫∫

ωc(t)
Ft dξdη−

∫
∂ωs(t)

FHT e2 · ns ds

=
∫∫

ωc(t)
Ft − ∇ξ · (FHT e2) dξdη=

∫∫
ωc(t)

Ft − HT Fη dξdη. (4.28)
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We integrate (4.26) over ωc and then over t from 0 to 1/HT . Using (4.28), the first terms on the
left are ∫ 1/HT

t=0

∫∫
ωc

C1t − HT C1η dξdη dt =
∫ 1/HT

t=0

d

dt

( ∫∫
ωc

C1 dξdη

)
dt = 0, (4.29)

where we have used the periodicity of C1 in t. Using the divergence theorem, the boundary con-
dition (4.27), the periodicity of C1 and C2, the facts that C1 = WC0Z and that C0 is independent
of t and ξ , η, and the independence of ωc on Z, the remaining terms are

V
HT

(
C0T − HT C0Z

)
=
∫ 1/HT

0

∫∫
ωc

(
∇ξ ·

(
∇ξC2 + e2C1Z

)
+ e2

∂

∂Z
· ∇ξC1 + C0ZZ

)
dξdη dt

=
∫ 1/HT

0

∂

∂Z

( ∫∫
ωc

(
Wη + 1

)
dξdη

)
C0Z dt

=
(∫ 1/HT

0

∫∫
ωc

(
Wη + 1

)
dξdη dt

)
C0ZZ . (4.30)

This gives our macroscale convection–diffusion equation for the leading-order cleanser concen-
tration and can be written as:

C0T − HT C0Z = D∗C0ZZ , (4.31)

where

D∗ := HT

∫ 1/HT

t=0
λ(t)dt, and λ(t) := 1

V
∫∫

ωc

(
Wη + 1

)
dξdη, (4.32)

where we are able to take V through the integral sign because it is independent of t.

4.2.2 Inner region

We now consider the inner problem before continuing with the intermediate problem, although
we note that the two are intertwined (the flow of information between the regions is shown in
Figure 4). At leading order in ε, the inner problem (4.11)–(4.14) becomes

∇2
x c0 = 0, (4.33)

in ωh0 (t) := [−1/2, 1/2] × [h0, ∞) \ωs(t) with, on ∂ωs,

∇xc0 · ns = 0, (4.34)

and, on z = h0(x, t),

∇xc0 · n0 = 0, (4.35)

with c0 periodic in x with period 1, and where the vector

n0 = 1√
1 + h2

0x

(
h0x

1

)
, (4.36)
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is normal to the leading-order interface z = h0(x, t). At higher orders, Taylor expanding the
boundary conditions about at z = h0 introduces new terms which we will highlight as necessary.
We also make use of the matching condition

lim
z→∞ c0 = lim

z̃→0
c̃0, (4.37)

where, as we will see later, c̃0 is independent of ξ and η, and hence of x and z. Multiplying (4.33)
by c0 and integrating over the cell ωh0 (t), we have

0 =
∫∫

ωh0

c0∇2
x c0 dxdz = −

∫∫
ωh0

|∇xc0|2 dxdz +
∫
∂ωh0

c0∇xc0 · n ds. (4.38)

Applying boundary conditions (4.34) and (4.35), and using the fact that, as z → ∞, ∇xc0 → 0,
since c̃0 is independent of x and z, the boundary integral evaluates to zero and we conclude that
c0 is independent of x and z. At O(ε1/2), we find that

∇2
x c1/2 = 0, (4.39)

in ωh0 (t), with, on ∂ωs,

∇xc1/2 · ns = 0, (4.40)

and, on z = h0(x, t)

∇xc1/2 · n0 = 0, (4.41)

with c1/2 periodic in x. We note that we have already removed the extra terms in (4.41) that
appear from the Taylor expansion about h0, since these are all zero. We also have the matching
condition

lim
z̃→0

c̃0z̃ = lim
z→∞ c1/2z. (4.42)

Integrating (4.39) over ωh0 (t), and using the divergence theorem, the boundary conditions (4.40)
and (4.41), the periodicity of c1/2 in x, the matching condition (4.42), and the fact that c̃0 is
independent of x = ξ , we find that

0 =
∫∫

ωh0

∇2
x c1/2 dxdz =

∫
∂ωh0

∇xc1/2 · n ds = −
∫ 1

2

x=− 1
2

c1/2z

∣∣∣
z→∞

dx = c̃0z̃

∣∣∣
z̃=0

. (4.43)

We will use the fact that c̃0z̃ = 0 at z̃ = 0 later in order to show that c̃0z̃ = 0 for all z̃. To make
further progress with the inner problem, we analyse (4.39)–(4.41) again. We follow a similar
argument as for the O(1) problem, using the matching condition (see [2]),

c̃1/2(0) = lim
z→∞

(
c1/2(z) − zc̃0z̃(0)

)
, (4.44)

along with c̃0z̃|z̃=0 = 0 and the fact that c̃1/2 is independent of ξ and η (which will be shown later),
to conclude that c1/2 is independent of x and z. Finally, we study the O(ε) problem in the inner
region, which reads

c0t = ∇2
x c1, (4.45)
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in ωh0 (t), since c0 is independent of z, and with, on z = h0(x, t),

−c0
(HT + h0t)√

1 + h2
0x

+ n0 · ∇xc1 = −β∗c0, (4.46)

(HT + h0t)√
1 + h2

0x

= −γβ∗c0, (4.47)

and on ∂ωs,

∇xc1 · ns = 0, (4.48)

with c1 periodic in x and t. Further, since c̃0 is independent of z̃, we use matching condition (4.37)
and

lim
Z→0

C0 = lim
z̃→∞

c̃0, (4.49)

to note that

c0t(z) = c0t

∣∣
z→∞ = c̃0t

∣∣
z̃=0

= c̃0t

∣∣
z̃→∞ = C0t

∣∣
Z=0

= 0, (4.50)

since C0 is independent of t. Thus, (4.45) reduces to

∇2
x c1 = 0. (4.51)

Integrating (4.51) over ωh0 (t), and using the boundary conditions (4.46)–(4.48), the periodicity
of c1 in x, the fact that c0 is independent of x, t, we find that

0 =
∫∫

ωh0
(t)

∇2
x c1 dxdz =

∫
z=h0

−β∗c0 + (HT + h0t)√
1 + h2

0x

c0 ds +
∫ 1

2

x=− 1
2

c1z

∣∣
z→∞ dx (4.52)

= −(β∗c0 + γβ∗c2
0

)L(h0) +
∫ 1

2

x=− 1
2

c1z

∣∣
z→∞ dx,

where we have defined

L(h0) =
∫

z=h0

ds (4.53)

to be the length of the fluid–fluid interface in the cell. We note that matching the fluxes directly
between the inner and outer solutions would require that the outer solution is a function of the
fast time. Since we have already shown that this is not the case, we conclude that there must be
an intermediate region between the two in which the fast variations due to the chemistry at the
interface will be smoothed out. Before proceeding to consider the intermediate layer, we multiply

(4.47) by
√

1 + h2
0x and integrate over t from 0 to 1/HT , to find that

1 = −γβ∗c0

∫ 1/HT

0

√
1 + h2

0x dt, (4.54)

using the periodicity of h0 in t. Since c0 is independent of x, h0x must be constant through the cell.
For periodicity of h0 in x, we require that h0x = 0, and so we see that the microscale interface is
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flat to leading order. Thus, (4.54) reduces to

HT = −γβ∗c0. (4.55)

4.2.3 Intermediate Region

We now consider the intermediate region. The leading-order problem is:

∇2
ξ c̃0 = 0, (4.56)

in ωc(t), with, on ∂ωs,

∇ξ c̃0 · ns = 0. (4.57)

As in the outer region, this problem, along with the assumption of the spatial periodicity of c̃0 in
ξ and η, gives that c̃0 is independent of ξ and η. At O(ε1/2) we have

∇2
ξ c̃1/2 = 0, (4.58)

in ωc(t), with, on ∂ωs, (∇ξ c̃1/2 + c̃0z̃e2
) · ns = 0. (4.59)

We recall that, from (4.43), c̃0z̃ = 0 at z̃ = 0. We have two options. If c̃0z̃ = 0 for all z̃, then we
obtain that c̃1/2 is independent of ξ , η, exactly as for c̃0. If not, (i.e., for some z̃, c̃0z̃ �= 0), then
we can write c̃1/2 = Wc̃0z̃ with W the solution of cell problem (4.24)–(4.25) along with periodic
boundary conditions. Let us assume for contradiction that we are in this second scenario. With
c̃1/2 = Wc̃0z̃, the O(ε) problem reads

c̃0t − HT c̃0η = ∇2
ξ c̃1 +

(
∇ξ · e2

∂

∂ z̃
+ e2

∂

∂ z̃
· ∇ξ

)
c̃1/2 + c̃0z̃z̃, (4.60)

in ωc(t) with, on ∂ωs, (
∇ξ c̃1 + c̃1/2z̃e2

)
· ns = 0, (4.61)

with the usual periodicity of c̃1 in ξ , η and t. Using the fact that c̃0 is independent of ξ , η, we
integrate (4.60) over ωc(t) and obtain, by applying the boundary conditions and periodicity and
using c̃1/2 = Wc̃0z̃, that

c̃0t = D∗c̃0z̃z̃, (4.62)

with D∗ defined as in (4.32). We also have the matching condition (4.49), as well as c̃0z̃ = 0
at z̃ = 0 from the inner problem. This problem has the unique solution c̃0 = C0|Z=0 for all z̃, as
shown in Appendix A, and hence c̃0z̃ = 0 for all z̃, giving the required contradiction.

Since c̃1/2 is thus independent of ξ and η, the O(ε) problem (4.60)–(4.61) reduces to

∇2
ξ c̃1 = 0, (4.63)

in ωc(t), with, on ∂ωs (∇ξ c̃1 + c̃1/2z̃e2
) · ns = 0, (4.64)
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which has the solution c̃1 = Wc̃1/2z̃, where W solves the cell problem (4.24)–(4.25) with
periodicity of W in ξ , η and t.

At O(ε3/2),

c̃1/2t − HT c̃1/2η = ∇2
ξ c̃3/2 +

(
∇ξ · e2

∂

∂ z̃
+ e2

∂

∂ z̃
· ∇ξ

)
c̃1 + c̃1/2z̃z̃, (4.65)

in ωc(t) (where we have used that c̃0z̃ = 0) with, on ∂ωs,(∇ξ c̃3/2 + c̃1z̃e2
) · ns = 0. (4.66)

Integrating (4.65) over ωc(t), using Reynolds Transport Theorem (4.28) for the left-hand side
and the divergence theorem for the first two terms on the right, we obtain

d

dt

∫∫
ωc

c̃1/2 dξdη=
∫
∂ωc

(
∇ξ c̃3/2 + c̃1z̃e2

)
· n ds +

∫∫
ωc

e2
∂

∂ z̃
· ∇ξ c̃1 + (c̃1/2)z̃z̃ dξdη

= V λ(t) c̃1/2z̃z̃, (4.67)

where we have used (4.66) and the periodicity over the cell to evaluate the line integral to
zero, and the form of c̃1 = W (c̃1/2)z̃ and the independence of c̃1/2 on ξ and η for the final term.
Integrating (4.67) over a period of t, by the periodicity of c̃1/2 in t, we find that

0 =
∫ 1/HT

t=0
λ(t)c̃1/2z̃z̃ dt =

(∫ 1/HT

t=0
λ(t)c̃1/2z̃ dt

)
z̃

, (4.68)

Finally, we integrate (4.68) over 0 ≤ z̃ ≤ ∞, and apply the matching conditions

lim
Z→0

C0Z = lim
z̃→∞

c̃1/2z̃, lim
z̃→0

c̃1/2z̃ = lim
z→∞

(
c1z(z) − zc̃0z̃z̃

∣∣∣
z̃=0

)
, (4.69)

(see [2]) and (4.52) to find that, on Z = 0

C0Z = HT

D∗

∫ 1/HT

0
λ(t)c1z

∣∣
z→∞ dt =

(
HT

D∗

∫ 1/HT

0
λ(t)L(h0) dt

) (
β∗C0 + γβ∗C2

0

)
. (4.70)

The intermediate region allows us to match accurately between the inner and outer problems to
give the macroscale boundary condition (4.70). From (4.55) and the matching conditions, we
also have

HT = −γβ∗C0

∣∣
Z=0

. (4.71)

We use (4.71) to rewrite (4.70) in the same form as for the microscale problem, namely as

HT C0 +μ∗C0Z = β∗C0, (4.72)

on Z = 0, where

μ∗ = D∗

HT

∫ 1/HT
0 λ(t)L(h0) dt

. (4.73)

We note that, although we have a flat interface, L(h0) is not everywhere equal to unity, since
the solid in the cell can obstruct the interface; the constant μ∗ takes into account the solid
microstructure.
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4.3 Summary

We write the system in terms of the original macroscale variables X and Y , where the fluid–fluid
interface is located at Y = H . Dropping the subscript 0 notation, our macroscale model reads:

CT = D∗CYY , (4.74)

in Y >H(T) with, on Y = H(T)

HT C +μ∗CY = β∗C, HT = −γβ∗C, (4.75)

where

D∗ = HT

∫ 1/HT

0
λ(t)dt, μ∗ = D∗

HT

∫ 1/HT
0 λ(t)L(h0) dt

, λ= 1

V
∫∫

ωc

(
Wη + 1

)
dξdη. (4.76)

To close the model, equations (4.74) and (4.75) must be solved with appropriate boundary
conditions (on the other macroscale boundaries of the domain), and initial conditions for C
and H .

5 Comparison of models

In order to compare the two models directly, we present the re-dimensionalised forms in one
spatial dimension.

(1) For the case when the agent coats the solid microstructure (the unsaturated agent case)
we have, when R̂ = 0,

ĉt̂ = D̂0ĉŷŷ, (5.1)

while, when R̂> 0, we have

ĉt̂ =
1

V̂(R̂)

(
D̂V̂(R̂)ĉŷ

)
ŷ
− ν̂

(
k̂ + χ̂ k̂ĉ

)
ĉ, R̂t̂ = −χ̂ k̂ĉ. (5.2)

where D̂ = D̂(D)22 (and D̂0 = D̂(D0)22), given by (3.34), ν̂ =L(R̂)/V(R̂), where V and L
are given, respectively, by (3.29) and (3.32).

(2) For the saturated case with the sharp macroscale interface, we have to solve

ĉt̂ = D̂0ĉŷŷ, (5.3)

with, on ŷ = ĥ(t̂),

ĉĥt̂ + μ̂ĉŷ = k̂ĉ, ĥt̂ = −χ̂ k̂ĉ, (5.4)

where μ̂= D̂μ∗, where μ∗ is given by (4.76).

In both cases, the parameters L and V depend on the microscale problem through D̂0 or D̂ (as
well as explicitly and through ν̂ in Case 1 and through μ̂ in Case 2). In principle, we could solve
the microscale problem multiple times and tabulate the solutions to get the functions we need to
use to solve the macroscale models.

Both the homogenisation procedures result in the same diffusion equation (and diffusivity) in
the region where there is no agent. Otherwise, the two models we have derived are quite different
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in terms of their structure: in the unsaturated case, the chemistry appears as a reaction term in
the main equation, reflecting the fact that the chemical reaction happens throughout the material.
On the other hand, in the saturated case, the chemistry only appears at the fluid–fluid interface,
as it does in the original pore-scale model. We note that, in the saturated case, our homogenised
model is similar to that used in [3] and [6], in which the parameters D̂ and μ̂ do not depend on the
microstructure. As in these works, we are free to choose any shape for the porous microstructure
and only require that this shape is repeated periodically.

6 Conclusions and discussion

In this paper, we have examined the problem of decontamination of a porous medium that has
been infiltrated by a hazardous chemical agent using an immiscible cleanser. We focused on the
pore scale and considered two different scenarios: an unsaturated case where the agent partially
fills the porespace and a saturated case where it completely fills the porespace. In each case,
we homogenised the pore-scale model to arrive at equations describing the average concentra-
tion of cleanser and motion of agent–cleanser boundaries in which the microscale structure and
chemistry has been correctly accounted for but, crucially, smoothed out.

In the unsaturated case, our homogenised model involves a reaction–diffusion equation for the
concentration of the cleanser coupled with an ordinary differential equation describing the local
thickness of the agent layer. In contrast, in the saturated case (when we have a sharp interface),
the cleanser moves by diffusion alone and all the chemistry takes place at a macroscopic interface
between contaminated and decontaminated regions. The homogenisation process was straight-
foward in the unsaturated case, but required the use of multiple timescales and a boundary layer
in order to smooth out short-time variations in the full-porespace case.

For the unsaturated model, we prescribed a circular geometry for the solid inclusion. We note
that the homogenisation analysis would proceed in a similar fashion if we were to alter the
microstructure so that it was more realistic, either by changing the shape or by having larger
unit cells that contain multiple inclusions. We anticipate that, while the functional forms of the
macroscale parameters would change, the structure of the resulting model would remain the
same. In contrast, for the saturated model, we did not require any assumptions on the cell geom-
etry other than periodicity, and so the formulae we derived for the macroscopic parameters are
generic and hold for any choice of cell geometry. Thus, the structure of this homogenised model
is also unaffected by the specific pore geometry.

In this paper, we have focused on particular parameter choices that result in interesting and
practically relevant distinguished limits of our model. It would be interesting to study other possi-
ble distinguished limits in order to fully catalogue the behaviour of our existing pore-scale model.

Our next objective is to compare and contrast the solutions to our models for realistic param-
eter values and in the limit where the model in unsaturated case develops a sharp interface. In
the saturated case, we have restricted our attention to the case where the macroscale interface is
flat. We also intend to carry out the homogenisation process for situations where all variables
depend on the lateral coordinate. We anticipate that the structural complexity of the problem will
increase, since the gradient of the macroscale interface is likely to affect the shape and position of
the microscale interface in each cell problem, which might require averaging along the interface
rather than imposing periodicity.

There are many extensions to the underpinning model that could be made to more faithfully
approximate the real situation. For example, more complex reactions between the agent and the
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cleanser could be incorporated, although we anticipate that these will pass through the homogeni-
sation process in an identical manner to that presented here. Also, the assumptions that the agent
and cleanser are immiscible, or that the agent is neat, could be relaxed. In either case, we would
end up having to incorporate additional mass transfer equations. Finally, we could incorporate
liquid flow into the model. This would be a non-trivial extension, because we would need to con-
sider both wetting effects and the possibility of viscous fingering. The latter may be advantageous
for decontamination because of the increase in overall reaction associated with the increase in
the area of the agent–cleanser interface.

In this paper, we have illustrated how homogenisation theory can be used to derive averaged
equations and boundary conditions for decontamination that are computationally much simpler to
solve than the original equations on a complicated domain that takes all the microstructure into
account, while retaining all the pertinent information from the microstructure. More broadly,
our models can be used to help answer scientific questions about the efficiency and speed of
decontamination protocols for particular types of spills in a more accurate way, since the fine-
scale structure and processes have been systematically taken into account.

Acknowledgements

We are indebted to many extremely useful discussions with Ross Heatlie-Branson, Jon Chapman,
Mohit Dalwadi and Oliver Whitehead. This publication is based on work partially supported
by the EPSRC Centre For Doctoral Training in Industrially Focused Mathematical Modelling
(EP/L015803/1) in collaboration with Defra. IMG gratefully acknowledges support from the
Royal Society through a University Research Fellowship.

Conflicts of interest

None.

Appendix A

With the periodicity of c̃0 in t, we now prove that there is a unique solution of the problem (4.62),
with boundary conditions

c̃0z̃ = 0 at z̃ = 0, and c̃0 = 0 at z̃ → ∞, (A1)

We define φ = c̃0 − C0

∣∣∣
Z=0

, so that φ solves

φt = D∗φz̃z̃ z̃ ∈ [0, ∞), (A2)

φz̃ = 0 z̃ = 0, (A3)

φ = 0 z̃ → ∞, (A4)

φ(t, z̃) = φ(t + 1/HT , z̃) ∀t> 0, z̃. (A5)

We let I = 1/2
∫∞

0 φ2 dz̃ ≥ 0, then

dI

dt
=
∫ ∞

0
φφt dz̃ = −

∫ ∞

0
φ2

z̃ dz̃ +
[
φφz̃

]∞

0

= −
∫ ∞

0
φ2

z̃ dz̃ + 0 ≤ 0. (A6)
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By periodicity of φ, I must be periodic in t, and so we cannot have that dI/dt is negative for any t.
Therefore dI/dt = 0, and so φz̃ = 0 for all z̃. Hence since φ→ 0 as z̃ → ∞, φ = 0 everywhere.
We conclude that c̃0 = C0(0) for all z̃, and c̃0z̃ = 0 for all z̃. This is the required contradiction to
our assumption that c̃0z̃ is not everywhere zero.
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