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Abstract

One of the features of ultra high intensityHI) short pulse laser—-matter interactions is the prospecteasting a

cheap, compact source of hard X rays with femtosecond pulse duration. The propertiesk&smirces are studied

using analytical and numerical models of hot electron generation and subsequent transport in a range of(iRatehials

et al, 2000. First, we find that there is an optimum laser intensityargeneration from bulk targets, which scales as

Z*4 Second, we show that efficient hard X-ray pulses with durations below 100 fs can be generated at intensities of
~10'% W/cm?2

1. INTRODUCTION 1999 were performed to obtain hot electron distributions
fhot(E) for density profiles appropriate to interactions where

a laser prepulse or pedestal generates a small amount of
preformed plasméBastianiet al, 1997). Second, a Monte
Carlo (MC) transport coddJoy, 1995 extended for the
calculation ofKae emission was used to compute electron
trajectories in the solidK-shell ionization cross sections
fom Casnatet al. (1982 and fluorescence yields, relative
line intensities, and absorption lengths for self-emitted

The X-ray bursts which originate frola transitions in
ultra high intensity UHI) laser-irradiated solids present an
interesting alternative to synchrotron radiation in medical
imaging applicationgSvanbergtal,, 1994 as well as open-
ing up completely new possibilities in time-resolved mea-
surements of phase transitions, chemical reactions, a
thermal transpor(Rischelet al., 1997). In this article, we

address two important aspects of #a@ emission: first, we L . )
show that the dependence Kix emission on the target radiation given by Zschornad 989 were applied. Tem

element is self-similar, leading to a universal value for theporal information on electrons and photons was calculated

. : : : taking into account the electron entry time into the solid
optimal hot electron temperature. Using this result, a Slmpl?PIC code, the photon generation time and the time of flight
scaling of the laser intensity giving maximuka yield can '

. ) A " of the photon to the detect¢MC code. All calculations
be derived. These analytical predictions are then verified b%vere erformed for a p-polarized. hiah-contrast 60-fs Ti:Sa
numerical simulations for a wide range of laser intensitie P P-p » M9 ’

and target materials. Second, we consider how the stoppirﬁlaser with an incidence angle of #%lelivering aconstant

times of the hot electrons in the solid influence the temporafgnergyOf 100 mJ on the target. An exponential plasma den-

development of the X-ray emission and propose formulaeSlty profile with scale length. = 0.34, ne(max) = 10n, was

for the design of foil targets to produce high-yield hard used,n. being the critical density. T.hKa radiation was
o . observed normal to the target frontside.
X-ray pulses of a specific duration.

2. NUMERICAL MODEL 3. OPTIMUM Ka YIELD

For the numerical modeling, a two-step approach was apAnalytically, theKa yield from a hot electron distribution
plied to determine th&a emission. First, 1-D, oblique in- can be expressed as an energy integral over the properties of
cidence Particle-in-CellPIC) simulations(Gibbonet al,, monoenergetic electrons:
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whereN is the number of emitted photons, is the total ~ This implies an optimal laser intensiky, (which produces
number of hot electrons arfd,(E) their energy distribu- this optimal electron temperatyréor a givenZ. Setting
tion, Ngen(E) is the number oKa photons generated by an dN/dl = 0 gives

electron of incidence enerdy; andf.(E) is the fraction of

these photons that escapes from the solid—the “emission lopt = 7 X 10° 244 (4)
factor.”

The emission factor showsumiversal behaviowith re-  which corresponds to an electron temperatugg = 6.4.
specttothe incident electron energy normalized td<isiell The scaling ofl,,; results from the combination of two

ionization energy of the target) = E/E, (Fig. 1a8. At  scaling laws. The reference value fiser productionand
U = 20, the mean depth dda generation in the target is reabsorption is the ionization energy of tkeshell, which
comparable to the absorption length for self-emittéd  gives a scaling of the appropriate hot electron energy as
radiation(Fig. 1b), so that fol < 20, most of the generated E o Z22 The laser intensity scales with the hot electron
photons can escape from the target. Bor 20, the electron  energy as oc (kT)? giving o oc 244 Aweaker temperature
penetration depth and reabsorption both increase, sé.that scaling, for examplekT o« (1A%)Y/3 would lead to a corre-
falls off rapidly as~U ~*?. To facilitate the integration of spondingly stronger scaling &f,, with Z.
Eqg. (1), the emission factor was approximated by a step To check the resultifB8), combined PIC-MC calculations
function: were used to deriv&a yields without the approximations
included in the analytical modéFig. 2a8. Photon numbers
_ in Figure 2a agree within a factor of 3 with those predicted
{1 ifU=20 ) by Eq.(3). For all elements, th&« yield shows a distinct

0 ifu>20. maximum at an optimal laser intensily,, which follows
the predictedZ** dependence of Eq4) (Fig. 2b). The
simulated values are generally in good agreement with ex-
perimental dat@aEderet al,, 2000; Schlegett al., 1999; Yu
et al,, 1999, although slightly higher.

em

Applying a fit of the ionization energies, we can approxi-
mateU ~ E/0.0054Z22,

Substituting the factors in EqQ1) with the results of PIC
or MC simulations respectively, the totklr yield in the
interval 1I=U =20 s 4. DURATION OF THE Ka EMISSION

After the laser pulse has gornteg emission continues until
7273 (20 U the energy of the last hot electron in the solid has dropped
Nz |37J UEXF’(__)O'U' (3 below theK-shell ionization energy. Depending on the
laser intensity, a small fraction of super-hot electrons can
produce a long-lasting« afterglow with low intensity. For
with Ut = KT/E, being the normalized hot electron temper- example, th&Kka emission from Cu, irradiated for 60 fs at
ature. It is highest for an optimal electron temperatugg. | = 3 X 10%* W/cm? continues for more than 1.6 ps,

kT
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Fig. 1. (a) The emission factde,0f monoenergetic electrons afty) ratio of mean depth d« generation to absorption length versus
U = E/Ey. O: Ti; A: Cu;O: Ag; ¢: Ta. Dotted linesU = 20.
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Fig. 2. (a) SimulatedK« yields from bulk targets for a laser energy of 100 mJ(datted, Cu (dash-dottefl Ag (dashegl, and Ta
(solid). (b) Dependence of the optimum laser intensity on the target material. Points are from simulatighe line is from the

analytical model—Eq(4).

though 90% of the emission occurs within 400 fs. Hence-

Solving for the foil thickness needed and the optimal laser

forth we define the time of the first 90% of emission as theintensity for producing electrons with enerBy,., gives:

temporal figure of merit of th&ka pulses, this duration
being of much more relevance for experimental applications
than the total emission time.

To achieve &« pulse duration of less than 100 fs suitable
for ultrafast diagnostic applicationfil targets can be used,

which are quickly traversed by super-hot electrons, limiting

| =0.0032Z°%5(7, — 7)125 (5)

lopt = 2.3X 1010 724(7, — 7,)125

©6)

the time they can produce X rays. The number of photons Table 1 gives an overview over the parameters predicted
which an electron can produce depends on the length of itey Egs.(5) and(6) for a desired X-ray pulse duration of
scattering path and therefore on the time it spends inside tht00 fs, taking into account the 60 fs-laser pulse. Simulations
target. To determine how the optimal electron enétgy,—
which gives maximum mean time inside the targgt, and
maximum number oKa photons per incidence electron tions a little lower than 100 fs.

energy—depends on target material and target thickhess The pulse duration increases slowly with increasing ei-
numerical simulations using monoenergetic electrons wer#her foil thicknesgFig. 3 or laser intensityFig. 3b. The
applied, givingEmax=1.1Z°°9 %% and = 100Z 94 08
The electrons with this energy give an afterglow emissiomnumber of scattering events in thicker foils. It falls slowly
Ta =~ Tmax Which is related to the laser pulse duratigrand
the desired duration of the X-ray pulsgby mnax~ 7a =

Ty — T|-

Table 1. Calculated parameters of foil targets for the generation

of 100 fs ky pulses; simulated & pulse durationr, (first 90%

of emission) and K yield for calculated | anddy;.

| lopt > Yield
Element Z (pm) (W/em?) (fs) (photong'sr)
Ti 22 1.5 4% 10% 90 5% 10°
Cu 29 1.7 7x 10%° 90 5% 10°
Ag 47 2.2 3x 106 95 6x 108
Ta 73 2.8 7x 1016 95 7% 107
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using realistic hot electron distributions show that applica-
tion of the calculated parameters yields 90%-pulse dura-

Ka yield increases with the foil thickness due to the higher

for laser intensities above the optimum value. Alaser inten-
sity smaller thar,; gives a quick decrease in X-ray radia-
tion because the hot electron temperature is no longer high
enough to produce significakt-shell ionization.

5. CONCLUSIONS

In summary, we have presented a systematic study of femto-
seconKa sources, giving formulae for the optimal photon
yield and pulse duration which agree well with the results of
PIC-MC simulations. In biomedical imaging applications,
the maximum achievable magnification will be limited by
source broadening—whether caused by lateral transport, in
both plasma and solid, or by deliberate defocusing. A more
complete model is therefore planned, to deal with lateral
transport effects including self-induc&d andB-fields.
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Fig. 3. Ka emission from Cu foils(a) Irradiated al = 7 X 10> W/cn?, for thicknesses: 0.am (dashed, 1.7 um (solid), and 5um
(dotted. (b) For constant thickness: 1m, irradiated 18> W/cm? (dashed), 7 x 10 W/cm? (solid), and 3x 108 W/cm? (dotted.
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