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Transitional behaviour of convective patterns
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The present study focuses on the transition between steady convective patterns in
fluid-saturated porous media. We conduct experiments to identify the transition
point from the single- to double-cell pattern in a two-dimensional porous medium.
We then perform a basin stability analysis to assess the relative stability of different
convective modes. The resulting basin stability diagram not only provides the domains
of coexistence of different modes, but it also shows that the likelihood of finding
convective patterns depends strongly on the Rayleigh number. The experimentally
observed transition point from single- to double-cell mode agrees well with the
stochastically preferred mode inferred from the basin stability diagram.
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1. Introduction

The emergence of flow patterns is omnipresent in nature and is observed in
numerous hydrodynamical systems such as thermal convection, convection in binary
mixtures, surface waves, rotating fluids and Taylor–Couette flow (Cross & Hohenberg
1993). The problem of free convection in a fluid-saturated porous medium subjected
to an adverse temperature gradient, which is known as Horton–Rogers–Lapwood
convection (HRLC), is an example of a dynamical system showing a multiplicity of
flow patterns (Horne 1979; Schubert & Straus 1979; Straus & Schubert 1979; Steen
1983; Riley & Winters 1989; Sezai 2005; Henry et al. 2012). HRLC was first studied
by Horton & Rogers (1945) and Lapwood (1948), who performed linear stability
analysis aimed at identifying the critical conditions for the onset of convection in a
horizontally infinite porous layer. Beck (1972) extended the linear stability analysis
of these pioneering studies to confined porous enclosures. Several numerical studies
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later confirmed the multiplicity of convection solutions (Horne 1979; Schubert &
Straus 1979; Straus & Schubert 1979) at supercritical values of the Rayleigh number.
The results showed that, depending on the initial perturbation, different convection
patterns can occur and remain stable at a given Rayleigh number. A significant
research activity has followed to identify these multiple convection solutions in
HRLC (Steen 1983; Riley & Winters 1989; Sezai 2005; Henry et al. 2012). The
bifurcation analysis of Riley & Winters (1989) is one of the first systematic studies
to characterize the different convection modes in a two-dimensional (2-D) saturated
porous cavity using methods developed for dynamical system theory. Recently, Henry
et al. (2012) extended this work using a continuation technique to track the first four
stable convection modes from the steady bifurcation point up to the corresponding
oscillatory (Hopf) bifurcation point of each mode.

The standard bifurcation analysis of HRLC using linear stability analysis and
continuation techniques is based on the assumption that the system is subjected to
infinitesimal perturbations. These techniques enable the detection of bifurcation points
and smoothly track each stable convection mode over a range of Rayleigh number.
The main drawback, however, is that they only provide local information about the
(range of) existence and any possible coexistence of different convection modes. It is
now well understood that multistable dynamical systems exhibit complex interactions,
such as transition and switching between the dominant states. Therefore, knowing the
local information about their existence provides only a partial understanding of the
overall behaviour of a multistable system (Feudel 2008; Zhou et al. 2012).

The main idea of the current study is to apply a new approach for HRLC, which
not only provides the local information about the (co)existence of different patterns,
but also determines their relative stability as well as how the basin stability of these
modes contracts or expands as the Rayleigh number varies. The strategy we are
adopting here is first to provide new experimental evidence on the transition from a
single-cell to double-cell convection mode in a 2-D HRLC problem. The transition
happens at a Rayleigh number at which the two modes can coexist as stable patterns,
according to bifurcation analysis. In order to explain the observed modal transition,
we perform a basin stability analysis (Menck et al. 2013) on 2-D HRLC. Menck et al.
(2013) showed how, in a multistable dynamical system, the volume of an attractor’s
basin provides a universal measure for quantifying the degree of stability of a state
to random perturbations. Thus, in addition to identifying the range of existence of
each mode, the resulting basin stability diagram carries information about how the
likelihood of finding each mode varies with the Rayleigh number – a dynamical
characteristic of HRLC that cannot be inferred from bifurcation diagrams.

The paper is organized as follows: the mathematical formulation of the HRLC
problem is introduced in § 2. Details on the experimental set-up and the corresponding
experimental results bearing on the transition between modes are presented in § 3.
We develop a basin stability analysis for HRLC in § 4.

2. Mathematical formulation

For an isotropic porous medium subjected to a uniform cold temperature TC

from the top boundary and hot temperature TH from the bottom surface, we choose
H, αm/H, H2/αm and θ = (T − TC)/(TH − TC) as the dimensionless variables for
length, velocity, time and temperature, respectively, where H is the height of the
porous layer, and αm = km/(ρc)f is the effective diffusivity of the medium based on
the stagnant thermal conductivity km and fluid heat capacitance (ρc)f . The momentum
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Transitional behaviour of convective patterns in porous media

and energy conservation equations take the following dimensionless form in terms of
the stream function ψ (Nield & Bejan 2013):

∇2ψ = Ra
∂θ

∂x
, (2.1)

∂θ

∂t
+ V · ∇θ =∇2θ, (2.2)

where V = (u, v)= (−∂ψ/∂y, ∂ψ/∂x) and Ra is the Rayleigh number defined as

Ra= gβ(TH − TC)KH
αmνf

, (2.3)

where K is the isotropic permeability of the medium, νf is the kinematic viscosity of
the fluid, β is the thermal expansion coefficient and g is the gravitational acceleration.
The appropriate boundary conditions are constant temperature and zero flux for the
horizontal and vertical surfaces, respectively, while a no-slip condition is applied at
the surface of the solid:

ψ = 0, θ = 1, for y= 0, for all x, (2.4a,b)
ψ = 0, θ = 0, for y= 1, for all x, (2.5a,b)

ψ = 0,
∂θ

∂x
= 0, for x= 0, 1, for all y, (2.6a,b)

In the present study, we use the average-scale equations (2.1) and (2.2) for the
basin stability analysis of HRLC in a square enclosure. For this purpose, a fast
computational algorithm is necessary for performing the Monte–Carlo simulations
over a large number of runs subjected to random initial conditions.

We rewrite the temperature equation based on the departure from the conduction
state, i.e. θnew = θ − (1− y). This converts the non-homogeneous boundary condition
at the bottom surface to a homogeneous one. The dimensionless energy equation then
becomes (dropping the subscript for convenience):

∂θ

∂t
+ u

∂θ

∂x
+ v

(
∂θ

∂y
− 1
)
=∇2θ, (2.7)

where θ is now the deviation from the conduction state. This change of variable makes
the governing equations suitable for using a fast Poisson solver based on discrete
Fourier transforms. For the ψ field, we use a central finite difference scheme on space
derivatives and treat the source term in (2.1) explicitly. The same procedure is used
for the temperature field by treating the advective terms in (2.7) explicitly and the
diffusion term implicitly.

3. Experimental study

3.1. Experimental design
For the experimental study, we designed a pseudo-two-dimensional experimental set-
up using a non-invasive visualization technique based on infrared (IR) thermography.
A schematic of the set-up is shown in figure 1. We perform the visualization of the
temperature field with a FLIR long-range IR (LWIR) thermal camera within spectral
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LWIR camera

IR optics Thermoelectric cooler
Copper plate

Copper plate
Power resistors

Double-pane

Sketch of the cell

(a) (b)

Side view

FIGURE 1. Schematic of the experimental convection cell (not to scale); panel (a) shows
only the fluid-filled area without the solid square rods, for clarity.

ranges of 7.5 and 13 µm. The experimental domain consists of a 10 × 10 array of
acrylic rods and it is filled with 20 cSt silicone oil. The thermal conductivity of the
silicone oil and acrylic are 0.142 and 0.19 W m−1 K−1, respectively. The porosity is
0.5 and the size of the cell is 45× 45× 10 mm3. The domain is heated from below
with power resistors and cooled from the top with a thermoelectric module. Using
copper plates with very high thermal conductivity compared to acrylic and silicone oil
at the bottom and top boundaries allows us to assume a constant-temperature boundary
condition, which was tested continuously with a set of K-type thermocouples attached
to both copper plates. Additionally, a PID-based temperature controller is used to
control the temperature on the two horizontal plates.

The choice of 10× 10 array is based on detailed pore-scale numerical simulations
over a two-dimensional domain similar to the one shown in figure 1 (Karani & Huber
2017). The pore-scale simulations, which have been conducted with a thermal lattice
Boltzmann model (Karani & Huber 2015), show that the average thermal behaviour of
a 10× 10 pore-scale domain is analogous to that of a Darcian homogeneous porous
medium and satisfies the assumption of local thermal equilibrium between the solid
and fluid phases over the range of values of Rayleigh number considered here (Karani
& Huber 2017). Figure 2(a) shows that the average Nusselt number computed from
the pore-scale 10 × 10 simulations agrees with the average-scale solution for both
single- and double-cell convection modes. Figure 2(b) also shows that increasing the
resolution from 10× 10 to 20× 20 does not affect the simulated temperature profiles
over the domain. We used the same lattice Boltzmann model and calculated the Darcy
number of the porous enclosure to be Da = K/H2 = 2.435 × 10−5 (Karani & Huber
2017).

In the present pseudo-two-dimensional set-up, we used thick insulating materials
at the sidewalls of the porous enclosure. Visualization from the front requires an
IR-transparent window while limiting the amount of heat loss from this side. For
this purpose, we use an AMTIR (amorphous material transmitting infrared radiation)
optic, which has a low thermal conductivity of about 0.25 W m−1 K−1. The window
is treated with antireflective (AR) coatings on both sides. In order to further minimize
the heat loss from the front, two of these AMTIR optics of 2 mm thickness have
been assembled to form a double-pane IR window (figure 1b). The IR camera reads
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FIGURE 2. (a) Comparison of heat transfer data between pore-scale simulations of 10×
10 solid blocks (Karani & Huber 2017) and the average-scale solution of Henry et al.
(2012) for single- and double-cell patterns; (b) horizontally averaged temperatures of the
pore-scale simulations for 10× 10, 15× 15 and 20× 20 solid blocks.

the temperature field of the outermost layer of the convection cell, which is in
contact with the IR optic. This comprises both the fluid phase and the solid blocks.
The contact between the square blocks and the IR optic was made with a thin
(submillimetre) layer of a thermally conductive paste.

Since the ratio of the depth of the convection cell to its height and width is 4.5
times smaller than the frontal aspect ratio, i.e. 1, we can assume that, for the range
of Rayleigh numbers studied experimentally, the effect of the third dimension is
relatively negligible. Therefore, we can assume that the flow patterns are mostly
two-dimensional. The heat transfer readings presented in the next section confirm this
assumption. The amount of heat transfer characterized by the average Nusselt number
is calculated from the net electrical power input:

Nu= [net power input]
Akm(TH − TC)/H

, (3.1)

where A is the surface area of the bottom hot surface.

3.2. Experimental results
We conduct a series of experiments where we ramp up Ra by sequentially increasing
the temperature difference between the hot and cold plates and letting the system relax
to reach a steady state at each step. In a steady state, we record the average heat flux
(Nu) and flow patterns for each experiment. In other words, for each convection case,
the initial conditions are always the steady flow reached at the previous Rayleigh
number. Figure 3 illustrates the observed steady patterns for several Rayleigh numbers
shown as black and white fringes. At Ra = 32, which is below the critical value of
4π2, figure 3(a) shows that heat conduction prevails, i.e. the isotherms are horizontal.
The curvature in the lower left part of the isotherms in figure 3(a) is due to a
very small gap between the lower left square acrylic rod and the IR optic, resulting
in imperfect horizontal isotherms in that region. The maximum Rayleigh number
explored is Ra = 221; higher values have been avoided because of the high bottom
boundary temperature.
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

(m) (n) (o) (p)

FIGURE 3. Steady-state patterns at different Ra.

Taking a closer look at the steady-state patterns in figure 3 reveals that the stable
mode is a single-cell pattern with a counter-clockwise rotation for Ra= 46–108. Then
the stable mode switches naturally from single-cell at Ra= 108 to double-cell at Ra=
119, which remains the dominant mode for the rest of the Rayleigh numbers explored.
The same behaviour was observed when the Rayleigh number was decreased from
Ra = 221 to Ra = 46, with the transition point occurring at exactly the same point
and no signs of hysteresis or triple-cell pattern were found.

In order to identify the point of transition more accurately, we applied a smaller
heating step at Ra = 108 and recovered a single-cell mode at Ra = 115. A further
increase from Ra = 115 to Ra = 119 resulted in the transition from single-cell
to double-cell convection. Figure 4 shows snapshots of the reorganization of the
convection cells from single- to double-cell during the transition from Ra = 115 to
Ra= 119. The step’s magnitude of 1Ra= 4 was the minimum that could be achieved
in the current experimental set-up, and any effort to recover the single-cell mode
beyond Ra= 115 led to the transition to the double-cell pattern.

We complemented this series of experiments with a different heating scenario. The
goal of this new set of experiments is to verify whether the point of transition is
sensitive to the magnitude of the applied thermal loading 1Ra. Figure 5 presents a
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Transitional behaviour of convective patterns in porous media

FIGURE 4. Experimental snapshots (IR images) of the transition from single-cell mode at
Ra= 115 (leftmost pattern) to double-cell mode at Ra= 119 (rightmost pattern).

Initial state(a) (b)Final state Initial state Final state

FIGURE 5. Summary of the transitional behaviour from single-cell to double-cell in our
experiments: (a) large 1Ra, (b) small 1Ra.

summary of the results for both large and small heating size 1Ra, and reveals that
using a large 1Ra and starting off from the steady-state pattern at Ra= 52 leads to a
single-cell convection mode at Ra= 108 and 115. The transition to double-cell mode
occurs again at Ra=119, similar to the case with small 1Ra (see figure 5b). The only
observed difference in the transitions under small and large thermal loading 1Ra is
that the former happens in a significantly shorter time than the latter, i.e. about 3 h
compared to about 9 h.

Figure 6 shows a comparison of the correlation of heat transfer data Nu and the
thermal forcing Ra in the experiments with those from the numerical solution offered
by Henry et al. (2012) for HRLC in a 2-D square container. The Ra at which the
change in modality of convection is experimentally observed to occur is marked by
an arrow. Good agreement is observed between the data points and the average-scale
solution of Henry et al. (2012). The main discrepancy occurs at higher Ra values
where the increase in the heat loss from the front of the set-up with the double-pane
window becomes significant.
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Average-scale, single-cell, Henry et al. (2012)
Average-scale, double-cell, Henry et al. (2012)
Average-scale, triple-cell, Henry et al. (2012)

FIGURE 6. Nu measured experimentally for single- and double-cell modes. Lines: average-
scale solution based on Darcy single-temperature models of Henry et al. (2012); symbols:
experimental data. The arrow shows the transition point between single-cell and double-
cell patterns observed experimentally.

At the experimentally found transition point, the bifurcation analysis of HRLC
tells us that both single- and double-cell patterns can coexist (Henry et al. 2012).
However, the natural transition from single-cell to double-cell mode under different
heating scenarios shows that, although both modes are stable, they possess different
extents of stability in the face of random perturbations, and this is responsible for the
hopping from one stable pattern to another. Therefore, the multiplicity of HRLC calls
for a new metric that characterizes the relative stability of different stable patterns.
The basin stability analysis of HRLC provides the details of this characteristic in the
next section.

4. Basin stability analysis of HRLC

We use a basin stability analysis (Menck et al. 2013) to find the relative stability
of different convective modes when the system is subjected to random perturbations.
A basin stability analysis links the volume of the basin of attraction in a multistable
system to the likelihood of finding the system in a certain steady state (Menck et al.
2013).

The detailed continuum-scale bifurcation analysis of Henry et al. (2012) shows that
the first four modes in HRLC are stable below Ra= 382.93. In this section, we extend
the results of Henry et al. (2012) by not only providing the information about the
range of existence, but also showing how the basin of attraction of each mode varies
with the Rayleigh number, and how this results in different probabilities of occurrence.

To perform the basin stability analysis for HRLC, it is necessary to calculate the
basin of attraction for each stable convective mode. A basin of attraction is the set
of all points in the phase space, chosen as random initial conditions, that return the
system to a specific attractor. In realistic porous media, the factors influencing the
final asymptotic stable convective modes may originate from different sources, such
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as imperfect boundaries, uncertainties in thermophysical properties, uncertainties in
the initial conditions and uncontrolled noise from the environment. In the present
study, we focus on the contribution of random initial conditions to the selection of
stable modes. As pointed out by Venturi, Wan & Karniadakis (2010), the complete
formulation of initial perturbations in real physical systems involves the incorporation
of an infinite number of wave modes, which makes the problem computationally
prohibitive. Here, since equation (2.1) is a boundary value problem and fluid inertia
is negligible, we assume that the initial perturbation applies only to the conduction
solution of the temperature field and involves only a finite number n of wave modes,
in the following form:

θpert(x, y, t= 0)=
n∑

k=1

ak cos(kπx) sin(πy), (4.1)

where ak ∈ [−1, 1] is a random variable based on a uniform probability distribution.
We consider multiple values for the number of wave modes n to investigate how
different modes in the initial perturbation contribute to the asymptotic final stable state
within the range of Ra studied here.

The basin stability at a given Rayleigh number is computed using the continuum-
scale equations (2.1) and (2.7) with homogeneous boundary conditions and subjected
to random initial perturbations defined as in (4.1). We determine the basin stability
(or equivalently the probability of occurrence) of each mode by counting its relative
proportion of realizations that led to a given cell pattern under steady conditions.

Figures 7–9 show the basin of attraction of different convective modes. In these
figures, a1 to a4 are the prefactors of the first four wave modes, indicating the relative
contribution of each in the initial perturbation field in (4.1). The basins of attraction
at Ra = 100 shown in figure 7 clearly illustrate that, although single- and double-
cell modes coexist at this Rayleigh number, the first convective mode possesses a
larger basin of attraction. However, figure 8 shows how the basin of attraction of the
first mode shrinks considerably in size as the Rayleigh number increases from 100
to 150. We observe that for Rayleigh numbers of 100 and 150, only the first and
second convectives modes are stable, which is consistent with the bifurcation analysis
of Henry et al. (2012). Also, the basins of attraction in figures 7 and 8 show a strong
dependence of the stable convection mode on the prefactors a1 and a2, and a weak
dependence on a3 and a4. This behaviour, however, changes for Ra= 250, where the
triple-cell mode emerges, as shown in figure 9, and a3 impacts the mode selection
process.

Figures 7–9 illustrate that the coexistence of the single-, double- and triple-cell
modes is accompanied by a large difference in the size of the corresponding basin of
attraction, and that the relative size of the basins of attraction is a strong function of
the Rayleigh number. We compare the relative size (volume) of the basins of attraction
of each mode to the total size of the basin, which provides a measure of the likelihood
of finding a convective mode at a certain Rayleigh number (Menck et al. 2013).

Figure 10(a) shows the probability of formation of the first and second convection
modes based on n = 2 and n = 4 wave modes in (4.1). There is only a slight
difference between considering n = 2 and n = 4 in the initial perturbation. In order
to show the role of higher-order wave modes, the probability of each mode is
shown in figure 10(b) for a wide range of Rayleigh numbers. The figure shows that
increasing the number of wave modes from n = 4 to 10 has an insignificant effect
on the probability trends. In other words, higher-order wave modes make a smaller
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FIGURE 7. Basins of attraction for the first and second convective modes based on the
superposition of four modes in the initial perturbation, Ra= 100.
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FIGURE 8. Basins of attraction for the first and second convective modes based on the
superposition of four modes in the initial perturbation, Ra= 150.
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FIGURE 9. Basins of attraction for the first, second and third convective modes based on
the superposition of four modes in the initial perturbation, Ra= 250.

contribution to the steady-state stable convection mode over this range of Rayleigh
numbers. The overall number of realizations conducted at each Rayleigh number
is chosen so as to provide statistically robust results (at least 50 000 realizations,
see figure 11).
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FIGURE 10. Basin stability diagrams. (a) Effect of the first two wave modes (lines) and
four wave modes (line-symbols) on the probability of formation; first mode: (—, − ◦ −),
second mode: (· −, · · · @). (b) Effect of the first four wave modes (lines) and 10 wave
modes (symbols) on the probability of formation; first mode: (—, @), second mode:
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FIGURE 11. Variation of probability of occurrence with the number of realizations; first
mode: (—), second mode: (−−), third mode: (· −), fourth mode: (· · · ).

The steady bifurcation points for the first four stable convective modes in the
basin stability diagram of figure 10(b) agree well with the bifurcation analysis
(table 3 in Henry et al. (2012)). However, according to the basin stability diagram of
figure 10(b), the domains of coexistence of multiple modes are strongly influenced
by their respective basin stability. For example, the probability of finding the first
convection mode drops suddenly as the double-cell mode emerges, and in fact it falls
below 10 % for Ra & 200. At the same time, the formation of double convection
becomes more likely, and at Ra∼ 112 it overtakes the single-cell mode and remains
stochastically the most probable mode for a wide range of Rayleigh numbers starting
from Ra ' 120. Regarding the triple-cell mode, we observe from figure 10(b) that
the probability of finding this mode is less than 10 % for Ra . 210, beyond which
it increases considerably up to Ra ' 315. On the other hand, figure 10(b) informs
us that the probability of occurrence of the four-cell mode remains below 1 % from
its steady bifurcation point at Ra' 263.7 (consistent with the bifurcation analysis of
Henry et al. (2012)) up to the maximum Rayleigh number studied here. Therefore,
the present bifurcation diagram clearly shows that knowledge of just the range of
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FIGURE 12. Transition points from single-cell to double-cell mode. Horizontal arrows
show the experimentally observed patterns; coloured regions indicate the stochastically
preferred patterns; the vertical dashed line shows the transition point based on the
maximization of heat transfer.

(co)existence of different modes in the multistable HRLC provides only a partial
understanding of the complex dynamics of the system.

The star symbols in figure 10(b) show the Rayleigh number where we experimentally
observed the transition from single-cell mode to double-cell pattern. The transition
point inferred experimentally agrees well with the point where the double-cell mode
becomes stochastically preferred over the single-cell mode. For Rayleigh numbers
beyond the transition point, we observed experimentally that the double-cell pattern
remains the dominant mode, which is consistent with the basin stability diagram.

5. Summary

The present study investigates the basin stability analysis of Horton–Rogers–
Lapwood convection in porous media. The resulting basin stability diagram provides
information on the relative stability of different steady convection modes. The results
show that, although different modes coexist over a given range of Rayleigh number,
their probability of occurrence varies with Rayleigh number as the relative size of their
basin of attraction grows or decreases. Experiments confirm that the transition from
a single- to double-cell convection pattern occurs when the sizes of the respective
stability basins cross over. The numerical study of Schubert & Straus (1979) confirmed
that the preferred convective pattern does not necessarily maximize the heat transfer.
The present study further suggests that, under random perturbations/noise, the patterns
most likely to emerge are the ones that have the greater basin at that Rayleigh
number. Figure 12 compares the transition points from the present basin stability
analysis and experimental observations with the patterns that would maximize the
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Transitional behaviour of convective patterns in porous media

heat transfer (refer to figure caption for details). This comparison confirms that, while
the transition point predicted by the basin stability analysis agrees well with the
one observed experimentally, the transition point based on the maximization of heat
transfer occurs at a higher Rayleigh number. Characterizing the basin of attraction
of a desired convective mode and controlling the shape of finite perturbations could
potentially allow us to manage the thermal behaviour and to optimize the heat transfer
in multistable HRLC.
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