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Background. There is an ongoing debate whether transdiagnostic neural mechanisms are shared by different anxiety-
related disorders or whether different disorders show distinct neural correlates. To investigate this issue, studies control-
ling for design and stimuli across multiple anxiety-related disorders are needed.

Method. The present functional magnetic resonance imaging study investigated neural correlates of visual disorder-
related threat processing across unmedicated patients suffering from panic disorder (n = 20), social anxiety disorder
(n = 20), dental phobia (n = 16) and post-traumatic stress disorder (n = 11) relative to healthy controls (HC; n = 67). Each
patient group and the corresponding HC group saw a tailor-made picture set with 50 disorder-related and 50 neutral
scenes.

Results. Across all patients, increased activation to disorder-related v. neutral scenes was found in subregions of the
bilateral amygdala. In addition, activation of the lateral amygdala to disorder-related v. neutral scenes correlated posi-
tively with subjective anxiety ratings of scenes across patients. Furthermore, whole-brain analysis revealed increased
responses to disorder-related threat across the four disorders in middle, medial and superior frontal regions, (para-)lim-
bic regions, such as the insula and thalamus, as well as in the brainstem and occipital lobe. We found no disorder-specific
brain responses.

Conclusions. The results suggest that pathologically heightened lateral amygdala activation is linked to experienced
anxiety across anxiety disorders and trauma- and stressor-related disorders. Furthermore, the transdiagnostically shared
activation network points to a common neural basis of abnormal responses to disorder-related threat stimuli across the
four investigated disorders.
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Introduction

The current prevalence of anxiety disorders adds up to
10.4% in Western cultures. Anxiety disorders are
among the 10 leading causes of disability worldwide,
and among the three most expensive mental disorders
in Europe (Olesen et al. 2012; Baxter et al. 2013).
Features shared by anxiety disorders, such as panic
disorder (PD), social anxiety disorder (SAD), or
specific phobia, are excessive fear and anticipatory
anxiety, physical symptoms, escape and avoidance
behaviour, thoughts of current threat, and mental
apprehension (Craske et al. 2009). Cues triggering
this initial fear response depend on the disorder
and are thus disorder-related (American Psychiatric

Association, 2000). In the recently published Diagnos-
tic and Statistical Manual of Mental Disorders, 5th revi-
sion (DSM-5; American Psychiatric Association, 2013),
post-traumatic stress disorder (PTSD) has been clas-
sified as a trauma- and stressor-related disorder, distin-
guishing PTSD from anxiety disorders. As the
symptoms for anxiety disorders and trauma- and stres-
sor-related disorders overlap, the classification change
of PTSD fuelled intensive discussion (Friedman et al.
2011; Zoellner et al. 2011).

Shared behavioural features suggest a dimensional
view of anxiety and trauma- and stressor-related disor-
ders. Keeping with recent dimensional approaches
such as the Research Domain Criteria (RDoC) project
(Cuthbert, 2015), studies examining potential trans-
diagnostic neurobiological alterations that cut across
anxiety, and trauma- and stressor-related disorders
are needed.

Since the amygdala is linked to fear mechanisms
in healthy subjects and in pathological anxiety, it
could potentially represent a target structure in a
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dimensional approach (Rauch et al. 2003; Zald, 2003;
Phelps, 2006; Forster et al. 2012). The amygdala is a
central processing hub for emotional information. It
receives input from sensory processing structures
(e.g. thalamus) and higher-order regions (e.g. pre-
frontal cortex; PFC), and is essential for the detection
of relevant emotional information (Phelps & LeDoux,
2005; Sergerie et al. 2008; Forster et al. 2012). The amyg-
dala can be divided into lateral, basal and central com-
ponents, with the lateral part functioning mainly as an
entrance region for sensory information while the cen-
tral region mediates behavioural and autonomous
reactions via various output pathways (LeDoux,
2007; Janak & Tye, 2015).

Reviews and meta-analyses have drawn an incon-
sistent picture with regard to amygdala involvement
across anxiety disorders during emotional processing
(Rauch et al. 2003; Etkin & Wager, 2007; Craske et al.
2009; Shin & Liberzon, 2010; Holzschneider &
Mulert, 2011; Fredrikson & Faria, 2013; Duval et al.
2015; Taylor & Whalen, 2015). This variable involve-
ment of the amygdala in different anxiety disorders
is not well understood. In general, more consistent
amygdala activations are reported for SAD and
specific phobia and partially PTSD as compared with
PD, for example (Etkin & Wager, 2007; Shin &
Liberzon, 2010; Duval et al. 2015). However, since
designs are only partially comparable, findings are
difficult to interpret. Meta-analyses have not yet
included PD (Etkin & Wager, 2007; Fredrikson &
Faria, 2013). Furthermore, it is unknown whether sub-
regions of the amygdala are differentially involved
when comparing effects across anxiety disorders.

Besides the amygdala, altered activation in anxiety
disorders has been observed in the insula, thalamus,
anterior cingulate cortex (ACC) and medial PFC
(mPFC) (Etkin & Wager, 2007; Shin & Liberzon, 2010;
Duval et al. 2015). While reviews and meta-analyses
propose a set of brain regions involved in anxiety dis-
orders, findings within each brain region vary between
studies. Further, conclusions are limited since they
include studies with different tasks, designs, sample
characteristics and stimuli that are only partially dis-
order-relevant. This calls for studies across multiple
anxiety disorders that use comparable stimuli, tasks
and designs, while controlling for sampling confounds
(Etkin & Wager, 2007; Craske et al. 2009; Duval et al.
2015).

Some studies related to this research question dir-
ectly compared the neural correlates across different
anxiety disorders, using facial expressions (Blair et al.
2008; Killgore et al. 2014; Pantazatos et al. 2014;
Fonzo et al. 2015). Both differential amygdala activa-
tion [Blair et al. 2008: generalized anxiety disorder
(GAD), SAD] and similar amygdala activation across

groups (Killgore et al. 2014: PTSD, PD and specific pho-
bia; Fonzo et al. 2015: GAD, SAD and PD) have been
found. General threat-processing studies implementing
emotional pictures have not yet compared more than
two anxiety disorders. SAD patients and healthy con-
trols (HC) have been found to show greater amygdala
responses than GAD patients when confronted with
negative pictures (Blair et al. 2012). No differential
amygdala activation to negative pictures was found
in GAD v. PD patients (Ball et al. 2013). Only one
study used disorder-related stimuli (words) with
three different anxiety disorders (van den Heuvel
et al. 2005). Processing disorder-related words resulted
in heightened activation in the right amygdala in
obsessive–compulsive disorder and PD patients com-
pared with HC.

Taken together, there are no studies that directly
compared neural responses to ecologically valid dis-
order-specific triggers of anxiety across anxiety disor-
ders. By means of event-related functional magnetic
resonance imaging (fMRI), we investigated common
and distinct neural correlates of disorder-related
scene processing in PD, SAD, dental phobia (DP) and
PTSD patients. We used separate, tailor-made stimulus
sets displaying situations specifically relating to the
core fears of each disorder.

The present study should be able to detect transdiag-
nostic neurobiological alterations that may cut across
anxiety, and trauma- and stressor-related disorders
due to high statistical power. Statistical power was
increased by a large patient sample, which makes the
detection of true effects across diagnoses more likely
(Rauch et al. 2003; Button et al. 2013). To additionally
increase internal validity, all patients were free of psy-
chiatric medication, and patients with any of the other
three disorders as a co-morbid condition were
excluded. Based on this methodological stringency
we expected to better understand common and diver-
ging brain responses in the amygdala and other brain
regions across the four disorders.

Method

Subjects

Patients suffering from PD, SAD, DP or PTSD were
recruited via public notices, local paper advertisements
and a collaborating out-patient clinic. All PTSD
patients suffered from psychopathology after interper-
sonal violence. HC were drawn from a larger number
of screened healthy controls ascertained within the
framework of the Collaborative Research Center
‘Fear, Anxiety, Anxiety Disorders’ (TRR SFB 58;
http://sfbtrr58.uni-muenster.de/) or were recruited by
means of flyers and newspaper advertisements.
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Prior to participation, all patients and HC were
interviewed by a psychologist using the Structured
Clinical Interview for DSM-IV Axis I Disorders
(SCID; German version, Wittchen et al. 1997). Patients
fulfilled the criteria of PD, SAD, DP or PTSD according
to DSM-IV as main diagnosis and were excluded if
they had any of the other investigated disorders
as a co-morbid condition (for other co-morbid condi-
tions, see online Supplementary Table S1). HC were-
free of any psychiatric diagnosis. Further exclusion
criteria for patients and HC were psychotropic
medication, presence or history of neurological, psych-
otic or bipolar disorders, drug dependence or abuse
within the last 10 years, suicidal ideations, and fMRI
contraindications. All participants had normal or
corrected-to-normal vision and were right-handed as
assessed with the Edinburgh Handedness Inventory
(Oldfield, 1971).

The final patient sample comprised 20 PD patients
(16 female), 20 SAD patients (13 female), 16 DP
patients (13 female) and 11 PTSD patients (all females).
All patients were part of larger disorder-specific
studies, with less restrictive sample requirements
(Feldker et al. 2016; Heitmann et al. 2016; Neumeister
et al. in press). In the present study, a same-size HC
group, matched for age, gender and education was
assigned to each patient group (see Table 1 for sample
characteristics), resulting in a specific control group for
each patient group. All subjects gave written informed
consent. The study conforms to the Declaration of
Helsinki and was approved by the ethics committee
of the University of Muenster.

Stimuli

A tailor-made set of 50 disorder-related and 50 neutral
scenes was presented to each patient group and the
respective HC group, resulting in four different picture
sets. Disorder-related scenes tailored to the particular
disorders depicted disorder-related feared situations
or cues as well as persons suffering from disorder-
related symptoms (e.g. close-up of dental treatment
procedure for DP). Detailed descriptions of the sets
can be found elsewhere: Social Anxiety Picture Set
Muenster (SAPS-M; Heitmann et al. 2016); Panic-
related Picture Set Muenster (PAPS-M; Feldker
et al. 2016); Trauma-related Affective Picture Set
Muenster (TRAPS-M; Neumeister et al. in press).
Similarly, the Dental Phobia Picture Set Muenster
(DEPS-M) was developed (for further details, see
online Supplementary Table S2). Each patient group
and the respective HC group rated all 100 scenes of
the respective disorder-related picture set in a separate
post-scanning rating session. Each picture was pre-
sented for 2 s on a computer screen. A nine-point

Likert scale was used to assess valence (1 = very
unpleasant, 5 = neutral to 9 = very pleasant), arousal
(1 = not arousing to 9 = very arousing) and anxiety (1
= not anxiety inducing to 9 = very anxiety inducing).
Each patient group in the current sample rated the dis-
order-related v. neutral scenes as more anxiety-indu-
cing than the respective HC group. Patient groups
did not differ from each other regarding scores in anx-
iety rating (see Fig. 1 and online Supplementary
Table S3), indicating a comparable degree of experi-
enced threat.

Experimental task

All subjects participated in the same fMRI experiment,
but, as described before, the presented stimulus set
depended on the specific disorder. One patient group
(e.g. PD) and their respective HC group saw the
same stimulus set (here PAPS-M). Another patient
group (e.g. SAD) and their respective HC group saw
another stimulus set relevant for the disorder (here
SAPS-M). During the 8 min 19 s functional run, each
of the 50 disorder-related and 50 neutral pictures was
presented once in an event-related design. Neutral
and disorder-related pictures were presented in a ran-
dom sequence, optimized and counterbalanced using
the Optseq algorithm (http://www.surfer.nmr.mgh.
harvard.edu/optseq/), which also provides temporal
jitter to increase signal discriminability (Dale et al.
1999). Each picture was presented for 800 ms. A
white fixation cross was presented between two stim-
uli, for a jittered time window of 1280–15 320 ms
(mean = 3915 ms). To keep participants’ attention and
gaze towards the stimulus, they were instructed to
press a button with their right index finger whenever
a blurred picture occurred. Five pictures [originally
EmoPicS (Wessa et al. 2010), blurred with Adobe
Photoshop CS6 (version 13.0.1, Adobe Sytems Inc.,
USA)] were randomly presented over the course of
the experiment. These five trials were modelled as
nuisance regressors in the fMRI analysis.

fMRI acquisition and analysis

Blood oxygenation level-dependent (BOLD) responses
and structural brain information were recorded using a
3 Tesla magnetic resonance scanner (‘Magnetom
PRISMA’; Siemens, Germany) and a 20-channel
Siemens Head Matrix Coil. A high-resolution T1-
weighted MPRAGE anatomical volume with 192 slices
was recorded for anatomical localization. For func-
tional data a run of 255 volumes was conducted
using a T2*-weighted echo-planar sequence (echo
time = 30 ms, flip angle = 90°, matrix = 92 × 92 voxels,
field of view = 208 mm2, repetition time = 2080 ms).
Each volume consisted of 36 axial slices (thickness =
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Table 1. Sample characteristics of patient groups and their respective HC groups regarding gender ratio, age, educational attainment and scores in clinical questionnairesa

Total sample PD SAD DP PTSD

PAT HC PD HCPD SAD HCSAD DP HCDP PTSD HCPTSD Comparisons

Participants, n 67 67 20 20 20 20 16 16 11 11 PAT =HC; PD =HCPD; SAD =HCSAD; DP =HCDP.
PTSD =HCPTSD; PD = SAD =DPFemale 53 49 16 14 13 13 13 11 11 11

Male 14 18 4 6 7 7 3 5 0 0
Age, years 27.67

(8.53)
25.39
(5.35)

25.35
(6.83)

24.25
(3.52)

28.65
(8.86)

26.70
(5.94)

30.75
(11.15)

24.88
(5.50)

25.64
(4.82)

25.82
(6.82)

PAT =HC; PD =HCPD; SAD =HCSAD; DP =HCDP;
PTSD =HCPTSD; PD = SAD =DP = PTSD

Education,
years

12.72
(1.12)

12.75
(0.73)

12.50
(1.05)

12.42
(0.96)

12.95
(1.15)

13.05
(0.51)

12.80
(1.21)

12.80
(0.56)

12.56
(1.13)

12.73
(0.65)

PAT =HC; PD =HCPD: SAD =HCSAD; DP =HCDP;
PTSD =HCPTSD; PD = SAD =DP = PTSD

PAS 20.95
(6.97)

0.15
(0.37)

PD >HCPD

LSAS 67.90
(15.46)

10.75
(6.82)

SAD >HCSAD

DAS 15.93
(2.17)

6.07
(0.89)

DP >HCDP

PDS 21.82
(9.09)

0.55
(0.69)

PTSD >HCPTSD

STAI-T 46.40
(11.94)

30.49
(5.68)

49.25
(9.62)

29.25
(4.25)

49.65
(10.97)

29.45
(4.92)

35.94
(10.23)

33.53
(8.18)

50.55
(12.16)

30.46
(4.03)

PAT >HC; PD >HCPD; SAD >HCSAD; DP =HCDP;
PTSD >HCPTSD; (PD = SAD = PTSD) > DP

BDI 10.90
(8.56)

1.77
(2.81)

12.20
(6.73)

0.70
(0.70)

10.20
(8.23)

1.75
(3.21)

5.44
(4.34)

3.20
(3.84)

17.73
(11.71)

1.82
(1.33)

PAT >HC; PD >HCPD; SAD >HCSAD; DP =HCDP;
PTSD >HCPTSD; PD = SAD = PTSD; PD >DP

Data are given as mean (standard deviation) unless otherwise indicated.
HC, Healthy controls; PD, panic disorder patients; SAD, social anxiety disorder patients; DP, dental phobia patients; PTSD, post-traumatic stress disorder patients; PAT, all patients;

PAS, Panic and Agoraphobic Scale (Bandelow, 1997); LSAS, Liebowitz Social Anxiety Scale (Stangier & Heidenreich, 2005); DAS, Dental Anxiety Scale (Corah, 1969); PDS, Post-trau-
matic Diagnostic Scale (Foa et al. 1997); STAI-T, State-Trait-Anxiety-Inventory – Trait version (Laux et al. 1981); BDI, Beck Depression Inventory (Hautzinger et al. 1995).

a PAS, BDI and DAS scores were missing of one HCDP: the clinical interview and screening procedure did not reveal any clinical symptoms. Comparisons: gender differences were
calculated by χ2 tests. Other differences were tested with t tests. For demographic data, p < 0.05, no Bonferroni correction was applied in order not to miss possible differences between
groups. For questionnaire data, p < 0.05, Bonferroni corrected at p < 0.005. As expected, symptom severity scores of each patient group differed significantly from scores in the respect-
ive HC group. Average symptom severity in each patient group was mild to severe as categorized in questionnaires’ manuals (Corah, 1969; Bandelow, 1997; Foa et al. 1997; Heimberg
et al. 1999).
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3 mm, gap = 0.3 mm, in plane resolution = 2.26 mm ×
2.26 mm). To minimize susceptibility artifacts in infer-
ior parts of anterior brain areas, the volumes were
tilted approximately 20° from the anterior commis-
sure/posterior commissure line. A shimming field
was applied before functional imaging to further
reduce external magnetic field inhomogeneities. fMRI
data were pre-processed and analysed with
BrainVoyager QX software (version 2.4; Brain
Innovation, The Netherlands) and Matlab (version
8.2, The MathWorks Inc., USA). The first 10 volumes
of each run were discarded from analysis to ensure
steady-state tissue magnetization. First, all volumes
were realigned to the first volume, to minimize arti-
facts due to head movements. No participant showed
excessive head movement (>1 voxel). Further data
pre-processing steps comprised spatial (6 mm full-
width half-maximum isotropic Gaussian kernel) as
well as temporal smoothing (high-pass filter: 10 cycles
in time course; low-pass filter: 2.8 s; linear trend
removal). The anatomical and functional images were
co-registered and normalized to Talairach space
(Talairach & Tournoux, 1988). Volumes were
resampled to a voxel size of 2 × 2 × 2 mm, and slice-
time correction was applied. Multiple linear regres-
sions modelling the signal time course at each voxel
were calculated with adjustment for autocorrelation.
The expected BOLD signal change for each predictor
was modelled with a canonical double γ haemo-
dynamic response function. Predictors of interest
were the two stimulus types: disorder-related and neu-
tral scene. In the first step, voxelwise statistical maps
were generated and the relevant planned contrasts of
predictor estimates (β weights) were computed for
each individual. β Maps for differential activation (dis-
order-related minus neutral) per person were then

exported to Matlab. In the latter step, a group analysis
of these individual contrasts was performed.

The region of interest was the bilateral amygdala
(1 mm dilated), for which local information was
derived from the Automated Anatomical Labeling
atlas included in the Wake Forest University pick
atlas (Tzourio-Mazoyer et al. 2002; Maldjian et al.
2003). The obtained Montreal Neurological Institute
(MNI) coordinates were converted to Talairach space
in Matlab using the ICBM-152 routine proposed by
Lancaster et al. (2007). Obtained peak coordinates
were verified with the Mai atlas (Mai et al. 2004). An
a priori-defined whole-brain mask was used to mask
out non-brain tissue. The watershed algorithm of
Neuroelf (v0.9c; http://neuroelf.net/; i.e. the splitclus-
tercoords function) was used to assess local maxima
of clusters.

For statistical analyses, a cluster-based permutation
(CBP) approach was used, as often suggested
(Bullmore et al. 1999; Hayasaka & Nichols, 2004;
Maris & Oostenveld, 2007; Kriegeskorte et al. 2009;
Eklund et al. 2016). CBP approaches require no
assumptions about the test statistic distribution and
have recently been shown to be more valid than clas-
sical parametric fMRI analyses, and offer precise con-
trol of the false discovery rate (Eklund et al. 2016). In
the first step, we investigated the group effect (all
patients v. all HC) across disorders using the differen-
tial β values (disorder-related v. neutral pictures). In
the second step, differential effects were investigated
by pairwise group (patients, HC) x stimulus set
(PAPS-M, SAPS-M, DEPS-M, TRAPS-M) interactions.
The cluster-level α was Bonferroni-corrected to adjust
for repeated comparisons.

All permutation tests were performed with 1000 per-
mutations (Bullmore et al. 1999; Maris & Oostenveld,

Fig. 1. Anxiety ratings (disorder-related minus neutral) for patients and healthy controls across picture sets (ALL) and for
each set: Panic-related Picture Set Muenster (PAPS-M); Social Anxiety Picture Set Muenster (SAPS-M); Dental Phobia Picture
Set Muenster (DEPS-M); Trauma-related Affective Picture Set Muenster (TRAPS-M). Values are means, with standard errors
represented by vertical bars. For a colour figure, see the online version.
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2007). For each permutation, the individual β maps
(including the emotion effect: disorder-related minus
neutral) were randomly assigned without replacement
to one of the eight experimental groups. Voxel thresh-
old was set at pvoxel < 0.005 to balance between type I
and type II error type (Lieberman & Cunningham,
2009). Cluster mass was calculated by adding all F
values in neighbouring significant voxels. The cluster
mass observed in the contrast of interests was com-
pared with the distribution of the maximal cluster
mass observed in each of the 1000 permutations.
Clusters masses larger or equal to the 95th percentile
of the permutation distribution were considered as
statistically significant clusters (i.e. pcluster < 0.05).

Correlational analyses were conducted to account
for dimensional effects between amygdala activation
clusters of the emotion effect (disorder-related minus
neutral) and scene-induced anxiety, depressive symp-
toms and trait anxiety across all patients. β Weights
of the emotion effect for each patient were normalized
relative to the β weights of the respective HC group.
The mean β weight of the emotion effect of the respect-
ive HC group was subtracted from each patient’s β
value and this difference was divided by the standard
deviation of β weights in the respective HC group. The
resulting normalized β weights were then correlated
with the anxiety-rating scores (disorder-related minus
neutral) across all patients, and with Beck Depression
Inventory (BDI) and State-Trait Anxiety Inventory –
trait version (STAI-T) scores. Bonferroni correction
was applied considering the number of significant
clusters.

Results

Analysis of the main effect of group showed that all
patients compared with all HC showed a stronger
emotion effect (disorder-related > neutral) in the left
central amygdala (peak voxel Talairach coordinates:
x = − 23, y =−7, z =−10, k: 10 voxels, average F:
9.112, maximal F: 10.03, p < 0.05 corrected), right cen-
tral amygdala (peak voxel Talairach coordinates: x =
15, y =−5, z =−6, k: 16 voxels, average F: 9.763, max-
imal F: 12.213, p < 0.05 corrected) and right lateral
amygdala (peak voxel Talairach coordinates: x = 31,
y =−1, z =−16, k: 14 voxels, average F: 9.62, maximal
F: 13.42, p < 0.05 corrected). There were neither signifi-
cant effects for the reversed comparison (HC >
patients), nor any differential effects between patient
groups in the bilateral amygdala. The size of the
emotion effect in the right lateral amygdala cluster cor-
related significantly with anxiety ratings (disorder-
related minus neutral) across all patients (r = 0.349,
p = 0.002, see Fig. 2). No cluster in the amygdala
correlated with BDI and STAI-T. Correlations were

considered as statistically significant if p < 0.016
(Bonferroni-corrected for the three significant clusters
in the amygdala).

Additionally, whole-brain analyses of the main
effect of group yielded significant clusters in middle,
medial and superior frontal regions, dorsal and preg-
enual ACC, midcingulate cortex, thalamus, insula,
brainstem and occipital lobe (see Table 2 and Fig. 3).
There were no significant effects for the reversed com-
parison (HC > patients) nor any differential effects
between patient groups in the whole-brain analysis.
Three whole-brain clusters correlated significantly
with scene-induced anxiety across all patients (cluster
1: r = 0.389, p = 0.001; cluster 3: r = 0.419, p < 0.001; clus-
ter 5: r = 0.294, p = 0.008) and two clusters correlated
with BDI scores (cluster 4: r = 0.338, p = 0.003; cluster
5: r = 0.455, p < 0.001). Correlations were considered as
statistically significant if p < 0.01 (Bonferroni-corrected
for the five significant clusters).

Discussion

The aim of the present study was to investigate neural
correlates of disorder-related threat processing across
PD, SAD, DP and PTSD, with all patients free of psy-
chiatric medication. To trigger disorder-related visual
processing, we presented ecologically valid stimuli
tailor-made for each disorder. Compared with HC,
enhanced neural correlates of disorder-related process-
ing across PD, SAD, DP and PTSD were found in dis-
tinct clusters in the bilateral amygdala. Emotion effects
(always referring to disorder-related > neutral) in the
lateral amygdala correlated significantly with subject-
ive level of stimulus-induced anxiety across all
patients. Whole-brain analysis yielded further common
neural correlates in middle, medial, superior frontal
and (para-)limbic regions, in the brainstem and in the
occipital lobe, encompassing the most prominent cir-
cuits associated with anxiety (Davidson, 2002; Etkin,
2010; Sylvester et al. 2012; Duval et al. 2015; Tovote
et al. 2015). The present analyses yielded no differential
effects between patient groups.

The strong emotion effect in the bilateral central and
right lateral amygdala across all patients v. HC sug-
gests an involvement of the amygdala in disorder-
related threat processing common to all disorders
tested here. The amygdala is considered a key element
in the human alarm system and has been linked to con-
cepts of salience, attention and vigilance (Davis &
Whalen, 2001; Phelps & LeDoux, 2005). Facilitating
attention to, and perception of, incoming emotional
information, the amygdala can be considered a rele-
vance detector (Phelps & LeDoux, 2005; Sergerie et al.
2008; Janak & Tye, 2015). The lateral amygdala,
described as the interface of sensory input from the
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cortex and thalamus, functions as a ‘gatekeeper of the
amygdala’ (LeDoux, 2007, p. R869), assigning emo-
tional value to stimuli and relaying information to
the central nucleus of the amygdala via direct and
indirect interconnections (Pitkänen et al. 1997; Ball
et al. 2007; LeDoux, 2007; Fujieda et al. 2015). The cen-
tral nucleus is considered important for vigilance
potentiation in response to relevant stimuli and control
of bodily reactions. The latter is, for example, based on
its projections to the brainstem, which in turn evokes
autonomic threat responses and initiates the release

of stress hormones (Kim et al. 2011; Shin, 2012).
Furthermore, the emotion effect in the lateral amyg-
dala correlated with the subjective level of stimuli-
induced anxiety across all patients, which fits with
the lateral amygdala’s function as a gateway for salient
sensory information, initiating further processes that
result in behavioural and autonomic fear expression.
Emotion effects in the amygdala were correlated with
scene-induced anxiety but correlated neither with
symptoms of depression nor with trait anxiety. This
underlines the amygdala’s specific role in the

Fig. 2. Shared brain activation (disorder-related minus neutral) in the bilateral amygdala. Bar graphs are shown for patients
and healthy controls across picture sets (ALL) and for each set: Panic-related Picture Set Muenster (PAPS-M); Social Anxiety
Picture Set Muenster (SAPS-M); Dental Phobia Picture Set Muenster (DEPS-M); Trauma-related Affective Picture Set Muenster
(TRAPS-M). Scatterplot displays correlation of activation in the right lateral amygdala and anxiety ratings (disorder-related
minus neutral). L, Left; R, right; PD, panic disorder; SAD, social anxiety disorder; DP, dental phobia; PTSD, post-traumatic
stress disorder. Values are means, with standard errors represented by vertical bars. All values displayed at p < 0.05
(corrected).
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Table 2. Significant hyperactivations for disorder-related v. neutral scenes across all patients relative to healthy controls revealed by whole-
brain analysis in five clusters (p4 0.05 corrected)a

Region Lateralization

Talairach coordinates
of peak voxel

F value maximum F value average kx y z

Cluster 1 R 29 −1 48 19.969 10.798 515
Middle frontal gyrus R 29 −1 48 19.969 11.047 271
Precentral gyrus R 51 −7 42 18.618 10.783 85
Superior frontal gyrus R 21 3 54 16.781 11.376 34
Middle frontal gyrus R 37 11 46 14.624 10.019 57
Precentral gyrus R 35 11 30 14.323 10.468 50
Middle frontal gyrus R 51 5 32 11.939 9.401 18

Cluster 2 L −33 −75 26 14.779 9.992 257
Superior occipital gyrus L −33 −75 26 14.779 9.656 186
Middle temporal gyrus L −41 −75 22 14.263 11.239 40
Precuneus L −27 −73 34 14.224 10.400 31

Cluster 3 L/R −43 11 46 24.711 11.612 2833
Middle frontal gyrus L −43 11 46 24.711 11.351 594
Middle frontal gyrus L −29 27 46 23.892 13.118 482
Superior frontal gyrus L −23 33 46 23.126 19.150 20
Middle frontal gyrus L −27 21 38 22.287 15.592 41
Middle frontal gyrus L −23 3 54 22.124 11.126 272
Middle frontal gyrus L −41 21 44 22.076 19.064 21
Superior frontal gyrus L −5 19 58 19.460 11.464 513
Middle frontal gyrus L −37 1 54 18.717 14.587 54
Midcingulate gyrus R 1 9 36 18.026 10.199 211
Anterior cingulate gyrus R 3 21 18 17.733 11.064 45
Anterior cingulate gyrus L −3 29 22 17.347 10.617 67
Midcingulate gyrus L −5 19 38 16.674 12.318 34
Superior frontal gyrus R 9 23 62 15.502 9.905 79
Superior frontal gyrus L −9 55 34 14.798 10.129 98
Medial frontal gyrus L −1 1 62 13.757 10.351 73
Medial frontal gyrus L −5 45 40 13.187 10.667 26
Superior frontal gyrus L −3 33 50 13.148 10.103 29

Cluster 4 L −9 43 10 27.031 11.671 587
Anterior cingulate gyrus L −9 43 10 27.031 11.731 392
Middle frontal gyrus L −29 49 0 23.114 11.249 106
Medial frontal gyrus L −3 59 20 16.578 13.359 44
Medial frontal gyrus L −13 51 2 14.713 10.873 27
Anterior cingulate gyrus L −5 35 −4 13.064 9.954 17

Cluster 5 L/R −3 −31 0 27.248 11.085 1570
Midbrain L −3 −31 0 27.248 11.481 231
Brainstem L −9 −27 −24 23.549 11.245 138
Thalamus L −7 −5 16 21.219 10.918 295
Putamen L −23 1 −2 20.174 10.810 147
Caudate L −17 15 12 20.000 11.126 135
Insula L −33 9 −6 19.512 10.693 120
Insula L −35 5 0 18.341 13.534 23
Caudate R 15 3 12 17.789 10.512 136
Brainstem R 1 −31 −20 17.634 12.936 32
Caudate L −9 3 2 17.491 12.447 41
Parahippocampal gyrus L −15 −31 −8 17.321 11.349 65
Inferior frontal gyrus L −31 27 −6 16.382 10.908 93
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weighting of disorder-related information and sug-
gests scene-induced anxiety to be most closely related
to emotion effects in the amygdala. The present amyg-
dala findings might also underline the high emotional
value of the disorder-related tailor-made stimuli for
each disorder and thereby be the neural signature of
stimulus threat relevance. Of note, neural correlates
of emotion effects are based on implicit stimulus pro-
cessing while post-scanning rating data rely on explicit
emotional processing. Thus, correlational data reveal a
relationship of implicit and explicit processing.

Altered amygdala activation has not been consist-
ently reported in studies that focus on one disorder
only (Etkin & Wager, 2007 for PD; Shin & Liberzon,
2010 for PTSD; Del Casale et al. 2012 for specific pho-
bia; Schienle et al. 2012 for specific phobia; Ipser et al.
2013 for specific phobia; Brühl et al. 2014 for SAD).
These inconsistencies have been attributed to a wide
range of study features: block- v. even-related designs
(Caseras et al. 2010), task properties (Straube et al.
2006), possible habituation effects (Taylor et al. 1998;
Fischer et al. 2003), use of psychiatric medication
(Brühl et al. 2014) or fine differences in characteristics
of emotional stimuli (Zald, 2003; Carlson et al. 2011).
Furthermore, differences between disorders have
been suggested, with less frequent amygdala and
insula hyperactivation in PD and GAD than in PTSD,
SAD and specific phobia (Etkin & Wager, 2007; Shin
& Liberzon, 2010; Duval et al. 2015). However, to inves-
tigate true differences between disorders, it is neces-
sary to control for variables such as task, stimulation
procedure, imaging modality and sample characteris-
tics. The present study used this approach and
revealed a threat effect across disorders in the amyg-
dala in response to highly relevant disorder-related
pictures.

Besides amygdala findings, whole-brain analysis
yielded large emotion effects in middle, medial and
superior frontal regions and in the pregenual and dor-
sal ACC and midcingulate cortex when comparing all

patients with HC. This common activation in patients
fits with earlier studies that reported co-activation of
the mPFC and ACC, and might mirror the shared
and altered mechanism of generation, evaluation and
regulation of emotion across PD, SAD, DP and PTSD
(Ochsner & Gross, 2005; Kober et al. 2008; Etkin et al.
2011). It could also constitute a neural correlate of
shared phenomenological features among patients
such as misinterpretation of ambiguous stimuli, over-
interpretation of threat signals, and conscious patho-
logical threat appraisal (Raczka et al. 2010; Maier
et al. 2012; Kalisch & Gerlicher, 2014).

(Para-)limbic emotion effects in whole-brain analysis
were for example revealed in the thalamus and insula.
As the thalamus is associated with initial processing
and relaying sensory information, the increased emo-
tion effect across patients in the present study might
reflect elevated visual processing of disorder-related
scenes, and thus indicate alterations in early phases
of fear processing (Jones, 2003; LeDoux, 2003). The
insula is assumed to mediate alertness and awareness
to salient multimodal sensory signals (Critchley et al.
2004; Paulus & Stein, 2006; Nagai et al. 2007; Craig,
2009; Sterzer & Kleinschmidt, 2010). The integration
of these signals goes hand in hand with interoceptive
processing, which provides the basis for the subjective
experience of feelings representing a crucial process in
anxiety disorders (Critchley et al. 2004; Nagai et al.
2007; Menon & Uddin, 2010). In line with this, the
reported elevated emotion effect during disorder-
related processing in the insula might be a correlate
of increased interoceptive processing, a mechanism
shared across PD, SAD, DP and PTSD, although
specific differences with respect to interoception may
still exist between these disorders.

Whole-brain analysis also yielded emotion effects in
the brainstem, suggesting alterations in this structure
to be a correlate of disorder-related processing across
PD, SAD, DP and PTSD. The brainstem, considered
the heart of the ‘stress circuitry’ and part of the

Table 2 (cont.)

Region Lateralization

Talairach coordinates
of peak voxel

F value maximum F value average kx y z

Inferior frontal gyrus L −23 9 −16 15.181 10.586 29
Thalamus R 5 −9 14 14.516 10.518 25
Brainstem L −9 −11 −8 12.398 10.175 38

k, Number of voxels; R, right; L, left.
a The watershed algorithm of Neuroelf (v0.9c; http://neuroelf.net/, i.e. the splitclustercoords function) was used to assess

local maxima of clusters.
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Fig. 3. Shared brain activation (disorder-related minus neutral) across disorders as revealed in whole-brain analysis. Each row
presents results for one cluster (whole cluster presented in three dimensions). Selected local maxima (two dimensions) are
presented with corresponding bar graphs. Bar graphs are shown for patients and healthy controls across picture sets (ALL)
and for each set: Panic-related Picture Set Muenster (PAPS-M); Social Anxiety Picture Set Muenster (SAPS-M); Dental Phobia
Picture Set Muenster (DEPS-M); Trauma-related Affective Picture Set Muenster (TRAPS-M). MFG, Middle frontal gyrus; SOG,
superior occipital gyrus; dACC, dorsal anterior cingulate cortex; mPFC, medial prefrontal cortex; pgACC, pregenual anterior
cingulate cortex. Values are means, with standard errors represented by vertical bars. All values displayed at p < 0.05
(corrected). For illustration purposes MRIcroGL was used (http://www.mccauslandcenter.sc.edu/mricrogl/).
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neuroendocrine stress axis, is thought to play a major
role in emotional stress responses (Itoi & Sugimoto,
2010). Brainstem activation is often addressed in PD lit-
erature, since PD is particularly characterized by an
exaggerated bodily fear reaction during panic attacks.
However, bodily fear symptoms evoked by altered
autonomic activity and neuroendocrine functioning
play a role in all the investigated anxiety disorders
(e.g. during a performance situation in SAD)
(Sullivan et al. 1999). It is not yet fully understood
how brainstem structures modify the perception and
processing of stressful and emotional events. Our
finding suggests that disorder-related stimulus pro-
cessing targets a shared mechanism based on brain-
stem functioning most probably related to changes in
the homeostatic alarm system.

The finding of increased activation to threat across
disorders in the occipital lobe supports the idea of
alterations in sensory processing areas (Sehlmeyer
et al. 2009; de Carvalho et al. 2010; Del Casale et al.
2012; Ipser et al. 2013; Brühl et al. 2014), and the notion
that basic, initial disorder-related processing is a dys-
functional mechanism shared across anxiety disorders
in response to visual threat.

Remarkably, our study which used tailor-made dis-
order-related stimuli for each disorder and the same
task across all disorders revealed no differential effects
between disorders. We interpret the absence of statis-
tically significant differential effects and the presence
of shared effects as neuronal correlates of phenomeno-
logical aspects common to PD, SAD, DP and PTSD,
rather than as correlates of disorder-specific aspects,
such as the content of concerns (e.g. fear of negative
evaluation in SAD v. the fear of bodily symptoms in
PD) or feared situations (e.g. trauma-related situations
in PTSD v. dental treatment in DP). Speaking in terms
of RDoC, disorder-related visual processing might
thus be regarded an intermediate phenotype across
the four disorders (Cuthbert, 2014).

There are no previous studies that investigated
responses to disorder-related visual threat across mul-
tiple anxiety disorders. Reviews and meta-analyses
have drawn an inconsistent picture regarding neural
circuitries in anxiety-related disorders (Rauch et al.
2003; Etkin & Wager, 2007; Craske et al. 2009; Shin &
Liberzon, 2010; Holzschneider & Mulert, 2011;
Fredrikson & Faria, 2013; Duval et al. 2015; Taylor &
Whalen, 2015). Meta-analyses including SAD, specific
phobia and PTSD studies suggested a potentially
shared neural basis of disorders, but also noted differ-
ences between disorders (Etkin & Wager, 2007;
Fredrikson & Faria, 2013). Taking large heterogeneity
between included studies into account, caution is war-
ranted when drawing comparative conclusions across
disorders. As meta-analyses have not included PD

patients (Etkin & Wager, 2007; Fredrikson & Faria,
2013), the present study contributes substantially to
the knowledge about neural correlates of emotional
processing across multiple psychiatric disorders.

Our study controls for task, design, procedure and
operationalization of disorder-related processing. Due
to its large sample size (n = 134) of matched patients
and HC, our study has high statistical power, which
makes the detection of reliable neural effects more
likely than in studies with smaller sample sizes.
However, caution is warranted since patient samples
differ in size, with the DP (n = 16) and PTSD (n = 11)
patient samples being rather small. The small size of
the PTSD sample is due to the difficulty in recruiting
unmedicated PTSD patients. Thus, to increase sensitiv-
ity for differential effects, future studies should imple-
ment larger samples within each disorder.
Furthermore, our PTSD sample comprised only
women suffering from one specific (but frequent)
type of trauma. The present study uses four novel dis-
order-related stimulus sets, which we deem a fruitful
approach also for further studies to target more dis-
order-relevant psychological processes (e.g. tasks
related to automatic processing, interference, atten-
tional bias).

In conclusion, using disorder-related stimuli high in
ecological validity, the same procedures and task,
implementing CBP statistics and comparing a large
sample of medication-free PD, SAD, DP and PTSD
patients with matched HC, we found evidence for
shared neural correlates, including the bilateral amyg-
dala, wide frontal and (para-)limbic regions as well as
the brainstem and occipital lobe. Most strikingly, the
elevated emotion effect in the lateral amygdala corre-
lated with subjective levels of anxiety, underlining
the central role of the amygdala in the pathology of
all four disorders. Our findings suggest that basic
mechanisms are shared across disorders, despite their
different diagnostic profiles.
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