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This paper carries out stochastic comparisons of series and parallel systems with indepen-
dent and heterogeneous components in the sense of the hazard rate order, the reversed
hazard rate order, and the likelihood ratio order. The main results extend and strengthen
the corresponding ones by Misra and Misra [18] and by Ding, Zhang, and Zhao [8]. Mean-
while, the results on the hazard rate order of parallel systems and the reversed hazard order
of series systems serve as nice supplements to Theorem 16.B.1 of Boland and Proschan [4]
and Theorem 3.2 of Nanda and Shaked [20], respectively.

1. INTRODUCTION

As one popular fault-tolerant structure in reliability theory, a k-out-of-n system functions
iff at least k of its components are working. In other words, k-out-of-n system fails only
when there are at least (n − k + 1) failed ones among n components. In particular, the n-
out-of-n system and the 1-out-of-n system are known as series system and parallel system,
respectively. The lifetime of a k-out-of-n system can be represented as the (n − k + 1)th
order statistic of its component lifetimes. Specifically, lifetimes of series and parallel systems
correspond to the smallest and largest order statistics, respectively. In the literature of
the past three decades, there is a large of research articles on stochastic comparisons of
k-out-of-n systems with independent and identical components. For a detailed summary,
one may refer to the well-known monograph Shaked and Shanthikumar [24]. In contrast,
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for k-out-of-n systems with components having independent but not necessarily identically
distributed lifetimes, going with complicated nature of distribution theory, only a few results
are available. Among which, due to the simple structures, series and parallel systems with the
underlying components’ lifetimes having some specific distributions such as exponential and
gamma received much attention. For example, Boland, El-Neweihi, and Proschan [3], Bon
and Pǎltǎnea [5], Dykstra, Kochar, and Rojo [9], Joo and Mi [13], Khaledi, Farsinezhad,
and Kochar [14], Khaledi and Kochar [15], Kochar and Rojo [16], Kochar and Xu [17],
Navarro and Shaked [21], Pledger and Proschan [22], Proschan and Sethuraman [23], Zhao
and Balakrishnan [27], Zhao, Li, and Balakrishnan [28] and the references therein.

The purpose of this paper is to further investigate the problem of comparing series and
parallel systems with independent and heterogeneous components. We present some results
on stochastic comparisons in terms of several stochastic orders. In Section 2, definitions
of some stochastic orders are recalled, and some recent developments on ordering series
and parallel systems with heterogenous components are reviewed. The hazard rate order of
parallel systems and the reversed hazard rate order of series systems are given in Section 3,
these results extend several known results in the literature. Section 4 presents some results
on likelihood ratio order, which strengthen the recent results in the literature.

Throughout this paper, “increasing” and “decreasing” mean “non-decreasing” and
“non-increasing”, respectively. Unless otherwise stated, all the random variables considered
in this paper will be assumed to be non-negative.

2. PRELIMINARIES

For the sake of handy reference, this section first recalls some most pertinent notations
of stochastic orders to be used in the sequel, and then review the recent development on
stochastic comparison of series and parallel systems.

2.1. Some Stochastic Orders

Let FX(t), FX(t) and fX(t) be the distribution function, survival function and density
function of random variable X, respectively. The hazard rate function and the reversed
hazard rate function of X are, respectively, defined as rX(t) = fX(t)/FX(t) and r̃X(t) =
fX(t)/FX(t). Denote by mX(t) = E(X − t|X > t) the mean residual lifetime function of X.
Then, X is said to be smaller than Y in the

(i) likelihood ratio order (denoted by X ≤lr Y or FX ≤lr FY ) if fY (t)/fX(t) is increasing
in t;

(ii) hazard rate order (denoted by X ≤hr Y or FX ≤hr FY ) if rX(t) ≥ rY (t) for all t ∈ R,
or equivalently, FY (t)/FX(t) is increasing in t;

(iii) reversed hazard rate order (denoted by X ≤rh Y or FX ≤rh FY ) if r̃X(t) ≤ r̃Y (t) for
all t ∈ R, or equivalently, FY (t)/FX(t) is increasing in t;

(iv) mean residual life order (denoted by X ≤mrl Y or FX ≤mrl FY ) if mY (t) ≥ mX(t)
for all t ∈ R+.

The following implications are well known:

X ≤rh Y ⇐= X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤mrl Y.

For more details of these stochastic orders and their inter-relationship, one may refer to
Müller and Stoyan [19] and Shaked and Shanthikumar [24].
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2.2. Recent Advances in the Literature

From now on, we assume that X1, . . . , Xn be independent and absolutely continuous random
variables, which are not necessarily of identical probability distribution. Independent of the
vector of (X1, . . . , Xn), let Y1, . . . , Ym be another sequence of independent and absolutely
continuous random variables. Denote by Tk(X1, . . . , Xn) the lifetime of a k-out-of-n system
composed of components with lifetimes X1, . . . , Xn. To avoid ambiguity, let us state the
known results in the literature in two separate groups.

2.2.1. Systems with two components. Suppose Xi and Yi have the exponential lifetimes
with respective hazard rates λi and γi, i = 1, 2. Joo and Mi [13] showed that

γ1 ≤ min{λ1, λ2} =⇒ T1(X1,X2) ≤hr T1(X1, Y1). (2.1)

Afterwards, Zhao and Balakrishnan [27] further strengthened the hazard rate order in (2.1)
to the likelihood ratio order. On the other hand, Da, Ding, and Li [6] generalized the
exponential distribution in (2.1) to any life distribution as below,

X1 ≤hr (≤mrl)X2 ≤hr (≤mrl)Y1 =⇒ T1(X1,X2) ≤hr (≤mrl)T1(X1, Y1). (2.2)

Also, a similar result for the likelihood ratio order can be found in Example 1.C.36 of Shaked
and Shanthikumar [24] as follows:

X1 ≤lr X2 ≤lr Y1 =⇒ T1(X1,X2) ≤lr T1(X1, Y1). (2.3)

Further, Misra and Misra [18] extended (2.2) and (2.3) to

Xi ≤hr (≤mrl,≤lr)Y1, i = 1, 2 =⇒ T1(X1,X2) ≤hr (≤mrl,≤lr)T1(X1, Y1). (2.4)

Meanwhile, they also proved that

Xi ≥rh (≥lr)Y1, i = 1, 2 =⇒ T2(X1,X2) ≥rh (≥lr)T2(X1, Y1). (2.5)

2.2.2. Systems with n ≥ 2 components. Recently, Ding, Zhang, and Zhao [8] turned
their attention to comparing systems of n component rather than systems of only two
components. They showed that

Xi ≤hr (≥rh)Y1, i = 1, . . . , n =⇒ Tk(X1, . . . , Xn) ≤hr (≥rh)Tk(Y1,X2, . . . , Xn), (2.6)

for k = 1, . . . , n, and

Xi ≤mrl Y1, i = 1, . . . , n =⇒ T1(X1, . . . , Xn−1,Xn) ≤mrl T1(Y1,X2, . . . , Xn). (2.7)

Ding et al. [8] also considered the likelihood ratio order of series and parallel systems under
the framework of multiple-outlier model. Suppose Xi

st= X1 for i = 1, . . . , m, Xi
st= Xn for

i = m + 1, . . . , n, and Yi
st= Ym for i = 1, . . . , m. They built

X1 ≤lr Ym and Xn ≤lr Ym =⇒ T1(X1, . . . , Xn) ≤lr T1(Y1, . . . , Ym,Xm+1, . . . , Xn)
(2.8)

and

X1 ≥lr Ym and Xn ≥lr Ym =⇒ Tn(X1, . . . , Xn) ≥lr Tn(Y1, . . . , Ym,Xm+1, . . . , Xn).
(2.9)

Apparently, results in (2.6)–(2.9) strengthen and generalize those in (2.4) and (2.5).
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This paper further studies the series and parallel systems with n components. For
any m = 1, . . . , n − 1, it is proved that if Xi ≤hr Yj for all i = 1, . . . , n and j = 1, . . . , m,
then

T1(X1, . . . , Xn) ≤hr T1(Y1, . . . , Ym,Xm+1, . . . , Xn), (2.10)

and if Xi ≥rh Yj for all i = 1, . . . , n and j = 1, . . . , m, then

Tn(X1, . . . , Xn) ≥rh Tn(Y1, . . . , Ym,Xm+1, . . . , Xn). (2.11)

Clearly, the results in (2.10) and (2.11) essentially generalize the corresponding ones in
(2.6) and (2.7) through considering more than one spare for series and parallel systems,
respectively. In addition, for m = 1, we also obtain the following results: if Xi ≤lr Y1 for
i = 1, . . . , n, then

T1(X1, . . . , Xn) ≤lr T1(Y1,X2, . . . , Xn), (2.12)

and if Xi ≥lr Y1 for i = 1, . . . , n, then

Tn(X1, . . . , Xn) ≥lr Tn(Y1,X2, . . . , Xn). (2.13)

Apparently, (2.12) and (2.13) improve the ones in (2.8) and (2.9), respectively.

3. HAZARD RATE ORDER AND REVERSED HAZARD RATE ORDER

Let X1, . . . , Xn and Y1, . . . , Ym be two sets of independent and absolutely continuous
random variables, for every i, Xi and Yi have survival functions F i and Gi, and distri-
bution functions Fi and Gi, respectively. Recall that Tn(X1, . . . , Xn) and T1(X1, . . . , Xn)
represent the lifetimes of series and parallel systems with vector of lifetimes of compo-
nents (X1, . . . , Xn), respectively. Likewise, denote by Tn(Y1, . . . , Ym,Xm+1, . . . , Xn) and
T1(Y1, . . . , Ym,Xm+1, . . . , Xn) the lifetimes of resulting series and parallel systems by
replacing (X1, . . . , Xm) with (Y1, . . . , Ym), respectively.

In the situation with m = n, according to Theorem 3.1 below, a k-out-of-n system with
heterogeneous components could attain smaller hazard rate through decreasing the hazard
rates of all components to the level no larger than the lowest hazard rate.

Theorem 3.1 (Boland and Proschan [1], Theorem 16.B.1): Let X1, . . . , Xn and Y1, . . . , Yn

be two groups of independent and (not necessarily identically distributed) absolutely
continuous random variables, all with support (a, b). If Xi ≤hr Yj for all i and j, then,

Tk(X1, . . . , Xn) ≤hr Tk(Y1, . . . , Yn), for k = 1, 2, . . . , n.

Naturally, one may wonder whether the k-out-of-n system may also attain smaller
hazard rate by only decreasing the hazard rates of a portion of working components in the
system. This prompts us to build Theorem 3.2, which serves as a positive answer for parallel
systems.

The main theorems of this section rely on the following lemma.
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Lemma 3.1 (Ding and Li [7], Lemma 3): Let g1, g2 and g be non-negative continuous
functions such that both

g1(t)
g2(t)

and
g(t)

g2(t) − g1(t)

are increasing in t, and g1 and g2 have no crossing. Then,

g(t) + g1(t)
g(t) + g2(t)

is also increasing in t.

We are now ready to state the main results.

Theorem 3.2: For n > m ≥ 0, if Xi ≤hr Yj for all i = 1, 2, . . . , n and j = 1, . . . , m, then,

T1(X1, . . . , Xn) ≤hr T1(Y1, . . . , Ym,Xm+1, . . . , Xn).

Proof: Denote, for t ≥ 0 and i = 1, 2, . . . , n,

Xi(t) =

{
1, if Xi > t,

0, otherwise.

Then, we only need to prove the increasing property in t ∈ R+ of the following function:

P(T1(Y1, . . . , Ym,Xm+1, . . . , Xn) > t)
P(T1(X1, . . . , Xn) > t)

=
P
(∑n

i=m+1 Xi(t) ≥ 1
)

+ P
(∑n

i=m+1 Xi(t) = 0
)
P (
∑m

i=1 Yi(t) ≥ 1)
P
(∑n

i=m+1 Xi(t) ≥ 1
)

+ P
(∑n

i=m+1 Xi(t) = 0
)
P (
∑m

i=1 Xi(t) ≥ 1)

=
P
(∑n

i=m+1 Xi(t) ≥ 1
)

+ P (
∑m

i=1 Yi(t) ≥ 1)
∏n

i=m+1 Fi(t)
P
(∑n

i=m+1 Xi(t) ≥ 1
)

+ P (
∑m

i=1 Xi(t) ≥ 1)
∏n

i=m+1 Fi(t)
.

By Theorem 3.1, it holds that

P (
∑m

i=1 Yi(t) ≥ 1)
∏n

i=m+1 Fi(t)
P (
∑m

i=1 Xi(t) ≥ 1)
∏n

i=m+1 Fi(t)
=

P (
∑m

i=1 Yi(t) ≥ 1)
P (
∑m

i=1 Xi(t) ≥ 1)
=

P(T1(Y1, . . . , Ym) > t)
P(T1(X1, . . . , Xm) > t)

is increasing in t ∈ R+. Moreover, since T1(Y1, . . . , Ym) ≥hr T1(X1, . . . , Xm) implies

T1(Y1, . . . , Ym) ≥st T1(X1, . . . , Xm),

we then have the following inequality, for all t ≥ 0,

P

(
m∑

i=1

Yi(t) ≥ 1

)
n∏

i=m+1

Fi(t) ≥ P

(
m∑

i=1

Xi(t) ≥ 1

)
n∏

i=m+1

Fi(t).
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Thus, according to Lemma 3.1, it suffices to show that

P
(∑n

i=m+1 Xi(t) ≥ 1
)

[P (
∑m

i=1 Yi(t) ≥ 1) − P (
∑m

i=1 Xi(t) ≥ 1)]
∏n

i=m+1 Fi(t)

=
1

1 − P(∑m
i=1 Xi(t)≥1)

P(∑m
i=1 Yi(t)≥1)

P
(∑n

i=m+1 Xi(t) ≥ 1
)

P (
∑m

i=1 Yi(t) ≥ 1)
∏n

i=m+1 Fi(t)

=
1

1 − P(∑m
i=1 Xi(t)≥1)

P(∑m
i=1 Yi(t)≥1)

∑n
i=m+1 F i(t)

∏i−1
j=m+1 Fj(t)[∑m

l=1 Gl(t)
∏l−1

j=1 Gj(t)
]∏n

i=m+1 Fi(t)

=
1

1 − P(∑m
i=1 Xi(t)≥1)

P(∑m
i=1 Yi(t)≥1)

n∑
i=m+1

F i(t)∑m
l=1 Gl(t)

∏l−1
j=1 Gj(t)

· 1∏n
j=i Fj(t)

is decreasing in t ∈ R+, here, conventionally, we denote

0∏
i=1

Gi(t) =
m−1∏
i=m

Fi(t) = 1, for any t ≥ 0.

Since Xi ≤hr Yj for all i = m + 1, . . . , n and j = 1, . . . , m, it holds that

F i(t)∑m
l=1 Gl(t)

∏l−1
j=1 Gj(t)

=
1∑m

l=1
Gl(t)

F i(t)

∏l−1
j=1 Gj(t)

is decreasing in t ∈ R+. This completes the proof. �

Theorem 3.2 extends both (2.4) by Misra and Misra [18] and (2.6) by Ding et al. [8]
in the sense of enhancing a parallel system through improving more than one component.
It is still an open problem whether a general k-out-of-n system may be enhanced in such a
manner.

As a consequence of Theorems 3.1 and 3.2, Corollary 3.1 follows immediately.

Corollary 3.1: If Xi ≤hr Y1 ≤hr . . . ≤hr Yn for all i = 1, . . . , n, then, for k = 1, . . . , n,

T1(X1, . . . , Xn) ≤hr . . . ≤hr T1(Y1, . . . , Yk,Xk+1, . . . , Xn) ≤hr . . . ≤hr T1(Y1, . . . , Yn).

Inspired by Theorems 3.1 and 3.2, we shall consider to improve a k-out-of-n system
through replacing the m (0 ≤ m ≤ n) “weakest” components. It should be remarked here
that the reversed hazard rate order had been built for the case with m = n as below.

Theorem 3.3 (Nanda and Shaked [20], Thm. 3.2): Let X1, . . . , Xn and Y1, . . . , Yn be two
set of independent (not necessarily identically distributed) random variables, all are
absolutely continuous with support (a, b). If Xi ≥rh Yj for all i and j, then

Tk(X1, . . . , Xn) ≥rh Tk(Y1, . . . , Yn) for k = 1, 2, . . . , n.

Note that min{X1,X2, . . . , Xn} = (max{(1/X1), . . . , (1/Xn)})−1, for positive random
variables X1, . . . , Xn, by Theorem 1.B.41 in Shaked and Shanthikumar [24], next theorem
follows from Theorem 3.2, dealing with series systems in the situation that n > m ≥ 1.
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Theorem 3.4: For n > m ≥ 0, if Xi ≥rh Yj for all i = 1, 2, . . . , n and j = 1, . . . , m, then,

Tn(X1, . . . , Xn) ≥rh Tn(Y1, . . . , Ym,Xm+1, . . . , Xn)

The reversed hazard rate orders of series systems in (2.5) and (2.6), due to Misra and
Misra [18] and Ding et al. [8], respectively, may be viewed as special cases of Theorem 3.4
in the sense that they actually concern only one spare.

Analogously, the following corollary is an immediate consequence of Theo-
rems 3.3 and 3.4.

Corollary 3.2: If Y1 ≤rh . . . ≤rh Yn ≤rh Xi for all i = 1, . . . , n, then,

Tn(X1, . . . , Xn) ≥rh . . . ≥rh Tn(X1, . . . , Xk, Yk+1, . . . , Yn) ≥rh . . . ≥rh Tn(Y1, . . . , Yn),

for k = 1, . . . , n.

It is still an open problem whether Theorems 3.2 and 3.4 may be extended to a general
k-out-of-n system. The following two examples seem to drop a hint of the positive answer.

Example 3.1: Set, for t ≥ 0,

rX1(t) = 0.2t + 0.8, rX2(t) = 0.4t + 0.6, rX3(t) = 0.6t + 0.5, rX4(t) = t + 0.4,

and

rY1(t) = 0.1t + 0.4, rY2(t) = 0.15t + 0.35, rY3(t) = 0.2t + 0.3.

Evidently, rYi
(t) ≤ rXj

(t), that is, Yi ≥hr Xj for i = 1, 2, 3 and j = 1, 2, 3, 4. While there
exists once change of sigh of difference of hazard rate functions rXi

(t) − rXj
(t) and rYi

(t) −
rYj

(t) for i < j from ‘+′ to ‘−′.
As is seen in Figure 1(a), the hazard rate of the lifetime T2(X1,X2,X3,X4) of a

2-out-of-4 system lies above that of T2(Y1, Y2, Y3,X4). That is, T2(X1,X2,X3,X4) ≤hr

T2(Y1, Y2, Y3,X4).

Example 3.2: Set, for t ≥ 0,

r̃X1(t) =
10.4

e0.8t − 1
, r̃X2(t) =

7.2
e0.6t − 1

, r̃X3(t) =
2.2

e0.2t − 1
, r̃X4(t) =

1
e0.1t − 1

,

and

r̃Y1(t) =
10

et − 1
, r̃Y2(t) =

4
e0.8t − 1

.

One may easily verify that there must be once change of sign of difference of reversed hazard
rate functions r̃Xi

(t) − r̃Xj
(t) and r̃Yi

(t) − r̃Yj
(t) for i < j from “+” to “−”. Moreover,

r̃Xi
(t) ≥ r̃Yj

(t) for t ≥ 0, i.e, Xi ≥rh Yj for i = 1, 2, 3, 4 and j = 1, 2.
As shown in Figure 1(b), the reversed hazard rate of the lifetime T3(X1,X2,X3,X4) of

one 3-out-of-4 system lies above that of T3(Y1, Y2, Y3,X4), implying T3(X1,X2,X3,X4) ≥rh

T3(Y1, Y2,X3,X4).
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Figure 1. (Color online) Hazard rate and reversed hazard rate of k-out-of-n sys-
tems (a) T2(X1,X2,X3,X4) and T2(Y1, Y2, Y3,X4) and (b) T3(X1,X2,X3,X4) and
T3(Y1, Y2,X3,X4).

4. LIKELIHOOD RATIO ORDER

Along the same line in the preceding section, we pursue the same problem in terms of
the likelihood ratio order in this section, and the concerned k-out-of-n systems have only
one spare. For convenience, let Y be lifetime of the spare with probability density g(t),
distribution function G(t) and survival function G(t), and is independent of X1, . . . , Xn.

A key tool to be used in deriving the main results in this section is the theory of
permanent. One may refer to Bapat and Beg [1], Bapat and Kochar [2], Hu, Lu, and
Wen [10], Hu, Wang, and Zhu [11], and Wen, Lu, and Hu [26] for more related topics
on permanent.

Let A = (aij) is an n × n matrix, then the permanent of A is defined as
∑

σ

∏n
i=1 aiσ(i),

where the summation is taken over all permutations σ = (σ(1), . . . , σ(n)) of (1, . . . , n). If
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a1, . . . ,an are vectors in R
n, denote by [a1, . . . ,an] the permanent of the n × n matrix

(a1, . . . ,an), and by [a1, . . . ,an−1](i) the permanent of the matrix by deleting row i of
[a1, . . . ,an−1]. The permanent [

a1︸︷︷︸
r1

, an︸︷︷︸
r2

, . . .
]

is obtained by taking r1 copies of a1, r2 copies of a2, and so on. If ri equals 1, then it is
omitted in the notation above. If ri = 0, then it is understood that a i does not appear in
the permanent. If ri < 0, for some i, the permanent is defined to be zero.

Denote

f (t) =

⎛
⎜⎝ f1(t)

...
fn−1(t)

⎞
⎟⎠ , f ′(t) =

⎛
⎜⎝ f ′

1(t)
...

f ′
n−1(t)

⎞
⎟⎠ , F (t) =

⎛
⎜⎝ F1(t)

...
Fn−1(t)

⎞
⎟⎠ , F (t) =

⎛
⎜⎝ F 1(t)

...
Fn−1(t)

⎞
⎟⎠ .

For the sake of convenience, we also adopt the following notations from Hu, Zhu, and
Wei [12]:

[p, q, l] =
[
f (t)︸︷︷︸

p

,F (t)︸︷︷︸
q

,F (t)︸︷︷︸
l

]
, [p′, q, l] =

[
f ′(t)︸︷︷︸

p

,F (t)︸︷︷︸
q

,F (t)︸︷︷︸
l

]
, (4.1)

[p, q, l]f =
[( f (t)

fn(t)

)
︸ ︷︷ ︸

p

,

(
F (t)
Fn(t)

)
︸ ︷︷ ︸

q

,

(
F (t)
Fn(t)

)
︸ ︷︷ ︸

l

]
, [p′, q, l]f =

[(f ′(t)
f ′

n(t)

)
︸ ︷︷ ︸

p

,

(
F (t)
Fn(t)

)
︸ ︷︷ ︸

q

,

(
F (t)
Fn(t)

)
︸ ︷︷ ︸

l

]
,

(4.2)

and

[p, q, l]g =
[(f (t)

g(t)

)
︸ ︷︷ ︸

p

,

(
F (t)
G(t)

)
︸ ︷︷ ︸

q

,

(
F (t)
G(t)

)
︸ ︷︷ ︸

l

]
, [p′, q, l]g =

[(f ′(t)
g′(t)

)
︸ ︷︷ ︸

p

,

(
F (t)
G(t)

)
︸ ︷︷ ︸

q

,

(
F (t)
G(t)

)
︸ ︷︷ ︸

l

]
, (4.3)

where p, q and l are integers such that p + q + l = n − 1 for (4.1), and p + q + l = n for
(4.2) and (4.3).

It is useful to represent the distribution function of order statistics in terms of permanent
when the random variables are not identical. The density functions of T1(X1, . . . , Xn) and
Tn(X1, . . . , Xn) may be respectively represented as

fT1(X1,...,Xn−1,Xn)(t) =
1

(n − 1)!
[1, n − 1, 0]f , for t ∈ R+, (4.4)

and

fTn(X1,...,Xn−1,Xn)(t) =
1

(n − 1)!
[1, 0, n − 1]f , for t ∈ R+. (4.5)

Before stating the main results, let us recall the well-known Alexandroff’s inequality
for permanent.

Lemma 4.1 (van Lint [25]): Let a1, . . . ,an−1 and b be non-negative vectors in n-dimension
real space R

n, n ≥ 2. Then,

[a1, . . . ,an−1, b]2 ≥ [a1, . . . ,an−1,an−1] · [a1, . . . ,an−2, b, b].
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Theorem 4.1: If Xi ≤lr Y for i = 1, 2, . . . , n, then,

T1(X1, . . . , Xn−1,Xn) ≤lr T1(X1, . . . , Xn−1, Y ).

Proof: Misra and Misra [18, (Corollary 2.3)] proved the case with n = 2. Let us only
consider the case with n > 2.

In virtue of (4.4), we need to prove the following rational function

φ(t) =
fT1(X1,...,Xn−1,Y )(t)
fT1(X1,...,Xn−1,Xn)(t)

=
[1, n − 1, 0]g
[1, n − 1, 0]f

is increasing in t ∈ R+.
Taking the derivative of φ(t) with respect to t, we have

φ′(t)
sgn
= [1, n − 1, 0]f · [1′, n − 1, 0]g + (n − 1)[1, n − 1, 0]f · [2, n − 2, 0]g

− [1′, n − 1, 0]f · [1, n − 1, 0]g − (n − 1)[2, n − 2, 0]f · [1, n − 1, 0]g
def= ϕ(t).

Since Y ≥lr Xn implies the increasing property of g(t)/fn(t) and Y ≥rh Xn, it holds that

g′(t)fn(t) − g(t)f ′
n(t) ≥ 0, for all t,

and
g(t)Fn(t) ≥ G(t)fn(t), for all t.

By applying Laplace’s expansion along the last row of all above permanent, we have

ϕ(t) =
(
fn(t)[0, n − 1, 0] + (n − 1)Fn(t)[1, n − 2, 0]

)
× (g′(t)[0, n − 1, 0] + (n − 1)G(t)[1′, n − 2, 0]

)
+
(
fn(t)[0, n − 1, 0] + (n − 1)Fn(t)[1, n − 2, 0]

)
× (2g(t)[1, n − 2, 0] + (n − 2)G(t)[2, n − 3, 0]

)
− (f ′

n(t)[0, n − 1, 0] + (n − 1)Fn(t)[1′, n − 2, 0]
)

× (g(t)[0, n − 1, 0] + (n − 1)G(t)[1, n − 2, 0]
)

− (2fn(t)[1, n − 2, 0] + (n − 2)Fn(t)[2, n − 3, 0]
)

× (g(t)[0, n − 1, 0] + (n − 1)G(t)[1, n − 2, 0]
)

=
(
g′(t)fn(t) − g(t)f ′

n(t)
)
[0, n − 1, 0]2

+ (n − 1)
(
g′(t)Fn(t) − f ′

n(t)G(t)
)
[0, n − 1, 0][1, n − 2, 0]

− (n − 1)
(
g(t)Fn(t) − fn(t)G(t)

)
[0, n − 1, 0][1′, n − 2, 0]

+ (n − 1)
(
g(t)Fn(t) − fn(t)G(t)

)
× (2(n − 1)[1, n − 2, 0]2 − (n − 2)[0, n − 1, 0][2, n − 3, 0]

)
≥ (n − 1) (g′(t)Fn(t) − f ′

n(t)G(t)) [0, n − 1, 0][1, n − 2, 0]

− (n − 1)
(
g(t)Fn(t) − fn(t)G(t)

)
[0, n − 1, 0][1′, n − 2, 0]

+ (n − 1)
(
g(t)Fn(t) − fn(t)G(t)

)
× (2(n − 1)[1, n − 2, 0]2 − (n − 2)[0, n − 1, 0][2, n − 3, 0]

)
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≥ (n − 1)
(
g(t)Fn(t) − fn(t)G(t)

)
[0, n − 1, 0]

(
g′(t)
g(t)

[1, n − 2, 0] − [1′, n − 2, 0]
)

+ (n − 1)
(
2(n − 1)[1, n − 2, 0]2 − (n − 2)[0, n − 1, 0][2, n − 3, 0]

)
× (g(t)Fn(t) − fn(t)G(t)

)
sgn
= [0, n − 1, 0]ϕ1(t) + ϕ2(t),

where

ϕ1(t) =
g′(t)
g(t)

[1, n − 2, 0] − [1′, n − 2, 0],

and

ϕ2(t) = 2(n − 1)[1, n − 2, 0]2 − (n − 2)[0, n − 1, 0][2, n − 3, 0].

By Lemma 4.1, it holds that

ϕ2(t) ≥ 0, for all t ≥ 0.

Note that, for i = 1, . . . , n − 1, Y ≥lr Xi implies

g′(t)
g(t)

− f ′
i(t)

fi(t)
≥ 0, for all t,

by the Laplace’s expansion along the first column of the two permanents, we also have

ϕ1(t) =
g′(t)
g(t)

[1, n − 2, 0] − [1′, n − 2, 0]

=
n−1∑
i=1

g′(t)
g(t)

fi(t)[0, n − 2, 0](i) −
n−1∑
i=1

f ′
i(t)[0, n − 2, 0](i)

=
n−1∑
i=1

fi(t)[0, n − 2, 0](i)
(

g′(t)
g(t)

− f ′
i(t)

fi(t)

)

≥ 0.

Now, it may be concluded that

φ′(t) = ϕ(t) = ϕ1(t) + ϕ2(t) ≥ 0,

for all t ≥ 0. And thus, we complete the proof. �

To end this section, we present the likelihood ratio order of series systems, which is
analogous to Theorem 4.1.

Theorem 4.2: If Xi ≥lr Y for i = 1, 2, . . . , n, then

Tn(X1, . . . , Xn−1,Xn) ≥lr Tn(X1, . . . , Xn−1, Y ).

Proof: The case with n = 2 was accomplished by Misra and Misra [18, (Corollary 3.2)] .
We only need to prove the case with n > 2.

https://doi.org/10.1017/S0269964813000314 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964813000314


50 W. Ding, G. Da, and X. Li

In virtue of (4.5), it is enough to prove that

ω(t) =
fTn(X1,...,Xn−1,Xn)(t)
fTn(X1,...,Xn−1,Y )(t)

=
[1, 0, n − 1]f
[1, 0, n − 1]g

is increasing in t ∈ R+.
In a similar manner to that in the proof of Theorem 4.1, we have

ω′(t)
sgn
= [1′, 0, n − 1]f [1, 0, n − 1]g − (n − 1)[2, 0, n − 2]f [1, 0, n − 1]g

− [1, 0, n − 1]f [1′, 0, n − 1]g + (n − 1)[1, 0, n − 1]f [2, 0, n − 2]g

= (g(t)f ′
n(t) − g′(t)fn(t)) [0, 0, n − 1]2

− (n − 1)
(
g′(t)Fn(t) − f ′

n(t)G(t)
)
[0, 0, n − 1][1, 0, n − 2]

+ (n − 1)
(
g(t)Fn(t) − fn(t)G(t)

)
[0, 0, n − 1][1′, 0, n − 2]

+ (n − 1)
(
g(t)Fn(t) − fn(t)G(t)

)
× (2(n − 1)[1, 0, n − 2]2 − (n − 2)[0, 0, n − 1][2, 0, n − 3]

)
≥ (n − 1)

(
g(t)Fn(t) − fn(t)G(t)

)
[0, 0, n − 1]

×
(

[1′, 0, n − 2] − g′(t)
g(t)

[1, 0, n − 2]
)

+ (n − 1)
(
g(t)Fn(t) − fn(t)G(t)

)
× (2(n − 1)[1, 0, n − 2]2 − (n − 2)[0, 0, n − 1][2, 0, n − 3]

)
sgn
= [0, 0, n − 1]ω1(t) + ω2(t),

where

ω1(t) = [1′, 0, n − 2] − g′(t)
g(t)

[1, 0, n − 2],

and
ω2(t) = 2(n − 1)[1, 0, n − 2]2 − (n − 2)[0, 0, n − 1][2, 0, n − 3].

By Lemma 4.1, we have ω2(t) ≥ 0 for all t ≥ 0. On the other hand, due to Y ≥lr Xi, i =
1, . . . , n − 1, it holds that, for all t ≥ 0,

ω1(t) = [1′, 0, n − 2] − g′(t)
g(t)

[1, 0, n − 2]

=
n−1∑
i=1

fi(t)[0, 0, n − 2](i)
(

f ′
i(t)

fi(t)
− g′(t)

g(t)

)

≥ 0.

So, ω(t) is increasing in t ≥ 0. The proof is completed. �

It is clear that, the results (2.8) and (2.9) due to Ding et al. [8] on the likelihood ratio
order in the multiple-outlier models can be directly obtained from Theorems 4.1 and 4.2,
respectively.

By the end, we present the following two examples, which tell that Theorems 4.1 and
4.2 can not be generalized to k-out-of-n systems.
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Figure 2. (Color online) Ratio of the two probability densities. (a) Series systems with
two components and (b) Parallel systems with two components.

Example 4.1: Set, for t ≥ 0,

F1(t) =
(
1 − e−5t

)4
, F2(t) =

(
1 − e−6t

)5
, G(t) =

(
1 − e−2t

)5
.

One may easily verify Y ≥lr X1 and Y ≥lr X2.
Consider the two series systems with respective lifetimes T2(X1,X2) and T2(X1, Y ). As

can be seen in Figure 2(a), the ratio of density function of T2(X1,X2) to that of T2(X1, Y )
is not monotone at all. That is, there is no likelihood ratio order between T2(X1,X2) and
T2(X1, Y ).

Example 4.2: Set, for t ≥ 0,

F 1(t) = exp{−0.5t2 − 0.4t}, F 2(t) = exp{−0.1t2 − t}, G(t) = exp{−0.5t2 − t}.
It is easy to verify that Y ≤lr X1 and Y ≤lr X2.

For two parallel systems with respective lifetimes T1(X1,X2) and T1(X1, Y ), as illus-
trated in Figure 2(b), the ratio of density function of T1(X1,X2) to that of T1(X1, Y ) does
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not have any monotone property, this implies that there is no likelihood ratio order between
T1(X1,X2) and T1(X1, Y ).
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