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We report the first experiments on divergent shock-driven Richtmyer—Meshkov instability
(RMI) at well-controlled single-mode interfaces. These experiments are performed
in a novel divergent shock tube designed by shock dynamics theory. Generally, the
perturbation growth can be divided into three successive stages: linear growth, quick
reduction in growth rate and instability freeze-out. It is observed that the growth rate
at each stage is far lower than its counterpart in planar or convergent geometry due to
geometric divergence. We also found that nonlinearity is much weaker than that in planar
or convergent RMI, and has a negligible influence on the overall amplitude growth even at
late stages when it has become strong. This weak nonlinear effect is because the growth of
the third harmonic counteracts its feedback to the fundamental mode. As a consequence,
the linear theory of Bell (report no. LA-1321) accounting for geometric divergence and
Rayleigh—Taylor (RT) stabilization caused by flow deceleration can reasonably predict the
present results from early to late stages. The instability freeze-out at late times is ascribed
to the negative growth induced by geometric divergence and RT stabilization, and is also
well reproduced by the linear theory.
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1. Introduction

When a shock wave impinges upon a corrugated interface separating two different
materials, initial perturbations on the interface grow continuously with time and,
meanwhile, cause intense material mixing. This type of hydrodynamic instability is
usually referred to as Richtmyer—Meshkov instability (RMI) since it was first theoretically
analysed by Richtmyer (1960) and later experimentally confirmed by Meshkov (1969). The
RMI is considered as an impulsive variant of Rayleigh—Taylor (RT) instability (Rayleigh
1883; Taylor 1950) that occurs at a perturbed interface under a finite and sustained
acceleration. Over the past decades, the RMI has become a subject of intensive research
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due to its crucial role in various industrial and scientific fields such as inertial confinement
fusion (ICF) (Lindl et al. 2014), supersonic combustion (Yang, Kubota & Zukoski 1993)
and supernova explosion (Kuranz et al. 2018).

In terms of flow cross-section area, the RMI can be divided into two categories:
area-invariant RMI and area-varied RMI. The former usually refers to the planar
shock-induced RMI, which has been extensively studied through experiment, simulation
and theoretical analysis and the flow regimes have been well understood (Brouillette
2002; Ranjan, Oakley & Bonazza 2011; Zhou 2017). In addition to the common flow
mechanisms such as baroclinic vorticity and pressure perturbation presented in the
planar RMI (Brouillette 2002; Ranjan et al. 2011; Zhou 2017), the area-varied case
involves new physical regimes including the Bell-Plesset effect (Bell 1951; Plesset
1954) and RT stability or instability caused by flow acceleration or deceleration (Ding
et al. 2017; Luo et al. 2018), and thus presents much more complicated phenomena
and processes. Two simple, yet important, representatives of area-varied RMI are the
convergent shock-induced RMI (convergent RMI) and the divergent shock-driven case
(divergent RMI).

The convergent RMI, which possesses initial settings relevant to ICF, has attracted
much attention in recent years. The first shock-tube experiment on the convergent RMI
was reported in a coaxial shock tube (Hosseini, Ogawa & Takayama 2000; Hosseini &
Takayama 2005) and a quicker growth of turbulent mixing zone width than the planar
counterpart was observed. Later, the evolution of polygonal and single-mode interfaces
impacted by a cylindrical shock was examined with high-speed laser sheet imaging
in a similar shock tube (Si et al. 2015; Lei et al. 2017). Based on shock dynamics
theory, a convergent shock tube with a special wall profile which can smoothly convert
a planar incident shock into a perfect cylindrical one was designed and manufactured
(Zhai et al. 2010). Subsequently, evolutions of various distorted interfaces accelerated
by a cylindrical shock were examined in this facility (Si, Zhai & Luo 2014; Luo et al.
2018). The convergent RMI at a single-mode heavy/light interface was realized by a gas
lens technique which was originally proposed by Dimotakis & Samtaney (2006) and later
extended by Vandenboomgaerde & Aymard (2011), and the experimental results exhibited
great potential for studying the convergent RMI (Biamino et al. 2015). It was observed that
the perturbation amplitude presents a long-term linear growth with time, which was later
carefully explained by Vandenboomgaerde et al. (2018) through theoretical analysis and
numerical simulation. Recently, the growth of a sinusoidal air—SFg interface subjected to a
cylindrically convergent shock was measured in a semiannular shock tube (Luo et al. 2015;
Ding et al. 2017), and the influences of the geometric convergence and RT stability on the
perturbation growth were first quantified in experiments. The above studies demonstrated
that the contraction of the flow cross-section brings additional physical regimes and hence
greatly affects the instability growth.

Compared with the convergent RMI, the divergent counterpart has received much less
attention although it is equally important in nature and applications. For example, it is a
dominant hydrodynamic instability in core-collapse supernova explosion (Arnett et al.
1989; Kuranz et al. 2018). The divergent RMI also occurs inevitably in the reshock
process of the convergent RMI and greatly enhances the material mixing. However, the
divergent RMI cannot be simply treated as an opposite of the convergent case, i.e. cannot
be simply understood by replacing opposite geometric effects in the convergent RMI,
because the flow features of the former as well as the behaviours of nonlinearity and
compressibility may be completely different from the latter. So far, there is a substantial
lack of experimental study on the divergent RMI, which is mainly ascribed to the great
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difficulties in producing an initially controllable divergent shock. The existing methods
for producing divergent shocks (essentially they are blast waves), mainly including making
explosion at the apex of a conical tube (Stewart & Pecora 2015) and letting a shock wave
expand in free air (Chandra et al. 2012), introduce complex physical processes and many
interference factors, and hence the divergent shock formed is uncontrollable. Moreover, for
divergent RMI experiments, the experimental facility and method should satisfy additional
requirements for creating an idealized material interface, which brings challenges as well.
These motivate the current study.

In this work, we propose a new idea for generating a controllable divergent shock: first
concentrate the flow energy at a small local region and then release the energy to produce a
uniform divergent shock. For this purpose, a novel divergent shock tube is designed based
on shock dynamics theory. Specifically, a smooth convergent—planar—divergent shock
transformation is built, which first converts a planar incident shock into a cylindrically
convergent one, then intensifies the cylindrical shock through shock convergence
(energy concentration) and finally produces a perfect divergent shock. Therefore, perfect
cylindrical shocks, free of disturbing waves, can be obtained and the shock strength
and shape (e.g. divergent angle) can be easily controlled. Also, an advanced soap film
technique is realized to produce well-characterized single-mode interfaces. With these
efforts on making perfect initial conditions, we can elaborately examine the divergent
RMI. The perturbation growth for the evolution of a single-mode interface will be
measured for the first time. The effects of geometric divergence, RT stability and
nonlinearity on the perturbation growth can then be clarified.

2. Experimental methods

The experiments are conducted in a divergent shock tube designed by shock
dynamics theory. A sketch of the curved part of the shock tube executing the
planar—convergent—planar—divergent shock transformations is shown in figure 1(a) (not
drawn to scale). This curved part has a length of approximately 2.1 m and an inner
height of 7.0 mm. The left-hand end of this part is connected to the driven and driver
sections, and the whole shock tube has a length of 6.4m. In experiments, a planar
shock wave with a Mach number of 1.35 is first generated by suddenly releasing the
high-pressure gas in the driver section. When this planar shock propagates on the concave
wall AB (A|B,), it is gradually transformed to a cylindrical one. As time proceeds, the
cylindrical shock converges along the oblique wall BC (B,;C;) with its strength being
progressively augmented. Afterwards, the intensified cylindrical shock is converted back
into a planar one by a convex wall CD (C,D;). The planar shock formed here (Mach
number 1.71) is much stronger than the original one due to the large shrink in shock front
(Zhan et al. 2018). As this planar shock travels on the second concave wall EF (EF)),
it is gradually converted to a cylindrically divergent shock. Later, this divergent shock
moves outwards and impacts the downstream single-mode air—SFq interface, initiating
the divergent RMI. The design principle for the curved walls (AB, A;B;, CD and C,Dy)
executing planar—converging—planar shock transformation has been detailed and validated
in previous works focusing on the shock propagation and shock enhancement (Zhai et al.
2010; Zhan et al. 2018), and thus is not repeated here.

In this work, we generalize the same principle to the design of the concave wall EF
(E\F;) which executes the planar—divergent shock transformation. A brief introduction
of the design process is given below. Based on the shock dynamics theory, when a
planar shock wave moves along a curved wall, disturbances produced from the shock foot
propagate along the shock front and then gradually change the shock shape and strength.
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FIGURE 1. Sketches of (a) the divergent shock tube and (b) the interface formation by a soap
film technique. The filaments are of a sinusoidal shape aiming to constraint the soap film such
that a sinusoidally shaped soap film can be formed.

Here, we solve an inverse problem. Assuming a perfect cylindrical divergent shock
produced at FH (H is the central point of FF,), given the Mach number (M[) of the planar
shock propagating along DE, the height of DD, and the diverging angle (6, = 15° in this
work), the curved wall profile EF can be calculated according to shock dynamics theory.
The first step is to determine the position of point F. In order to ensure that the cylindrical
shock diverges along FG, the ray angle of point F (which is defined as the angle between
the moving direction of the shock front at this point and the horizontal axis) should equal
the diverging angle 6,. According to the characteristics and characteristic relations, the ray
angle of point F can be expressed as

M dM
Op =6, = 2.1)

_’
Mg CAC

where c is the speed of the nonlinear disturbance wave, A, is the cross-sectional area of
the flow, M is the shock Mach number and

cA. = /(M2 — 1)K(M)2, (2.2)
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where
2 1—-02\20+1+M27"
1{(M):[(1+y+1 - ) 5 ] , (2.3)
with
o=y — DM>+2]/[2yM?> — (y — D], (2.4)

where y is the specific heat ratio of the gas. Based on (2.1), the Mach
number of the cylindrical shock FH can be calculated. Then, according to the
Chester—Chisnell-Whitham (known as CCW) relation (Chester 1954; Chisnell 1957;
Whitham 1958), the area of the cylindrical shock front FH can be estimated by

2M dM dA,

OF—DKGD T A, .

Considering that point F is located at the straight line FG, the coordinates of point F can
be readily obtained. If we discretize the curve FH into many small equal parts, the Mach
number and the ray angle of any points on FH are known. Then, we can use the method
of characteristics to calculate the parameters of arbitrary points in the double-wave and
single-wave regions, successively. Finally, the curved profile EF is obtained. For more
details, the reader is referred to Zhai et al. (2010).

A novel soap film technique, which has been developed recently to generate
well-defined gas interfaces free of short-wavelength perturbations, diffusion layer and
three-dimensionality in a planar geometry (Liu er al. 2018), is extended to the present
divergent test section. As illustrated in figure 1(b), two transparent devices S; and S, (made
by a 3.0 mm thick acrylic plate) whose connecting boundaries possess a sinusoidal shape,
are manufactured by a high-precision engraving machine. Each device has a trapezoidal
cross-section (x—y plane) and two sinusoidal grooves (1.0 mm in thickness and 0.5 mm in
width) are manufactured on the internal sides of its upper and lower plates, respectively.
Then two thin filaments (0.75 mm in thickness and 0.5 mm in width) with the same
sinusoidal profile are mounted into the grooves of the upper and lower plates, respectively,
to produce the desired constraints. Note that the protrusion height of each filament into
the tube is less than 0.3 mm, such that the filaments have a negligible influence on the
flow field. As a rectangular frame dipped with soap solution (60 % distilled water, 20 %
sodium oleate and 20 % glycerine by volume) is pulled along the sinusoidal constraints, a
sinusoidally shaped soap film is immediately produced. Subsequently, the long device S,
with a soap film on its boundary is gently inserted into the test section until it is in full
contact with the short device S; which is placed at the test section in advance. To generate
an air—SF; interface, SF¢ is slowly injected to the test section to gradually exhaust the air
on the right-hand side of the interface. Note that a high concentration of SF¢ (measured
by a gas concentration detector) is attained for each experimental run (above 90 % in
mass fraction), which ensures repeatable initial conditions. It is worth mentioning that
the present initial conditions including the shock profile, intensity and the interface shape
can be well controlled, which enables a careful examination of the divergent RMI.

In a cylindrical coordinate system, a single-mode interface can be parameterized as
r(0) = Ry + ay cos(nf), where R, stands for the radius of initial interface, a, for the initial
amplitude, n for the azimuthal mode number and 6 for the azimuthal angle. For the present
experiments, Ry = 130 mm is adopted, and the strength of the incident divergent shock
is Ma = 1.27 4+ 0.02 when it meets the initial interface. The shock-interface interaction
is recorded by a high-speed schlieren system composed of a high-speed video camera


https://doi.org/10.1017/jfm.2020.592

https://doi.org/10.1017/jfm.2020.592 Published online by Cambridge University Press

901 A38-6 M. Li, J. Ding, Z. Zhai, T. Si, N. Liu, S. Huang and X. Luo

(FASTCAM SAS, Photron Limited), a DC regulated light source (DCR III, SCHOTT
North America, Inc.) and several optical mirrors. The frame rate of the high-speed camera
is set as 75 000 frames per second, with a shutter time of 1 ws. The spatial resolution of the
schlieren images is ~0.5 mm pixel ~!. The ambient pressure and temperature are 101.3 kPa
and 298.5 K, respectively.

3. Results and discussion

To check the divergent shock tube and also understand the non-uniform flow feature
in the divergent RMI, an undisturbed cylindrical air—SFg interface impacted by the
cylindrically divergent shock is first considered. As shown in figure 2(a), when the
incident shock, IS, strikes the undisturbed initial interface, II, it bifurcates into an
outward-moving transmitted shock, TS, and an inward-moving reflected shock (not visible
in schlieren images due to its very weak intensity). Here, the incident and transmitted
shock fronts match well with the circular arcs (dashed lines) of the same centre, which
verifies the feasibility of the present method. As time proceeds, the shocked interface,
SI, moves outwards following the transmitted shock. It is seen that the wall boundary
layer has a limited influence on the movement of the near-wall interface, and the whole
interface maintains a nearly cylindrical shape during the experimental time. Variations of
displacements of the waves and interface versus time are plotted in figure 2(b). After the
shock impact, the interface moves outwards at a nearly constant speed of approximately
91ms~! (t < 500 ws) and later undergoes a noticeable deceleration, which will cause
RT stability or instability for a perturbed interface (Ding et al. 2017). The transmitted
shock also presents a distinct deceleration, which indicates a gradual attenuation of the
divergent shock. Therefore, the present interface deceleration is induced by a gradually
decaying divergent shock, which is quite different from the convergent case. In the
convergent shock tube, the convergent shock becomes stronger with time such that the
pressure behind the convergent shock becomes higher, which decelerates the interface
movement. We also note that both cases are in an unsteady flow and, consequently, there
are no analytic solutions. Assuming incompressible and steady subsonic flow, it can be
easily found that the flow deceleration due to expansion is dv/dt = —v?/r at radius r and
time ¢ from the volume conservation. As compared in figure 2(b), the steady theory can
roughly or qualitatively estimate the interface deceleration in a divergent geometry, but it
overestimates the interface deceleration in experiment (~10 % at 900 ps).

For the present experiment, the length Reynolds number of the boundary layer of the air
(SFg) flow in the divergent test section is calculated to be 4.8 x 10° (2.8 x 10°). Although
this value approaches the upper limit of the critical Reynolds number of transition (3.5 x
10* ~ 5.0 x 10°) (Reshotko 1976; Saric, Reed & Kerschen 2002), the boundary layer in
experiment is laminar or at least not fully turbulent during the time of interest. This can be
demonstrated by the schlieren images shown in figure 3 where the material interface close
to the wall presents clear and ordered structures even at late stages. Hence, the post-shock
boundary layer can be assumed to be laminar and incompressible, and its thickness (§*)
can be estimated by

X

8*=1.72 .
pAv

3.1)

The maximum distance travelled by the interface during the experimental time is
measured to be x &~ 80 mm. The viscosity coefficient and the density of pure air (SFe)
under the experimental conditions are p = 1.83 x 10> Pas(= 1.60 x 1075 Pas) and

p = 1.204 kgm (= 6.143 kgm ™), respectively. The velocity of the post-shock flow
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FIGURE 2. (a) The interaction of a divergent shock with an unperturbed air—SFg interface. The
numbers have units us. Dashed lines stand for circular arcs with the same centre as the cylindrical
shock front. (b) Trajectories of the waves and interface. In panel (a): IS, incident shock; II, initial
interface; SI, shocked interface; TS, transmitted shock. Dash—dotted lines represent the uniform
movements of transmitted shock and shocked interface, and the solid line is the trajectory of the
interface predicted by a steady theory.
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FIGURE 3. Evolution of a single-mode air—SFg interface subjected to a cylindrically exploding
shock for all cases. The symbols are the same as those in figure 2. The numbers have units js.

is Av~ 91 ms~!. According to (3.1), the maximum thickness of the boundary layer is
calculated to be approximately 0.19 mm in the air flow (0.08 mm in the SF¢ flow), which is
much smaller than the inner height of the test section (7.0 mm). This indicates a negligible
influence of the boundary layer on the interface development.
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Case v; Av Vo
(ap—n) agp/A Ma MF(SFs)r MFSFe)r A  (ms™H (ms™)H (ms™hH
0-0 — 126 0.09 0.95 0.58 4139 91.0 —
2-24 0.058 1.26 0.09 0.96 0.60  413.6 89.4 11.0
3-24 0.088 1.28 0.09 0.95 0.59 4207 98.1 14.1
4-24 0.117 127 0.09 0.94 0.59  419.8 97.4 154
2-36 0.088 1.25 0.05 0.94 0.59  418.6 89.2 12.0
2-48 0.117 1.28 0.09 0.94 0.58 4202 98.5 13.3

TABLE 1. Parameters corresponding to the initial conditions for each case (denoted by ag — n)
with ap and n being the initial amplitude and azimuthal mode number of the interface,
respectively. Specially, case 0-0 denotes the unperturbed case. Here, A refers to the Atwood
number, A to the wavelength and vy to the amplitude growth rate at the early stage. Here,
MF(SF¢)r and MF(SFg)g denote the mass fractions of SF¢ on the left- and right-hand sides
of the interface, respectively. The velocities of the incident shock and shocked interface are v;
and Av, respectively.

Then, five single-mode interfaces with different amplitudes and wavelengths are
considered. Detailed parameters corresponding to the initial conditions for each case
(denoted by ay — n) are listed in table 1, where the Atwood number is defined as A =
(P2 — p1)/(p2 + p1) with p; and p, being the gas densities on the left- and right-hand
sides of the interface, respectively. Specially, case 0-0 denotes the unperturbed case. Note
in experiments, SFg gas could cross the soap film and contaminate the pure air on the
other side of the interface. With the measured speeds of the incident shock, transmitted
shock and shocked interface, mass fractions of SFs on the left- and right-hand sides of
the interface can be estimated by one-dimensional gas dynamics theory. As indicated in
table 1, gas contamination in the present experiments is limited and the discrepancy in
Atwood number among all cases is very small.

Representative interface morphologies and wave patterns illustrating the instability
development processes for five cases are displayed in figure 3. The time origin is defined
as the moment when the incident shock arrives at the mean position of initial interface.
Prior to shock-interface interaction, the initial interface presents a perfect single-mode
shape for all cases (first column), which demonstrates the feasibility and reliability of
the current experimental method. As the incident divergent shock encounters the initial
interface, it splits into a corrugated transmitted shock propagating downstream and an
upstream-moving reflected shock. Here, distortions on the transmitted shock decay quickly
with time, which is different from the shock propagation in a convergent geometry.
Later, the outgoing interface deforms continuously driven by the baroclinic vorticity
deposited along it. It is observed that the present interface deformation is much slower
than its counterpart in a planar or convergent geometry. This is mainly ascribed to the
circumferential stretching caused by geometric expansion. Particularly, the asymmetric
bubble-spike structure is not fully developed even at very late times, which indicates a
very weak nonlinearity there. For cases with a larger initial amplitude-to-wavelength ratio,
although the roll-up of spike appears earlier, the whole structure is also much less distorted
than the planar or convergent counterpart.

Normalized variations of the perturbation amplitude with time are plotted in
figure 4, where the predictions of linear and nonlinear theories are also given for
comparison. The amplitude is normalized as @ = n(a — a)/Ry, and the time is scaled as
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FIGURE 4. Normalized variations of the overall perturbation amplitude. The dashed (dash—dot)
line denotes the linear theory of Bell (1951) without (with) the RT effect, and the solid line
denotes the nonlinear theory of Wang er al. (2015). The dotted line refers to the growth of the
third harmonic and the dash—dot—dot line to the third-order feedback to the basic mode.

T = nvy(t — 1y )/Ro. Here, 1 is the time just after the shock passage, a; is the post-shock
amplitude and vy is the experimental initial growth rate. The dimensionless experimental
data for all cases collapse quite well, which illustrates a universal growth behaviour
of the divergent RMI. After the shock impact, the perturbation amplitude first drops
suddenly to a smaller value due to shock compression, and then increases continuously in
a nearly linear manner (7 < 0.4). Later, the growth rate of perturbation amplitude reduces
evidently. We stress that such a reduction in growth rate is mainly ascribed to the geometric
divergence rather than nonlinearity, which will be addressed hereinafter. At late stages, the
perturbation amplitude almost stops growing and maintains a nearly constant value. Such
an instability freeze-out exists for all cases considered in this work. Therefore, we claim it
is a universal phenomenon for divergent RMI.

Under the assumption of incompressible inviscid flow, Bell (1951) obtained a linear
theory for the cylindrical RMI, which can be written as

a +2R' (nA 1)1..e 0 (3.2)
a —a— (nA—1)—=a =0, .
R R

where R(?) is the time-dependent radius of the moving interface, R (I'é) is the first (second)
derivative of radius with time and a (a) is the first (second) derivative of perturbation
amplitude with time. The development of the cylindrical RMI can be divided into two
phases: the shock-driven phase (during the shock impact) and the undriven growth phase
(after the shock impact). The first phase yields a post-shock growth rate of perturbation
amplitude, which can be obtained by integrating equation (3.2) once from #, (time instant
when the shock meets the interface) to t{f (shortly after the shock impact). Note that
during this phase, the interface is motionless, i.e. R(f) = Ry, and the shock impact can
be approximated as an impulse function, i.e. R = §(#)AV. Thus, the post-shock growth
rate can be readily obtained as follows:

(A — 1) AVag

R, (3.3)

dp
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Here, the post-shock amplitude a; is adopted for approximating the compressibility effect,
which is similar to the treatment of Richtmyer (1960). Equation (3.3) illustrates that the
cylindrical RMI possesses an initial growth rate a, immediately after the shock impact
(t). The growth rate of perturbation amplitude at an arbitrary evolution time #, after the
shock impact can be obtained by integrating equation (3.2) from 7j (with an initial growth
rate a) to t;, which is expressed as

R 2
Rz(tl) Rz(tl)

a(ty)) = / (nA — Da(t)R(t)R (1) dt. (3.4)

Then, an analytical solution for the perturbation amplitude at an arbitrary time ¢, is
available by integrating equation (3.4) from 77 to 1, as follows:

. CI | & 1 h ..
a(t) = ag' + aoROZ/T(T m dy +~/z0+ |:R2(t1) /tg (nA — Da(HR(HR(1) dt:| dry.
3.5)

The second term on the right-hand side of (3.5) represents the pure RMI combined with
the geometric convergence/divergence effect, and the third term denotes the RT effect
caused by the flow acceleration or deceleration.

The present experimental results offer a rare opportunity to examine the validity of Bell
theory for the divergent RMI. Considering that the discrepancies in the incident shock
Mach number and the Atwood number among all cases in the experiments are very small,
the interface trajectory for the unperturbed case (figure 2) can approximately represent
the R(r) for the perturbed cases. By substituting the R(¢) from the unperturbed case into
(3.5), we can obtain the theoretical prediction of Bell theory for a perturbed case. As
shown in figure 4, the Bell prediction (obtained from 3.5) assuming a steady flow (i.e. a
uniform velocity of the interface) agrees reasonably with the experimental results at the
early stage, but deviates later (r > 0.8). When taking the flow deceleration (indicated in
the unperturbed case) into account, a good agreement between the theory and experiment
is again achieved for the whole evolution process. Moreover, the instability freeze-out
at late stages is also well captured by the theory. This demonstrates that the late-stage
instability stagnation is mainly ascribed to the counteraction between the positive growth
caused by pure RMI and the negative growth induced by geometric divergence and RT
stabilization. To the authors’ knowledge, this is the first direct examination of Bell theory
for the divergent RML.

To assess the nonlinearity effect, the third-order weakly nonlinear model of Wang
et al. (2015), which assumes a small perturbation at a cylindrical interface subjected to
a uniform radial motion, is employed to estimate the present perturbation growth. A brief
description of this theory is given below. For the problem of two incompressible, inviscid,
irrotational and immiscible fluids in an arbitrary radial motion, a velocity potential can be
introduced for each fluid which satisfies the Laplace equation. Considering the kinematic
and kinetic boundary conditions (i.e. the normal component of the velocity of each fluid
at the interface should equal the normal velocity of the interface and also the pressure
is continuous across the interface), another three governing equations for the velocity
potentials can be obtained. Expanding the perturbation displacement and the velocity
potentials into a power series, the first-, second- and third-order governing equations are
available, and each is expressed as a second-order ordinary differential equation. Note that
it is very difficult to get a general solution for the perturbation growth at a cylindrical
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interface of an arbitrary implosion (explosion) history. By assuming a uniformly moving
interface, the solution process is greatly simplified and the first-, second- and third-order
analytical solutions can be derived. Here, we only present the first- and second-order
solutions (the third-order expressions are very long and not given here),

ap ) = ao + dotC,, (36)
) n 11 a1, n 11 , 2. n
ar 5 = agdot (Al_e - §§> (C,— 1) +ayt [<8AE - 4_11—?) C - gAECr} , BT
11 a1l
aroy = — ((loaotikcr +ayt ZECr> y (38)

where C, = Ry/R(¢) is the convergence ratio, a;; is the amplitude of the fundamental
mode, a,, is the amplitude of the second harmonic and a, y is the second-order feedback
to the zero-order mode (i.e. the radius of the unperturbed interface). For more details, the
reader is referred to the original work of Wang et al. (2015).

As shown in figure 4, there exists only a minor difference between the linear and
nonlinear predictions even at very late stages, which indicates a very weak nonlinearity
for the divergent RMI. This finding is completely different from that of convergent
RMI where nonlinearity is found to be strong and behaves evidently (Wang et al. 2015;
Luo et al. 2019). The growth of the third harmonic together with its feedback to the
primary mode, predicted by the nonlinear model of Wang et al. (2015), is also shown
in figure 4 (the growth of the second harmonic produces no influence on the whole
perturbation growth and is not given). It is found that at early stages the growth of the
third harmonic in divergent geometry is much smaller than that in a planar or convergent
geometry (Luo et al. 2019), which provides a further demonstration of weak nonlinearity.
Although nonlinearity increases at late stages, the positive growth of the third harmonic
approximately counteracts its negative feedback to the basic mode, which suggests a
negligible influence of nonlinearity on the growth of overall perturbation amplitude. This
explains well the reasonable prediction of linear Bell theory for the whole evolution
process of the divergent RMI.

The high-fidelity experimental images obtained enable a reliable extraction of the
interfacial contours. Taking case 3-24 as an example, interfacial profiles at seven typical
time instants are extracted from schlieren images by an image processing program as
shown in figure 5(a). By a spectrum analysis of the interfacial profiles, growths of the
first, second and third harmonics are available for all cases. As shown in figure 5(b), the
primary mode presents the same increasing tendency as the overall perturbation amplitude,
i.e. first grows linearly, then slows down and eventually freezes out. Growths of the second
and third harmonics are far slower, which indicates a dominant role of the primary mode
at weakly nonlinear stage. The third harmonic maintains a very small amplitude during
the experimental time, which implies that the energy of basic mode is mainly transferred
to the second harmonic. Considerable agreement between the nonlinear prediction and the
experiment for the growths of the first three harmonics is achieved for T < 1.0. Therefore,
a direct validation of the nonlinear model of Wang et al. (2015) is performed for the
divergent RMI.

In this work, the flow regimes of the divergent RMI are analysed by comparing the
linear and nonlinear models (Bell 1951; Wang et al. 2015) with the experimental results
under a limited range of initial parameters (i.e. different initial perturbation amplitudes and
wavelengths under a single Mach number and Atwood). For the real ICF application, the
initial conditions such as the shock Mach number, the perturbation shape and the Atwood
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FIGURE 5. (a) Interfacial profiles extracted from schlieren images at seven moments (units are
ps) for case 3-24. (b) Normalized variations of the amplitudes of the first three harmonics with
time. The nonlinear model is Wang et al. (2015).

number are different from the present ones, and the instability growth is much more
complicated. Therefore, the validity of the present model should be studied using more
cases with different initial parameters including shock Mach number and Atwood number.
Design and manufacture of a new divergent shock tube for generating an incident strong
divergent shock is ongoing. For a very large density ratio in ICF, usually corresponding
to a gas—solid interface, new interface formation methods and flow diagnostic techniques
should be developed. We hope that the RMI under a strong divergent shock at a large
density ratio interface can be reported in the near future.

4. Conclusions

The divergent RMI with controllable initial conditions, which is crucial for
understanding hydrodynamic phenomena in ICF and supernova explosion, is studied
in shock-tube experiments. A novel divergent shock tube with several curved segments
transforming an incident planar shock into a perfect diverging one is designed based on
shock dynamics theory and the facility is demonstrated to bring new vitality for divergent
RMI study. An unperturbed case is first considered and an evident flow deceleration
is observed. Then, five single-mode air—SFg interfaces with different wavelengths and
amplitudes are examined. Results show that the flow structures, the instability growth
behaviour and the dominant flow regimes for divergent RMI are completely different from
those of convergent RMI.

Generally, the perturbation growth of divergent RMI can be divided into three
successive stages: linear growth, quick reduction in growth rate and instability freeze-out.
The perturbation growth in each stage is far slower than the planar or convergent
counterpart due to geometric expansion. Nonlinearity in the divergent RMI is found to be
much weaker than that in planar or convergent RMI. Moreover, nonlinearity in divergent
RMI produces a negligible influence on the overall amplitude growth even at late stages it
has become strong, which is because the growth of the third harmonic just counteracts its
negative feedback to the basic mode. As a consequence, the linear theory of Bell (1951)
accounting for the interface deceleration and geometric divergence can reasonably predict
the present experiments from early to late stages. The instability freeze-out at late times
is also well reproduced by the linear theory, which is ascribed to the counterbalancing
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effect between the positive growth caused by pure RMI and the negative growth caused by
geometric divergence and RT stabilization. Growths of the first three harmonics obtained
by a spectrum analysis of the interfacial profiles provide a first direct validation of the
nonlinear model of Wang et al. (2015) for divergent RMI. Despite the differences between
the present experimental conditions and those of ICF, this work is the first substantial step
towards the experimental study of divergent RMI. We believe that the analyses and findings
of this work may provide a fundamental and important understanding of the divergent
RMI, and would be also useful for understanding the reshock process of the convergent
RMI in ICF.

Acknowledgements

This work was supported by the National Key R&D Program of China (no.
2016 YFCO0800100), the National Natural Science Foundation of China (nos. 91952205,
11802304, 11625211 and 11621202) and the Science Challenge Project (no. TZ2016001).

Declaration of interests

The authors report no conflict of interest.

REFERENCES

ARNETT, W. D., BAHCALL, J. N., KIRSHNER, R. P. & WOOSLEY, S. E. 1989 Supernova 1987A. Annu.
Rev. Astron. Astrophys. 27, 629-700.

BELL, G. I. 1951 Taylor instability on cylinders and spheres in the small amplitude approximation. Report
No. LA-1321. LANL.

BIAMINO, L., JOURDAN, G., MARIANI, C., HOUAS, L., VANDENBOOMGAERDE, M. & SOUFFLAND,
D. 2015 On the possibility of studying the converging Richtmyer—Meshkov instability in a
conventional shock tube. Exp. Fluids 56 (2), 1-5.

BROUILLETTE, M. 2002 The Richtmyer—Meshkov instability. Annu. Rev. Fluid Mech. 34, 445-468.

CHANDRA, N., GANPULE, S., KLEINSCHMIT, N. N., FENG, R., HOLMBERG, A. D., SUNDARAMURTHY,
A., SELVAN, V. & ALAI, A. 2012 Evolution of blast wave profiles in simulated air blasts:
experiment and computational modeling. Shock Waves 22, 403-415.

CHESTER, W. 1954 The quasi-cylindrical shock tube. Philos. Mag. 45, 1293-1301.

CHISNELL, R. F. 1957 The motion of a shock wave in a channel, with applications to cylindrical and
spherical shock waves. J. Fluid Mech. 2, 286-298.

DIMOTAKIS, P. E. & SAMTANEY, R. 2006 Planar shock cylindrical focusing by a perfect-gas lens. Phys.
Fluids 18, 031705.

DiING, J., S1, T., YANG, J., LU, X., ZHAIL, Z. & Luo, X. 2017 Measurement of a Richtmyer—Meshkov
instability at an air-SFg interface in a semiannular shock tube. Phys. Rev. Lett. 119 (1), 014501.

HoOSSEINI, S. H. R., OGAwA, T. & TAKAYAMA, K. 2000 Holographic interferometric visualization of
the Richtmyer-Meshkov instability induced by cylindrical shock waves. J. Vis. 2 (3—4), 371-380.

HOSSEINI, S. H. R. & TAKAYAMA, K. 2005 Experimental study of Richtmyer—Meshkov instability
induced by cylindrical shock waves. Phys. Fluids 17, 084101.

KURANZ, C. C., PARK, H. S., HUNTINGTON, C. M., MILES, A. R., REMINGTON, B. A., PLEwA, T.,
TRANTHAM, M. R., ROBEY, H. F., SHVARTS, D., SHIMONY, A., et al. 2018 How high energy
fluxes may affect Rayleigh—Taylor instability growth in young supernova remnants. Nat. Commun.
9, 1564.

LEL F., DING, J., S1, T., ZHAIL Z. & LUO, X. 2017 Experimental study on a sinusoidal air/SFg interface
accelerated by a cylindrically converging shock. J. Fluid Mech. 826, 819-829.

LINDL, J., LANDEN, O., EDWARDS, J., MOSES, E. & TEAM, N. 2014 Review of the national ignition
campaign 2009-2012. Phys. Plasmas 21, 020501.


https://doi.org/10.1017/jfm.2020.592

https://doi.org/10.1017/jfm.2020.592 Published online by Cambridge University Press

901 A38-14 M. Li, J. Ding, Z. Zhai, T. Si, N. Liu, S. Huang and X. Luo

Liu, L., LIANG, Y., DING, J., L1u, N. & LU0, X. 2018 An elaborate experiment on the single-mode
Richtmyer—Meshkov instability. J. Fluid Mech. 853, R2.

Luo, X., DING, J., WANG, M., ZHAI, Z. & SI, T. 2015 A semi-annular shock tube for studying
cylindrically converging Richtmyer—Meshkov instability. Phys. Fluids 27 (9), 091702.

Lvuo, X., Li, M., DING, J., ZHAI, Z. & S1, T. 2019 Nonlinear behaviour of convergent
Richtmyer—Meshkov instability. J. Fluid Mech. 877, 130-141.

Luo, X., ZHANG, F., DING, J., S1, T., YANG, J., ZHAL, Z. & WEN, C. 2018 Long-term effect of
Rayleigh-Taylor stabilization on converging Richtmyer—Meshkov instability. J. Fluid Mech. 849,
231-244.

MESHKOV, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4,
101-104.

PLESSET, M. S. 1954 On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25, 96-98.

RANIJAN, D., OAKLEY, J. & BONAZZA, R. 2011 Shock-bubble interactions. Annu. Rev. Fluid Mech. 43,
117-140.

RAYLEIGH, LORD 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid
of variable density. Proc. London Math. Soc. 14, 170-177.

RESHOTKO, E. 1976 Boundary-layer stability and transition. Annu. Rev. Fluid Mech. 8, 311-349.

RICHTMYER, R. D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure
Appl. Math. 13, 297-319.

SARIC, W. S., REED, H. L. & KERSCHEN, E. J. 2002 Boundary-layer receptivity to freestream
disturbances. Annu. Rev. Fluid Mech. 34, 291-319.

S1, T., LONG, T., ZHAI, Z. & Luo, X. 2015 Experimental investigation of cylindrical converging shock
waves interacting with a polygonal heavy gas cylinder. J. Fluid Mech. 784, 225-251.

S1, T., ZHAL, Z. & Luo, X. 2014 Experimental study of Richtmyer—Meshkov instability in a cylindrical
converging shock tube. Laser Part. Beams 32, 343-351.

STEWART, J. B. & PECORA, C. 2015 Explosively driven air blast in a conical shock tube. Rev. Sci. Instrum.
86, 035108.

TAYLOR, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their
planes. I. Proc. R. Soc. Lond. A 201, 192-196.

VANDENBOOMGAERDE, M. & AYMARD, C. 2011 Analytical theory for planar shock focusing through
perfect gas lens and shock tube experiment designs. Phys. Fluids 23 (1), 016101.

VANDENBOOMGAERDE, M., ROUZIER, P., SOUFFLAND, D., BIAMINO, L., JOURDAN, G., HOUAS, L.
& MARIANI, C. 2018 Nonlinear growth of the converging Richtmyer—Meshkov instability in a
conventional shock tube. Phys. Rev. Fluids 3, 014001.

WANG, L. F., Wu, I. F., Guo, H. Y., YE, W. H,, L1u, J., ZHANG, W. Y. & HE, X. T. 2015 Weakly
nonlinear Bell-Plesset effects for a uniformly converging cylinder. Phys. Plasmas 22, 082702.

WHITHAM, G. B. 1958 On the propagation of shock waves through regions of non-uniform area or flow.
J. Fluid Mech. 4, 337-360.

YANG, J., KuBoTA, T. & ZUKOSKI, E. E. 1993 Application of shock-induced mixing to supersonic
combustion. AIAA J. 31, 854-862.

ZHAL Z., L1u, C., QIN, F., YANG, J. & Luo, X. 2010 Generation of cylindrical converging shock waves
based on shock dynamics theory. Phys. Fluids 22, 041701.

ZHAN, D., L1, Z., YANG, J., ZHU, Y. & YANG, J. 2018 Note: a contraction channel design for planar
shock wave enhancement. Rev. Sci. Instrum. 89, 056104.

ZHOoU, Y. 2017 Rayleigh-Taylor and Richtmyer—Meshkov instability induced flow, turbulence, and mixing.
I. Phys. Rep. 720-722, 1-136.


https://doi.org/10.1017/jfm.2020.592

	1 Introduction
	2 Experimental methods
	3 Results and discussion
	4 Conclusions
	References

