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Abstract

In this paper, we study the extreme values of the Rankin—Selberg L-functions associated with holomorphic
cusp forms in the vertical direction. Assuming the generalised Riemann hypothesis (GRH), we prove that

| }longog loglogT)
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with € < 27 VT =3, where 2 := (/) [ si* édé and 0 < 5 < 1.
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1. Introduction
1.1. Background. The Lindelof hypothesis (LH) asserts that for every € > 0,
L +inl = 0(°) ast — co.

In [9], Littlewood showed that a stronger form of LH follows from the Riemann
hypothesis (RH): namely, for some positive constant C; > 0 and for all large |¢|,

1 . log|t|

e ool 255)
{(2 ! ) exp 1log log|t|
where the sharpest size of the implicit constant C; has been given by Chandee and
Soundararajan [4].

In the opposite direction, Titchmarsh (see [12, Theorem 8.12]) proved that for any
a < 1/2 and large enough T,

Ll > @
max|{(} +in)] 2 exp((log T)").
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2] Rankin—Selberg L-functions 409
Using the resonance method, Soundararajan [10] proved that there exists ¢ € [T, 2T]
such that
‘(( 1 't) ylog T
\2 yloglog T

Recently, Bondarenko and Seip [2] made a breakthrough by showing that for any
constant C, < 1/ V2,

Zexp((l +0(1)) ) as T — oo.

1. Ylog Tlogloglog T
max ;’(— + zt) > exp (C )
eVT,T)l " \2 ? yloglogT

Later, Bondarenko and Seip [3] improved their result by widening the allowable range
of C,, showing that the above bound holds for any C, < 1. Currently, the sharpest
lower bound is due to De la Bretéche and Tenenbaum [5] who established

5(% + it) > exp ((«/E + 0(1))\/10‘(”“0g log log T) as T — oo

loglogT
In this paper, we investigate the extreme values of the Rankin—Selberg L-functions
associated with holomorphic cusp forms in the vertical direction. We begin with some
definitions for these L-functions.

max
te[0,T1]

1.2. Rankin-Selberg L-functions. Let f be a primitive holomorphic cusp form of
weight k > 1 for SL,(Z). Let

f@ = ) Awn P e(nz)
nx1

be its normalised Fourier expansion at the cusp oo, where A¢(n) e R(n =1,2,...) are
eigenvalues of Hecke operators T(n) (that is, T(n)f = A¢(n)f), normalised so that
A7(1) = 1. By the work of Deligne, there exist as(p), B7(p) € C, satisfying

ay(p)Br(p) =1
and
Ap(p") = ap(p) +ap(p)~'Bp(p) + -+ B(p)’, forv>1.
The Ramanujan conjecture states that
lay(p)l = 1Br(p) = 1 (1.1

for all prime numbers p. For holomorphic f, this was proved by Deligne [6] in 1974.
Thus for each prime number p, there is a unique £7(p) € [0, 7] such that

Ar(p) = 2cos &f(p).

According to the Sato-Tate conjecture, the sequence {£(p)}, is equi-distributed on
[0, 7] with respect to the measure (2/m) sinzfdf, that is, for a given subinterval
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[a,b] C [0, ],

x 2 (.,
{p <x: ff(p)e[a,b]}lfv—)”—rf sin“ £dé  asx — oo. (1.2)

This has been proved by Barnet-Lamb et al. [1]. (For Maass cusp forms, both (1.1) and
(1.2) are still open.)
For Re s > 1, the Rankin—Selberg L-function attached to f is

Ty ALy

L. fxpi=[](1- w
p

It can be continued analytically to the whole complex plane with a simple pole at s = 1
and satisfies the functional equation

A, fx f)=A0 =5 fx[),
for the complete L-function

AGs, X f) = y(s, f X PL(s, f X f)
and the gamma factor

Y(s, f X f) = Qo) >T((s + k- 1).

Following the argument of Bondarenko and Seip [3], we establish the following
theorem.

THEOREM 1.1. Assume the GRH. Let 0 < 6 < 1 be given. If T is sufficiently large, then
there exists t with T® < t < T such that

log T'log log log T
Zexp(C\/ Of © 108108 08 ) (1.3)

1
Ll - +it
‘ (2+z,f><f) loglog T

where C is a positive number depending on f, satisfying C < Z V1 — 6, and where
2 = [ sin® £ de.

The assumption of the GRH is only needed in the proof of Theorem 1.1 to handle

the moments flTlL(% +it, f X P)I? dt (see Lemma 2.2). In fact, the convexity bound is
sufficient for the proof of Lemma 2.1 and subconvexity bounds will not lead to any
improvement of the result.

The positivity of the coefficients of the Rankin—Selberg L-functions is necessary
for the method in the proof. Hence, a principal difference between our version of the
resonance method and that used earlier by Bondarenko and Seip [3] is that we have
to consider a suitable subcollection of the set of prime numbers in our resonator (see
Section 2.3 for the details).
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2. Preparation for the proof

2.1. Convolution formula for L(s, f X f). We define the Fourier transform Fof F
on R as

F(g) = f " F(x)e ™ dx.

LEMMA 2.1. Suppose that 1 < o < 1 and let F(x + iy) be an analytic function in the
horizontal strip o — 2 <y < 0 satisfying the growth estimate

1
nzlax |[F(x + iy)| = (| |2)

when |x| — co. Then for every real t,

f " Lo+ i+ ), £ X FYFGe) dut = > W — 2mipF(—t + i(o — 1),
- m=1

where L(s, f X f) := X7 A(m)m™ and py is the residue of L(s, f X f)ats = 1.

PROOF. Let T be a large positive number and let Z(T) denote the contour consisting
of the line segments connecting o — iT,2 — iT,2 + iT,0 +iT.
By the residue theorem applied to G(z) := L(z + it, f X f)F(io- — iz) in Z(T),

1
P G(z)dz
27Tl R(T)
1 —iT —iT 2+iT +iT
= _(f f f f L(z +it, f X f)F(ioc —iz)dz
2mi o+iT 2+iT
Res G(2).
z=1-it

Since L(s, f X f) is holomorphic in the s-plane except for a simple pole at s = 1,

+iT
f" L(z+it, f X /)F(ic —iz)dz

o—iT

2+iT
= f Lz +it, f X f)F(io — iz) dz — 2rippF(—t + i(o — 1))
2-iT

a'+zT
+ ( f ’ L(z +it, f X f)F(io - iz) dz. 2.1)

2+iT

Applying the upper bound for F(x + iy) in Lemma 2.1, (2.1) and the convexity bound
[8, (5.21)], we arrive at

T T
f L(o + i(t + u), f X f)F(u) du = f L2 +i(t +u), f X f)F(u + i(o — 2)) du
-T -T

= 2:ip pF(~t + i(o — 1)) + O(T3/%*¢),
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Also,
f L2 +i(t+uw), fxX HF(u+i(oc—-2))du
_ Z A(m) “ F(u + i(O’ _ 2))e—iu logme(a'—2) logme—(o-—Z) logm du
ma+it .
m=1
o A(m)—

m=1

Combining these two formulae completes the proof of Lemma 2.1. ]

2.2. Moments of L-functions. Define

2r

dt. (2.2)

4%+foﬂ

T
(T, f % f) :=f1

LEMMA 2.2 [11, Theorem 1.1]. Assume the GRH. Let f be a primitive holomorphic
cusp form of weight k > 1 for SLy(Z). Let I(T, f X f) be defined as in (2.2). Then for
all real numbers r > 0 and sufficiently large T,

I(T, f X f) <, T(log T)".

2.3. Construction of the resonator. The resonance method can be traced back to
a paper of Voronin [13]. It was developed independently and significantly refined by
Hilberdink [7] and by Soundararajan [10].

A resonator (in the spirit of [3, Section 3]) is a function of the form R(r), where

Rty = r’%)’ 23)

me.A’

and ./ is a suitable finite set of positive integers whose construction is given below.

Let 0 < 6 < 1 be a fixed real number, and let k and y withO <k < land 0 <y < 1
be parameters still to be chosen. Define N = [T*], where [x] denotes the integer part of
x. Let P be the set of prime numbers p such that

elogNlog, N < p < exp((log, N))logNlog, N and 1< A4(p)<2. 2.4)

We define h(n) to be the multiplicative function supported on the set of square-free
numbers such that

log Nlog, N 1
logs N +/p(log p —log, N —log; N)

forp e P,
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and h(p) = 0 otherwise. Fix A with 1 < A < 1/y. Foreach ¢ € {1,..., [(log, N)"]}, we
define the sets

Py :={p:eflogNlog, N < p <e™logNlog, N, 1< Ar(p) <24,

Alog N
M, = {n € supp(h) : n has at least o8

———=— prime divisors in P }
?logy N P ¢

Next, we define the set
[(log, N)']
A = supp(h) \ U M,.
=1

Then .# is the set of square-free numbers n that have at most Alog N/(£?log; N)
divisors in P;.
Now, let _#Z be the set of integers j such that

[(1+ T, a+T ()t 0,

and let m; to be the minimum of [(1 + 77"/, (1 + T-")/*'] . for jin ¢ . Consider
the set

M ={mjje F},
and define
12
rmy) = D h(n)2) for m; € .
ne,(1+T-1) i~ <n<(1+T-1) /+2
Finally, we set ©(r) = e 2,
LEMMA 2.3. We have

(i) IROP < R0 <N Yje 0 h(D*;
(i) [T IROPD@/T)dt < T e g h(D*

PROOF. The proof for (i) follows from the definition of R(¥) in (2.3) and the
Cauchy-Schwarz inequality. The proof for (ii) follows the same outline as in [3,
Lemma 5]. O

Define

AN = = ST PO S T and 2= 2 f " ined @)
Yiew h(* &4 n m 7 Jo

We make use of the following four lemmas.
LEMMA 2.4. We have

log Nlog; N

AN) > exp ((y% Foly 2
2

) as N — oo,
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PROOF. From the construction of 4 as a multiplicative function,

1 h(n) [1ep(1 + h(p)p~'" 14, H(d)VA)
- Wd)Vd = =2 P
i h(i)? ZN ; (@vd IT,ep(1 + h(p)?)

_ l_[ L+ h(p)* + h(p)p™'/?

bep 1+ h(p)?

= exp ((1 +o() Yy h(p)) (2.6)

PEP \/1_7

Following the proof of [2, Lemma 1], (1.2) and the definitions of P in (2.4) and 2~ in
(2.5) lead to

Z h(p) _ logNlog, N Z
< \pr logs N - p(log p — Ing —logz N)
log Nlog, N feXP((logz N))logNlog, N d (% 2 ™ in 2Edé)
- 10g3 N elogNlog, N x(logx - 10g2 - 10g3 N)
log Nlogz N
=(yZ +0(1))y| ———— 2.7
(y o(1)) log, N (2.7
Inserting (2.7) into (2.6) completes the proof of the lemma. O

LEMMA 2.5 [2, Lemma 3]. We have

1 h(n) = — 0
mzﬁﬁ ; hd)Vd = o AN)) as N — o,

d<n/N°®

where the implicit constant depends only on €.

LEMMA 2.6 [2, Lemma 2]. We have

1 h(n) B L
T (i) % N dthw)f o(AN)) asN

n¢. M

LEMMA 2.7. Suppose that

— A(m)a,
L(1) := Z /2

m=1
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is absolutely convergent and that a, > 0 for every n. Let € be a positive number and y
be the parameter defining the set P. Then

f ) L(t)lR(t)lzCD(%)dt > Tminay - exp ((y% +o(1), /Klog Tlogs T ) > hay.
- - le#

PROOF. It follows from the explicit expression for R(¢) that

f L(t)|R(z)|2q)( )dt VorT ZW ( log%)
- mpe’ k=1

> VorTming y. Y r(m)r(n)d)(Tlog @) 2.8)
<1 mpneM" ke M \/_ n
k<T?
Here we used the fact that A(k) > 1 for k € .# by the construction of .Z .
For a given k in .#, consider all pairs m’, n’ in .#" such that |km’/n’ — 1| < 3/T.
‘We use the notation

Jon') = [+ T, (1 + T™H*h,
where j is the unique integer such that (1 +77')/ <m’ < (1+T7")/*!. Using the

Cauchy—Schwarz inequality and the definition of r(m’), we find

M) > T h(mh(n),
mneM ,mk=n
meJ(m’),neJ(n")

and hence, by the definition of .Z”,
rmyr(n) = > hm)h(n).

m' .n'eH’ m,neM ,mk=n
lkm’ [n"—1|<3/T

Now dividing this inequality by Vk and summing over all k in .# N [1,T?] and
combining the result with (2.8), and Lemmas 2.5 and 2.6, we get

f ) L(t)|R(t)|2CD( )dt > Tming; ) h) > Vi

© <Te neH \/ﬁ dln,d>n/T#
> Tmina; - AN) D" h(ny. (2.9)
ne#
Combining Lemma 2.4 and (2.9) completes the proof of the lemma. ]

3. Proof of Theorem 1.1

We choose
sin®((elog T)1)

(elog T2 G-

F@t) :=
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and note that

F(&) = gmax(l _ 2gf)'gT,o). (3.2)

By the convexity bound [8, (5.21)] and the growth estimate for F(x + iy),

70 00
1
f f 'L(5 +i(t+ 1), f X f)‘F(u) du dt
70 J o
Té
< T+ f f
=T Ju|<T?
279
< T+ f
o706
277
IZTJ

Combining (3.3) and (3.4),

L(% it + 1), f X f)'F(u) du dt

L(% +it, f X f)‘ dr. (3.3)

By Lemma 2.2,

L(E it f X f)' dt < TP (3.4)

Yl 00
1 t
f f ’L(— it + 1), f X f)'F(u)IR(t)IzCD(—)du di <, T S hap (35)
-T° J—oo 2 r let
by a trival estimation of R(0)? in Lemma 2.3. Because of the rapid decay of ®(t),

Lnogr I: 'L(% tilttw, fxf )‘F (”‘)'R(f)lz‘b(%)du di = O(;ﬂh(l)z). (3.6)

Combining (3.5) and (3.6), we deduce that
<l /1 t
f f ‘L(— it + ), f X f)‘F(u)lR(t)lsz(—)du di
To<i<Tlog T J—co | \2 T

:f:f:‘L(%+i(t+u),fxf)

F(u)lR(t)Izd)(%)du di + of(T5+K+£ D h(l)z).

le#
(3.7
We now require ¢ + k < 1 and apply Lemma 2.3(ii) to the left-hand side of (3.7). We
obtain
1
L(—+'t, X )T h(l)?
Td‘/zgg;logr 2 infxf Z ®

let

> [ ) I ) ‘L(% it + ), f X f)’F(u)lR(t)|2<D(%)du di +0(T) Y ().

le
3.8)
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By Lemma 2.1,
I : I : L(% i+ ), f X f)F(u)IR(t)IzCD(%)du d
_ f : Z f%mw%(%)m — 2nipy f : F(—i - i/2)|R(t)|2®(%)dt.

(3.9)

Setting a,, := F(logm) and applying Lemma 2.7,
> Tmin Flogm) - exp ((y% + o(1)) (3.10)

Applying (3.1) and Lemma 2.3(),

[ Rt iDIROPO( ) di < T " Ay, GaD)

o let

In view of (3.2), we note that min,,<7- ’f(log m) > m/4. Hence, choosing &£ small enough
and combining (3.8)—(3.11), we find that the asserted bound (1.3) holds for some ¢
satisfying 7°/2 <t < 2T log T. We obtain the desired restriction 7° < t < T after a
trivial adjustment, changing 7 to 7/(21log T') and making ¢ slightly smaller.

Acknowledgement

The authors are grateful to Xuanxuan Xiao for drawing their attention to the
problem considered in this paper.

References

[1] T. Barnet-Lamb, D. Geraghty, M. Harris and R. Taylor, ‘A family of Calabi—Yau varieties and
potential automorphy II’, Publ. Res. Inst. Math. Sci. 47 (2011), 29-98.

[2] A. Bondarenko and K. Seip, ‘Large greatest common divisor sums and extreme values of the
Riemann zeta function’, Duke Math. J. 166 (2017), 1685-1701.

[3] A.Bondarenko and K. Seip, ‘Extreme values of the Riemann zeta function and its argument’, Math.
Ann. 372 (2018), 999-1015.

[4] V. Chandee and K. Soundararajan, ‘Bounding |{ (% + it)| on the Riemann hypothesis’, Bull. Lond.
Math. Soc. 43 (2011), 243-250.

[51 R.DelaBreteche and G. Tenenbaum, ‘Sommes de Gal et applications’, Proc. Lond. Math. Soc. 119
(2019), 104-134.

[6] P.Deligne, ‘La Conjecture de Weil I’, Publ. Math. Inst. Hautes Etudes Sci. 43 (1974), 273-307.

[71 T. Hilberdink, ‘An arithmetical mapping and applications to Q-results for the Riemann zeta
function’, Acta Arith. 139 (2009), 341-367.

https://doi.org/10.1017/50004972722000259 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972722000259

418 C. Cui and Q. Yang [11]

[8] H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society Collo-
quium Publications, 53 (American Mathematical Society, Providence, RI, 2004).
[9] . E. Littlewood, ‘On the zeros of the Riemann zeta-function’, Math. Proc. Cambridge Philos. Soc.
22 (1924), 295-318.
[10] K. Soundararajan, ‘Extreme values of zeta and L-functions’, Math. Ann. 342 (2008), 467—486.
[11] H. Tang and X. Xiao, ‘Integral moments of automorphic L-functions’, Int. J. Number Theory 12
(2016), 1827-1843.
[12] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd edn (Oxford University Press,
New York, 1986), edited and with a preface by D. R. Heath-Brown.
[13] S. M. Voronin, ‘Lower bounds in Riemann zeta-function theory’, Izv. Akad. Nauk SSSR Ser. Mat.
52 (1988), 882-892.

CHI CUI, Faculty of Information Technology,
Macau University of Science and Technology, Macau, PR China
e-mail: ccuicynthia@gmail.com

QIYU YANG, Faculty of Information Technology,

Macau University of Science and Technology, Macau, PR China
e-mail: qyyang.must@gmail.com

https://doi.org/10.1017/50004972722000259 Published online by Cambridge University Press


mailto:ccuicynthia@gmail.com
mailto:qyyang.must@gmail.com
https://doi.org/10.1017/S0004972722000259

	1 Introduction
	1.1 Background
	1.2 Rankin–Selberg L-functions

	2 Preparation for the proof
	2.1 Convolution formula for L(s,ff)
	2.2 Moments of L-functions
	2.3 Construction of the resonator

	3 Proof of Theorem theorem11.1

