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Slip-enhanced drop formation in
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For a liquid film falling down along a vertical fibre, classical theory (Kalliadasis
& Chang J. Fluid Mech., vol. 261, 1994, pp. 135–168; Yu & Hinch J. Fluid
Mech., vol. 737, 2013, pp. 232–248) showed that drop formation can occur due
to capillary instability when the Bond number G = ρga3/γ h0 is below the critical
value Gc ≈ 0.60, where ρ is the fluid density, g is the gravitational acceleration, a
is the fibre radius, γ is the surface tension and h0 is the unperturbed film thickness.
However, the experiment by Quéré (Europhys. Lett., vol. 13 (8), 1990, pp. 721–726)
found Gc ≈ 0.71, which is slightly greater than the above theoretical value. Here we
offer a plausible way to resolve this discrepancy by including additional wall slip
whose amount can be measured by the slip parameter Λ= 3λ/h0, where λ is the slip
length. Using lubrication theory, we find that wall slip promotes capillary instability
and, hence, enhances drop formation. In particular, when slip effects are strong
(Λ � 1), the transition films and the drop height scale as (c/Λ)−1/3 and (c/Λ)2/3,
respectively, distinct from those found by Yu & Hinch for the no-slip case where c is
the travelling speed. In addition, for Λ> 1, Gc is found to increase with Λ according
to Gc ≈ 0.7Λ1/3, offering a possible explanation why the Gc found by Quéré is
slightly greater than that predicted by the no-slip model. Using the above expression,
the estimated slip length in Quéré’s experiment is found to be of the order of several
micrometres, consistent with the typical slip length range 1–10 µm for polymeric
liquids such as silicone oil used in his experiment. The existence of wall slip in
Quéré’s experiment is further supported by the observation that the film thinning
kinetics exhibits the no-slip result h∝ t−1/2 for early times and changes to the strong
slip result h ∝ t−1, where h is the film thickness. We also show that when the film
is ultrathin, although capillary instability can become further amplified by strong slip
effects, the instability can be arrested by the equally intensified gravity draining in the
weakly nonlinear regime whose dynamics is governed by the Kuramoto–Sivashinsky
equation.
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Slip-enhanced drop formation in a liquid falling down a vertical fibre 43

1. Introduction
When a thin liquid film is coated on the surface of a fibre, it will undergo

capillary instability (Bretherton 1961; Kalliadasis & Chang 1994; Kliakhandler,
Davis & Bankoff 2001; Craster & Matar 2006; Ruyer-Quil et al. 2008; Kalliadasis
et al. 2011). This instability is driven by surface tension and mainly arises from
the circumferential curvature of the interface. Specifically, inevitable interfacial
fluctuations will cause the circumferential Laplace pressures in the valleys to be
higher than those in the troughs. As a result, the fluid in the valleys will be sucked
toward the troughs, thereby amplifying the fluctuations and eventually making the
film grow into large drops. If the fibre is placed in a vertical arrangement, capillary
instability still persists. However, because of gravity, a drop gains (loses) an additional
mass flow from the film behind (ahead of) the drop as it travels down the fibre (see
figure 1). This continuous mass flow injection/ejection due to gravity will compete
with the capillary flow due to surface tension, consequently affecting the resulting
drop profile and travelling speed. This fibre coating problem has been studied both
theoretically (Kalliadasis & Chang 1994; Yu & Hinch 2013) and experimentally
(Quéré 1990), so the basic physics can be said to be well understood. However, there
still exists a noticeable discrepancy between experiment and theory. This motivates
us to revisit this problem to seek a plausible explanation to resolve this discrepancy.
To see how the problem is motivated, we first look at experimental observations.
Quéré (1990) conducted an experiment and found that such a flow can behave quite
differently, depending on the film thickness. If the film is sufficiently thick, it will
grow into bulges and turn into large drops. On the other hand, if the film thickness
is below some critical value, bulges will be suppressed and maintain a steady shape.
In other words, the film’s growth can be inhibited by the saturation of the capillary
instability. As the film thickness controls the relative importance between surface
tension and gravitational forces, the Bond number characterizes the flow behaviour,

G=
ρga3

γ h0
, (1.1)

where ρ is the fluid density, g is the gravitational acceleration, a is the fibre radius,
γ is the surface tension and h0 is the unperturbed film thickness. This dimensionless
parameter can also be recognized as the velocity ratio of gravity-driven flow ρgh2

0/µ
to capillary flow (h0/a)3(γ /µ), with µ being the fluid viscosity. As can be seen
from (1.1), for given fluid and fibre radius, the unperturbed film thickness h0 controls
the magnitude of G critical to the dynamics of the film. For thick films such that
G is small, surface tension dominates over gravity, thereby giving rise to drop
formation due to capillary instability. On the other hand, if G is large when the film
is sufficiently thin, the much stronger gravity force suppresses the capillary instability,
thereby making the interface slightly undulated and advected with the falling flow.
Hence, drop formation occurs if G is smaller than some critical value Gc. Quéré
(1990) found Gc ≈ 0.71. Similar drop formation and suppression can also occur to
a pressure-driven core annular film flow where the behaviour of the interface is
determined by the competition between surface tension and shear flow effects within
the film (Kerchman 1995).

On the theoretical side, the common approach to modelling this fibre coating
problem is by solving lubrication-type interfacial evolution equations. There are
extensive studies along this line, showing that most features of this problem can
be successfully captured by this method (Frenkel 1992; Kalliadasis & Chang 1994;
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FIGURE 1. (Colour online) Sketch of a liquid film flowing down a slippery fibre of
radius a and slip length λ. Owing to interplays between capillary suction and gravity
draining, the film thickness h(x, t) can vary with the axial position x and time t. Here
h0 is the unperturbed film thickness and g is the gravitational acceleration. In terms of
dimensionless variables throughout this work, x and the transverse position y are scaled
by a and h0, respectively, and t is scaled by 3µa4/γ h3

0.

Kerchman & Frenkel 1994; Kerchman 1995; Chang & Demekhin 1999; Kliakhandler
et al. 2001; Duprat et al. 2007; Ruyer-Quil et al. 2008; Yu & Hinch 2013). Here we
are more concerned with the critical Bond number Gc for an onset of drop formation.
Kalliadasis & Chang (1994) first predicted Gc ≈ 0.60 using a matched asymptotic
theory. Yu & Hinch (2013) recently refined this result by including further corrections.
In comparison, Gc ≈ 0.71 found by Quéré (1990) is actually 18 % greater than the
theoretical prediction Gc≈ 0.60. Although this discrepancy does not seem serious, it is
nevertheless not unnoticeable. As the discrepancy here seems unlikely attributed to the
lubrication model usually adopted, it could be that part of the inherent assumptions
made in theory do not correspond to what happens in Quéré’s experiment.

To see how the discrepancy arises, it is necessary to re-examine Quéré’s experiment.
He used silicone oil, a polymeric liquid that can exhibit considerable fluid slippage
on a solid wall as it flows (de Gennes 1985; Brochard-Wyart et al. 1994). Together
with the fact that the fibres here are made of nylon, which is hydrophobic, and
could admit wall slip as well (due, for instance, to microbubbles trapped by surface
microgrooves (Lauga, Brenner & Stone 2007)), it is likely that wall slip effects might
no longer be negligible as usually considered. Previous studies showed that a variety
of interfacial flows with wall slip could behave quite differently than those based
on the no-slip boundary condition (Liao, Li & Wei 2013; Li et al. 2014; Liao et al.
2014; Halpern, Li & Wei 2015). In particular, in the related work by Liao et al.
(2013), the authors found that a core annular film flow in a horizontal tube, even
with a fractional amount of wall slip, can exhibit greater capillary instability than
the usual no-slip case (Hammond 1983), especially when capillary draining proceeds
to the stage where the film becomes thinner than the slip length. Recently, Haefner
et al. (2015) experimentally examined the influence of slip on capillary instability of
a thin liquid film on a horizontal fibre, showing that interfacial undulations with slip
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Slip-enhanced drop formation in a liquid falling down a vertical fibre 45

do grow faster than those without slip. These studies imply that a thin, uniformly
undulated film on a fibre would grow into bigger drops if wall slip is present. In
other words, wall slip would facilitate drop formation by making drops start to appear
at thinner films, which in turn makes the actual value of Gc greater than that without
slip. This might explain why the experimental value Gc ≈ 0.71 measured by Quéré
(1990) is slightly greater than the theoretical value Gc ≈ 0.6 predicted by the usual
no-slip model (Kerchman & Frenkel 1994; Yu & Hinch 2013).

Motivated by the above, we examine in this paper how wall slip influences drop
formation and interfacial dynamics for the fibre-coating problem. As will be shown
shortly, wall slip not only enhances capillary instability resulting in bigger drops,
but also leads Gc to increase with the amount of wall slip, making a falling liquid
more susceptible to drop formation. We also find that even when slip effects are
strong, it is still possible to prevent the film from growing to drops by saturating
the capillary instability. In the following, we begin with the mathematical formation
for this problem in § 2. In § 3, we derive new scalings for the strong slip situation
in distinction to those for the no-slip case given by Yu & Hinch (2013). These
strong slip scalings are also confirmed numerically. The general impact of wall slip
on drop formation is presented in § 4. Connections to experiments will be made
in § 5, showing that the discrepancy between experiment (Quéré 1990) and theory
(Kerchman & Frenkel 1994; Yu & Hinch 2013) can be reasonably resolved by
including additional slip effects.

2. Problem formulation
We follow the analysis of Yu & Hinch (2013) in deriving an evolution equation for

the thickness of the liquid layer coating a vertical fibre of radius a. In order to apply
the lubrication approximation, it is assumed that the film thickness is much smaller
than the fibre radius, h∗� a, and that the change in thickness in the axial direction
is also small, |∂h∗/∂x∗|� 1. The reduced momentum and continuity equations are

µu∗y∗y∗ = p∗x∗ − ρg, p∗y∗ = 0, u∗x∗ + v
∗

y∗ = 0. (2.1a−c)

Here (u∗, v∗) are the axial and transverse components of velocity, p∗ is the pressure,
and µ and ρ are the viscosity and density, respectively. Along the fibre, at y∗= 0, we
apply the Navier slip and no-penetration conditions on the velocity field:

u∗ = λu∗y∗, v∗ = 0, (2.2a,b)

where λ is the slip length. At the free surface, y∗= h∗(x∗, t∗), the balances of normal
and tangential stresses are

p∗ = γ
(
−h∗

a
− hx∗x∗

)
(2.3)

and
µu∗y∗ = 0. (2.4)

Note that just as in Yu & Hinch (2013), we have dropped the constant pressure term
contribution that comes from the transverse component in curvature in (2.3) since it
does not affect fluid motion, and we have applied the thin film approximation to the
curvature of the surface. The kinematic boundary condition can be written as

h∗t∗ +Q∗x∗ = 0, (2.5)
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where Q∗=
∫ h∗

0 u∗ dy∗ is the axial flow rate. After integrating the momentum equation
(2.1) and applying the boundary conditions (2.2) and (2.4), the following expression
for the axial component of velocity is obtained:

u∗ =
1
µ

(
p∗x∗ − ρg

) [y∗2

2
− h∗y∗ − λh∗

]
. (2.6)

Thus,

Q∗ =
1

3µ

(
ρg− p∗x∗

) [
h∗3 + 3λh∗2

]
. (2.7)

As in Yu & Hinch (2013), we introduce the following dimensionless variables:

x=
x∗

a
, h=

h∗

h0
, t=

t∗(
3µa4/γ h3

0

) , p=
p∗

γ h0/a2
, (2.8a−d)

where h0 is the unperturbed film thickness. Thus, after substituting (2.3) and (2.7)
in (2.5), and applying this non-dimensionalization, the kinematic boundary condition
yields an evolution equation for the film thickness,

ht +
[(

h3
+Λh2

)
(G+ hx + hxxx)

]
x = 0, (2.9)

where Λ = 3λ/h0 is the slip parameter measuring the extent of wall slip relative to
the unperturbed film thickness h0. This equation has a travelling wave solution that
can be determined by letting x→ x − ct and h(x, t)→ h(x − ct), where c is the
propagating speed of the wave. Substituting the latter into (2.9) and integrating once
with the uniform film condition h→1 as x→±∞, we obtain the following third-order
equation for h:

−c (h− 1)+
(
h3
+Λh2

)
(G+ hx + hxxx)= (1+Λ)G, (2.10)

with
h→ 1 as x→±∞. (2.11)

Equations (2.10) and (2.11) constitute an eigenvalue problem for c(G, Λ), which is
solved numerically using an iterative procedure similar to that in Yu & Hinch (2013).
For completeness, some details of this method are provided in appendix A.

It is worth mentioning that as in Yu & Hinch (2013), the drop here is chosen
to have a fixed length 2π (in the units of the fibre radius a), corresponding to the
critical wavelength according to capillary instability (Hammond 1983). Perhaps it is
more appropriate to choose the most unstable wavelength 23/2π to be the drop length
(Kalliadasis & Chang 1994). Yu & Hinch (2013) found no differences between these
two choices in terms of results. Also given that slip length does not change these two
characteristic wavelengths for capillary instability (Liao et al. 2013), keeping the same
drop length 2π should not change the features in the presence of wall slip.

3. Weak slip versus strong slip
Prior to presenting the overall influence of wall slip on the fibre-coating problem in

§ 4, it is instructive to gain some insights by inspecting scalings for both weak slip
and strong slip limits. The weak slip (Λ� 1) limit recovers the no-slip results found
previously (Yu & Hinch 2013). As will be shown below, how wall slip impacts drop
formation is due to a length scale change of the short transition films that connect
the uniform film to the main drop, as sketched in figure 2. This change will manifest
most when slip effects are strong. Consequently, the scalings in the strong slip (Λ�1)
limit will be completely different from the no-slip ones, which will help explain the
various features shown in § 4.
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FIGURE 2. (Colour online) Sketch of main drop and two transition film regions.

3.1. Weak slip limit
In the weak slip (Λ� 1) limit, equation (2.10) reduces to the no-slip form (Yu &
Hinch 2013):

−c (h− 1)+G
(
h3
− 1
)
+ h3 (hx + hxxx)= 0. (3.1)

Following the approach by Yu & Hinch (2013), we inspect the behaviour of the
solutions in the transition film regions and the main drop region.

The length scale ` of the transition films is determined by balancing the travelling
term ch to the axial interfacial curvature term h3hxxx ∼ h4/`3. Because h∼O(1), this
balance yields

`∼ c−1/3. (3.2)

This length scale is essentially obtained in a way similar to that in the classical
Landau–Levich–Bretherton problem (Landau & Levich 1942; Bretherton 1961).
Rescaling z= c1/3(x− x0), equation (3.1) becomes

hzzz =
h− 1

h3
− c−2/3hz + c−1G

1− h3

h3
. (3.3)

Hence, at leading order, equation (3.3) is simply governed by the Bretherton equation
(Bretherton 1961).

When moving toward the main drop region, the axial interface curvature in the
transition region hxx ∼ `

−2 has to match that of the main drop: hmax/L2
∼ hmax, giving

hmax ∼ c2/3(� 1). (3.4)

So in the main drop region, rescaling the drop height H= h/c2/3 with (3.4), equation
(3.1) becomes

Hx +Hxxx = c−1
(
H − c−2/3

)
/H3
− c−2/3G

(
1− c−2/H3

)
. (3.5)

As a result, the leading term is the curvature term on the left-hand side, meaning that
at leading order the pressure in the main drop remains hydrostatic (Hammond 1983).

3.2. Strong slip limit
When wall slip is present and the slip length is large compared with the film thickness,
we again use the balance ch∼Λh2hxxx ∼Λh3/`3 to determine the length scale of the
transition films as

`∼ ĉ−1/3, (3.6)
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where ĉ = c/Λ. So the equation governing the transition films can be obtained by
rescaling (2.10) with ζ = ĉ1/3(x− x0):

hζ ζ ζ =
h− 1

h2
(
1+Λ−1h

) − ĉ−2/3hζ + ĉ−1G

[
1+Λ−1

h2
(
1+Λ−1h

) − 1

]
. (3.7)

For large Λ, the leading order contribution in (3.7) is hζ ζ ζ = (h − 1)/h2 (Liao et al.
2013; Li et al. 2014) provided that ĉ is large. It follows that the main drop has a
height of the order

hmax ∼ ĉ2/3. (3.8)

Note that although Λ� h in the transition films, the drop height hmax could still be
much greater than the slip length, i.e. ĉ2/3

�Λ. In other words, unlike the situation in
the films, in the main drop region the slip term h2Λ might not dominate over the h3

term. Figure 3 shows that the calculated interface profile can be collapsed according
to (3.6) and (3.8), confirming that both ` and hmax do change their scales when slip
effects become strong.

Rescaling the drop height with H = h/ĉ2/3 leads to the following equation for the
main drop region:

Hx +Hxxx =

(
Λ

ĉ

)
H − ĉ−2/3

+ ĉ−5/3(1+Λ−1)G

H2

(
H +

Λ

ĉ2/3

) −

(
Λ

ĉ

)2/3 ( G
Λ2/3

)
. (3.9)

Because Λ� ĉ2/3 guarantees Λ� ĉ, the pressure in the drop is still hydrostatic at
leading order, as it should be. If the first correction occurs at O((Λ/ĉ)2/3) due to
gravity, G would have to be O(Λ2/3) at most to establish a stable drop by balancing
the drop weight to the capillary pressure difference between the top and bottom of
the drop. Hence, for Λ� 1, how the critical Bond number Gc scales with Λ has to
satisfy

Gc ∼Λ
n with n 6 2/3. (3.10)

As will be shown later, we find Gc ∼ Λ
1/3 (see (4.1)) which does satisfy the above

criterion.
In appendix B, to see how wall slip impacts the fibre coating process in a more

explicit manner, we have also looked at leading order effects in the transition films
and analysed the modified Bretherton equation for arbitrary after rescaling the
original equation (2.11) with the no-slip transition film length scale c−1/3. As the
equation is now only parameterized by Λ, its linearized solution exhibits a distinct
asymptotic behaviour as the rescaled variable z → ±∞. Having the asymptotic
solution matched numerically with the main drop, we determine Gc and find that
its value is virtually identical to that determined by the original equation (2.11). So
this modified Bretherton equation suffices to capture the essence of this flow. More
importantly, its asymptotic solution immediately reveals a factor of Λ1/3 stretch for
the transition films due to wall slip, which might explain Gc ∼ Λ

1/3 found for the
strong slip situation.
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FIGURE 3. (Colour online) Numerical confirmations of strong slip scalings. (a) Plot of
hc−2/3 versus x and (b) plot of h versus (x − 2π)c1/3 (only for the front transition film
region). Results are shown for various values of Λ and G along the decaying branch
under the strong slip (Λ� 1) situation. Having h and x rescaled by the no-slip scalings
(3.4) hmax ∼ c2/3 and (3.2) `∼ c−1/3, respectively, we find that the curves do not collapse
in any way, suggesting that h and x have to be rescaled differently. (c) Replot of (a) by
plotting hĉ−2/3 versus x, where ĉ= c/Λ is the rescaled wave speed. The result shows that
all the curves in the main drop region collapse, confirming hmax ∼ ĉ2/3 according to (3.8).
(d) Replot of (b) by plotting h versus (x− 2π)ĉ1/3. The result shows that all the curves
in the transition film region collapse, confirming `∼ ĉ−1/3 according to (3.6).

4. Impact of wall slip on drop formation
We first inspect how the interface shape changes with the amount of wall slip Λ.

Figure 4 clearly reveals that for a given value of G, the drop height hmax significantly
increases with Λ. In addition, the small ‘dimple’ ahead of the drop becomes deeper as
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FIGURE 4. (Colour online) The interface profiles for various values of the slip
parameter Λ. Here G= 2. The drop height increases as Λ increases.

Λ increases. These results can be explained by the much intensified capillary suction
into the drop due to wall slip, in accordance with what was observed by Liao et al.
(2013) for core annular film flow in a horizontal tube.

However, hmax is significantly suppressed by the gravitational effect since it
decreases very rapidly as G is increased, as shown in figure 5. This is because for
larger G the gravitational flow becomes stronger. Consequently, more fluid drains out
of the drop, thus reducing the drop height. Note that an admissible travelling-wave
solution that satisfies (2.10) with boundary condition (2.11) can only exist for G
greater than the onset point for drop formation Gc. As also shown in figure 5, as Λ
is increased, not only is hmax substantially amplified but also Gc is shifted to a larger
value. The latter is because the thinner the film becomes, the more inclined it is to
be influenced by wall slip, and hence more susceptible to drop formation.

The increase in the susceptibility to drop formation by wall slip becomes more
evident by plotting the travelling-wave speed c against G. As shown in figure 6, the
solution basically has two branches (Yu & Hinch 2013). One branch starts from G just
above Gc, showing a rapid decay of c with G. This decaying branch continues to the
point where c reaches a minimum cmin at some G. After that, the solution changes to
the growing branch along which c increases with G. At Λ= 0, we get Gc≈ 0.5960 in
agreement with Yu & Hinch (2013). Increasing Λ not only shifts Gc to a larger value,
but also increases c considerably. So wall slip does not only promote drop formation,
but also makes drops fall faster. Much faster falling drops can simply be explained
by the significant increase in the drop weight due to the rise of hmax by wall slip (see
figures 5 and 6).

How wall slip modifies the flow characteristics can be seen more clearly by plotting
cmin against Λ in figure 7. At small Λ, weak slip merely makes cmin slightly greater
than the no-slip case, and the increment here also slowly increases as Λ increases. So
in the small Λ regime, we have cmin(Λ� 1) ≈ cmin(Λ = 0) + O(Λ). In the large Λ
regime, however, increasing Λ makes cmin grow rather rapidly by following a linear
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FIGURE 5. (Colour online) Plot of the drop height hmax versus G for various values of
Λ shown in the figure. For a given value of Λ, hmax decreases rather rapidly as G is
increased.
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FIGURE 6. (Colour online) Plot of the wave speed c versus G for various values of Λ.
For a given value of Λ, there are two solution branches: a decaying branch and a growing
branch. These solutions exist for G>Gc. Increasing Λ makes Gc larger.
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10010–110–2 101

101

100

Weak slip

Strong slip

FIGURE 7. (Colour online) Plot of cmin versus Λ. In the weak slip (Λ� 1) limit, cmin is
constant, while in the strong slip (Λ� 1) limit, cmin grows linearly with Λ. These two
limits cross over at Λ∼ 1, the stick–slip transition point.

asymptote cmin(Λ� 1)≈ kΛ with k being a numerical constant. This linear asymptote
seems to be reminiscent of the result that c along the growing branch behaves as c=
(3+ 2Λ)G+ 1.216(1+Λ). The crossover between these two trends occurs at around
Λ ∼ 1, corresponding to the stick-to-slip transition point when the undisturbed film
thickness h0 turns from being thicker to being thinner than the slip length λ. This
flow characteristic change due to wall slip is actually a generic feature for interfacial
thin film flows when wall slip is present (Liao et al. 2013).

Figure 8 shows how Gc varies with Λ. Again, similar to how cmin varies with Λ in
figure 7, Gc can vary with Λ in different ways when no slip changes to strong slip.
For Λ< 1, Gc is roughly a constant, Gc ≈ 0.5960, just like the no-slip result found
by Yu & Hinch (2013). However, for Λ> 1, we find that Gc grows with Λ, which
can be numerically fitted by

Gc ≈ 0.7Λ1/3 for Λ> 1, (4.1)

and satisfies the criterion (3.10). The Λ1/3 factor should be expected to come from
the strong-slip transition film scale O(Λ1/3c−1/3) according to (3.6).

To sum up, wall slip causes: (i) the drop height hmax to become amplified; (ii) the
drop falling speed c to be faster; and (iii) the onset point for drop formation Gc to be
shifted to a larger value. Next, we look at the ultrathin film scenario to see how the
strong tendency to drop formation due to wall slip is suppressed by gravity draining.

5. Ultrathin film scenario: suppression of capillary instability
When the film is thin, G is large. In this case, a much stronger gravity draining

reduces the amplitude of the undulated interface, thereby preventing the film from
growing into drops. In other words, large G tends to suppress capillary instability that
causes drop formation. Specifically, because G does not affect the linear growth rate
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101
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10–1 100 101

FIGURE 8. (Colour online) Plot of the critical Bond number Gc versus Λ in a log–log
scale. The solid line is the calculated result. The dashed line is numerically fitted with
Gc = 0.7Λ1/3 for the data in the large Λ regime.

of the capillary instability, such suppression can only happen in the nonlinear regime
in such a way that the nonlinear term in (5.2) (see below) steepens the waves to
shortwaves, which, in turn, stabilize the capillary instability. This is the well-known
Kuramoto–Sivashinsky (KS) mechanism that can saturate capillary instability in the
weakly nonlinear regime, and hence prevent the film from growing into drops.

On the other hand, a very thin film also renders a large Λ, which promotes capillary
instability by amplifying the interface’s amplitude. Hence, there is a competition
between slip-enhanced capillary instability and its nonlinear suppression by gravity
draining. We therefore surmise that if G is sufficiently large, gravity draining might
compensate the intensified capillary instability set up by wall slip, which might still
prevent the film from growing to drops.

To test the above idea, instead of solving (2.10) to find a solitary wave solution, we
solve the interfacial evolution equation (2.9) directly to see whether the slip-intensified
capillary instability can be arrested for a very thin liquid film (i.e. large G). Figure 9
displays the calculated spatiotemporal interfacial evolution. It shows that even when
a large Λ tends to promote capillary instability, a sufficiently large G (i.e. using a
sufficiently large fibre) is able to substantially reduce the height of the liquid film
and hence prevents it from developing into a drop.

To see how this interfacial suppression arises, we let h = 1 + η with |η| � 1 to
reduce (2.9) to the following weakly nonlinear equation:

ηt + (3+ 2Λ)Gηx + 2 (3+Λ)Gηηx + (1+Λ) (ηxx + ηxxxx)= 0. (5.1)

Here we neglect the non-linear correction [η(ηx + ηxxx)]x to the capillary term, which
will be justified a posteriori. Looking at the interface’s dynamics in a moving
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FIGURE 9. (Colour online) Calculated spatiotemporal interfacial evolutions of (2.9) with
Λ= 10 and G= 50. While a large Λ tends to promote capillary instability, a sufficiently
large G is able to substantially reduce the height of the liquid film and, hence, prevents
it from developing into a drop. Here z= 2x/L1 − 1 with L1 = 10π.

frame of reference ∂/∂τ = ∂/∂t′ + (3 + 2Λ)G∂/∂x with rescaled time t′ = t(1 + Λ),
equation (5.1) can be re-written as

ηt + Sηηx + ηxx + ηxxxx = 0, (5.2)

where S = 2(3 + Λ)G/(1 + Λ). Equation (5.2) is the KS equation commonly seen
in thin film flows (Frenkel 1992). It also indicates that wall-slip does not change
the most unstable wavelength at all for capillary instability, just like the case with
a stationary film (Liao et al. 2013). For large G, capillary instability can start to be
saturated when η grows to the stage where the nonlinear wave steepening term Sηηx

becomes comparable to the circumferential curvature ηxx responsible for the instability.
This leads the interface’s amplitude to be bounded with a size η ∼ S−1(� 1). The
nonlinear correction to the capillary term is O(S−2), and thus negligible. As a result,
the strong slip case has η(Λ� 1)∼ (2G)−1, three times larger than the no-slip case
η(Λ=0)∼ (6G)−1. We solve (2.9) and compare the result with that of (5.1). Figure 10
shows excellent agreement between these two, confirming that while the interface can
grow to a larger amplitude due to wall slip, the growth is still restrained by the KS
mechanism described above.
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FIGURE 10. (Colour online) Comparison of simulation results between (2.9) and the
weakly nonlinear equation (5.2), with Λ= 10, G= 50.

6. Connections to experiments
Quéré (1990) employed silicone oil in his fibre coating experiment and found

Gc = 0.71. However, the no-slip theory predicts a slightly smaller value Gc = 0.5960
(Kalliadasis & Chang 1994; Yu & Hinch 2013). A plausible cause for this discrepancy
might be attributed to the fact that silicone oil is a polymeric liquid capable of
producing apparent wall slip. We have shown that Gc can be increased by wall slip
according to (4.1). Using Gc = 0.71 and (4.1) to estimate the amount of wall slip
in Quéré’s experiment, we find Λ ≈ 1.043. Taking h0 ≈ 20 µm seen in Quéré’s
experiment, the slip length λ = Λh0/3 is about 7.0 µm. This is within the typical
slip length range of 1–10 µm for polymeric liquids (Brochard-Wyart et al. 1994).

It is worth mentioning that Chen (1988) used silicone oils to conduct a drop
spreading experiment. He found that for the capillary number Ca < 3 × 10−5, the
measured dynamic contact angle roughly scales as θ ∼ Ca1/2, noticeably deviated
from the no-slip result θ ∼Ca1/3 found for Ca> 3× 10−5. Li et al. (2014) attributed
this anomalous 1/2 power law to apparent wall slip caused by silicone oil. Based on
the work by Brochard-Wyart et al. (1994), Li et al. (2014) estimated the slip length
λ, and found that it can be as large as 10 µm. Because the viscosity (1960 mPa s)
in Chen’s experiment is comparable to that in Quéré’s (500 mPa s), a similar amount
of wall slip should exist in Quéré’s experiment. Indeed, the estimated λ≈ 7.0 µm in
the latter is close to λ≈ 10 µm in the former.

To test the Λ1/3 factor in (4.1), slip effects can be made strong if a much thinner
film is used. Since Gc increases with Λ according to (4.1), the fibre does not have to
be thin for drop formation to be observed. Choosing Λ≈ 30 by taking h0 ≈ 700 nm,
which is much thinner than λ ≈ 7 µm, equation (4.1) gives Gc ≈ 2.17. With the
capillary length κ−1

= (γ /ρg)1/2 = 1.5 mm used in Quéré’s experiment, the above
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4.5

3

FIGURE 11. (Colour online) Sketch of how the critical film thickness h0c varies with the
fibre radius a (in log–log scale). For large fibres with a> a∗, the no-slip result h0c ∝ a3

dominates (see (6.2)). However, if the fibre size is reduced to a< a∗, the strong-slip result
h0c ∝ a9/2 will dominate instead (see (6.1)), where a∗ = (λκ−2)1/3 marks the critical fibre
radius for the stick–slip transition with κ−1

= (γ /ρg)1/2 being the capillary length.

value of Gc yields a fibre of radius a ≈ 150 µm. So one can vary both h0 and a
around the above values to see whether h0c∝ a9/2 according to Gc∼Λ

1/3 in the strong
slip regime. Moreover, to ensure h0 < λ in order to observe h0c∝ a9/2, the fibre radius
needs to be chosen below 150 µm× (7.0/0.7)1/9 ≈ 194 µm. Beyond this value, one
will enter the no-slip regime. In other words, when varying a from small to large
values, one might see that h0c first exhibits the strong-slip result, h0c ∝ a9/2 for small
a, which then turns into the no-slip result h0c ∝ a3 for large a. More precisely, when
plotting h0c against a as sketched in figure 11, one observes a transition from strong
slip to no slip according to

Strong slip: h0c ∼ a9/2/
(
κ−3λ1/2

)
for a< a∗, (6.1)

No slip: h0c ∼ a3/κ−2 for a> a∗, (6.2)

where a∗ = (λκ−2)1/3 marks the critical fibre radius for the slip-to-no-slip transition.
Another way to see how wall slip affects the coating is to look at the short-term

film thinning kinetics. Neglecting the surface tension terms (i.e. omitting undulations
of the interface), equation (2.9) is reduced to

ht +
(
h3
+Λh2

)
xG= 0. (6.3)

For small Λ, ht + G(h3)x = 0 leads the film to thin according to h ∝ t−1/2, just like
what Quéré observed. But when the film thins to the point where it becomes thinner
than λ, the thinning kinetics is governed by ht + ΛG(h2)x = 0. This accelerates the
thinning to h∝ t−1, which is close to the data trend for later times as seen in figure 12
reported by Quéré. Quéré attributed this thinning acceleration to axial grooves on the
fibres. Alternatively, this acceleration can be interpreted by slip effects. The slip effects
here could be caused by the hydrophobic fibres made by nylon, surface grooves, the
silicone oil or their combination. Together with the fact that the measured Gc = 0.71
is slightly greater than Gc = 0.5960 for no-slip fibres, all these deviations found in
Quéré’s experiment can be well explained by wall slip effects.
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FIGURE 12. (Colour online) Temporal evolution of the film thickness measured by Quéré
(1990), adapted from his figure 1. The film thinning kinetics can be accelerated from no-
slip h∝ t−1/2 to strong slip h∝ t−1 at late times.

7. Concluding remarks

We have demonstrated that wall slip can promote drop formation along a vertical
fibre. Both the drop height and falling speed can be significantly increased with the
amount of wall slip. In particular, when slip effects become strong, the critical Bond
number Gc for drop formation is found to increase with Λ as Gc≈ 0.7Λ1/3. The Λ1/3

factor then leads the critical film thickness to vary with the fibre radius as h0c ∝ a9/2,
more sensitive than the no-slip result h0c ∝ a3. Such a sensitivity to the fibre radius
due to wall slip explains why Gc found by Quéré (1990) is slightly greater than that
predicted by the no-slip model. The Λ1/3 factor might come from changes of two
length scales when wall slip effects become strong: (i) O(Λ1/3c−1/3) for the transition
film regions ahead and behind the main drop; and (ii) O(Λ−2/3c2/3) for the drop height.
These are very distinct from those for the no-slip case in which the transition film
regions are O(c−1/3) and the drop height is O(c2/3) (Yu & Hinch 2013). We also
find that the film thinning kinetics can be accelerated from no-slip h∝ t−1/2 to strong
slip h ∝ t−1 at late times, in accordance with Quéré’s experiment. When the film is
ultrathin, although strong slip effects can amplify capillary instability to make the film
more susceptible to drop formation, this effect can be inhibited by equally intensified
gravity draining through the KS mechanism.

It is worth remarking that the present analysis is more suitable for the situation
where apparent slip is generated by a polymeric liquid as in Quéré’s experiment. For
a flow over a rough or textured surface, however, the effective slip length can only
be defined when the film is much thicker than the size of the roughness. Hence, if
the film is much thinner than the size of roughness, our analysis will no longer be
applicable.
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Appendix A
The numerical method used to solve (2.10) is similar to that described in Yu &

Hinch (2013). As the uniform film regions are approached, asymptotic solutions can
be obtained by linearizing (2.10) about h = 1. Letting h = 1 + δη where δ � 1, to
leading order η satisfies

ηxxx + ηx +
1

1+Λ
((3+ 2Λ)G− c) η= 0. (A 1)

This equation has solutions of the form emx where m satisfies the cubic equation

m3
+m+

1
1+Λ

((3+ 2Λ)G− c)= 0. (A 2)

If the constant term of the cubic is positive, that is when c<(3+ 2ΛG), this equation
has one positive real root, m+, which yields an exponentially decaying solution as
x→−∞ of the form Aem+x, and two complex conjugate roots with negative real parts,
α ± iβ, that give rise to two oscillatory solutions that decay as x→∞ of the form
Beαx cos(βx+ k) where A, B and k are constants.

Equation (2.10) is rewritten as a system of three first-order differential equations,
and solved as an initial value problem using a Runge–Kutta method (ODE45 from
MATLAB). Let h1 be the solution of (2.10) with the initial condition specified at x=
−d1 coming from the monotonically decaying solution as x→ −∞, and let h2 be
the solution of (2.10) with the initial condition specified at x = d2 coming from the
oscillatory decaying solution as x→∞. We stop computing h1 and h2 at x = d, a
point in the middle of the drop where h is not too close to 1, and require h and hx
to be continuous and hxx = 0 there, i.e. h1(d)= h2(d), h1x(d)= h2x(d), h1xx(d)= 0 and
h2xx(d)= 0. An iterative scheme based on a Newton’s method is applied that adjusts
the speed c and the amplitude of the oscillatory decaying solution until the matching
conditions are satisfied.

Appendix B

Let x= x0 + c−1/3ξ . Then (2.10) becomes

hξξξ =
h− 1

h3 +Λh2
− c−2/3hξ + c−1G

1− h3
+Λ(1− h2)

h3 +Λh2
. (B 1)

For c� 1, the leading order problem is

hξξξ =
h− 1

h3 +Λh2
. (B 2)

The above equation is solved subject to matching conditions with the uniform film
regions, where h→ 1. Letting h = 1 + δη where δ � 1, ηξξξ = η/(1 + Λ), whose
solutions are

eξ/(1+Λ)
1/3
, e−ξ/2(1+Λ)

1/3
cos

(√
3

2
ξ

(1+Λ)1/3

)
, e−ξ/2(1+Λ)

1/3
sin

(√
3

2
ξ

(1+Λ)1/3

)
.

(B 3a−c)
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The appropriate asymptotic solution to match with the rear uniform film is the first
one given in (B 3), which is a purely decaying mode there, while in the front uniform
film, we retain the other two solutions since they decay as ξ→∞. From (B 2), in the
large drop region, where h� 1, the curvature is constant to leading order. Also, the
profiles approaching the large drop from either the front or rear transition regions can
be described by parabolas of the form

h∼ 1
2 P±ξ 2

+ R± = 1
2 c2/3P±(x− x0)

2
+ R±, (B 4)

where, by a suitable choice of the origin, equation (B 4) has no linear term in ξ . For
a given Λ, equation (B 2) is solved numerically using the purely decaying mode given
in (B 3) as an initial condition for the left transition region. This numerical solution is
matched with the large constant curvature drop as ξ→∞, yielding values for P+ and
R+. In the front (or right) transition region, the initial condition for h is expressed as
a combination of the two oscillatory solutions in (B 3),

h≈ 1+ Af e−ξ/2(1+Λ)
1/3

cos

(√
3

2
ξ

(1+Λ)1/3
+ φ

)
, (B 5)

where Af and φ are the amplitude (chosen to be small) and a phase difference. The
latter provides an extra degree of freedom in comparison with the rear transition
region. Numerically, it is adjusted using a Newton’s method until P− = P+, so that
the pressure is continuous.

As explained by Yu & Hinch (2013), from the perspective of the large drop, the
constant terms in (B 4) denote the thicknesses of the uniform films. The critical G
can be obtained from the following relationship

G=
R+ − R−

2π
. (B 6)
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