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Tropical geometry and Newton–Okounkov
cones for Grassmannian of planes
from compactifications
Christopher Manon and Jihyeon Jessie Yang
Abstract. We construct a family of compactifications of the affine cone of the Grassmannian variety
of 2-planes. We show that both the tropical variety of the Plücker ideal and familiar valuations
associated to the construction of Newton–Okounkov bodies for the Grassmannian variety can be
recovered from these compactifications. In this way, we unite various perspectives for constructing
toric degenerations of flag varieties.

1 Introduction

The study of toric degenerations of flag varieties is a meeting point for techniques from
commutative algebra, algebraic geometry, and representation theory. Grassmannian
varieties, in particular, being that they are often the most straightforward case to
study after projective space, provide a testing ground for new constructions of toric
degenerations, as well as a tractable class of examples for comparisons. A survey of
recent activity in this area can be found in [FFL17c].

In this paper, we study the Grassmannian variety Gr2(Cn) of 2-planes in Cn .
Let I2,n be the Plücker ideal that cuts out the affine cone X ⊂ A(

n
2) of Gr2(Cn).

Speyer and Sturmfels [SS04] provide a comprehensive understanding of the known
toric degenerations of Gr2(Cn), which are constructed from initial ideals of I2,n and
organized by tropical geometry. In particular, in [SS04] it is shown that the cones of the
tropical variety, Trop(I2,n), are in bijection with trees σ with n ordered leaves labeled
by {1, . . . , n} such that the valence of any nonleaf vertex is at least 3. In particular,
the maximal cones of Trop(I2,n) are in bijection with trivalent trees σ , and the initial
ideal associated with each of these cones is prime and binomial. We present a distinct
construction of this class of well-known toric degenerations using the representation
theory of SL2 (Section 8), a quiver variety-style construction of X, and a family of
compactifications Xσ (Section 4), one for each trivalent tree σ . Our main result is the
following. See [KM19] and Section 2 for the notion of Khovanskii basis. Throughout
the paper, we assume that no tree σ contains a vertex of valence 2.
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Theorem 1.1 For each trivalent tree σ as above, and a total ordering < on the edges of
σ, we construct:
(1) a simplicial cone Cσ of discrete, rank 1 valuations onC[X]with common Khovanskii

basis given by the Plücker generators of C[X],
(2) a rank 2n − 3 discrete valuation vσ ,< on C[X] with Khovanskii basis given by the

Plücker generators of C[X],
(3) a compactification X ⊂ Xσ by a combinatorial normal crossings divisor Dσ such that

Cσ is spanned by the divisorial valuations associated to the components of Dσ , and
vσ ,< is a Parshin point valuation (see Section 8.2) built from a flag of subvarieties of
Xσ obtained by intersection components of Dσ .

Furthermore, the affine semigroup algebra C[Sσ] associated to the value semigroup Sσ
of vσ ,< is presented by the initial ideal corresponding to the cone in Trop(I2,n) associated
to σ.

Remark 1.2 We observe that by [KM19, Lemma 3], the valuation vσ ,< coincides with
any homogeneous valuation with value semigroup Sσ constructed by one of the many
methods used for constructing degenerations of flag varieties.

The compactification Xσ has a natural description in terms of the geometry of X. In
Section 4, we construct X as a type of quiver variety coming from a choice of directed
structure on the tree σ . In particular, each edge of σ is assigned a space, either SL2
or A2. The compactification Xσ is then the space where these edge coordinates are
allowed to take values in a compactification of SL2 or A2. We also show that Xσ is
always Fano (Proposition 6.9).

To explain our results, we recall the elements of two general theories underlying
toric degeneration constructions. As a set, the Berkovich analytification Xan of an
affine variety [Ber90] is the collection of all rank 1 valuations on the coordinate
ring C[X], which restrict to the trivial valuation on C. If F = { f1 , . . . , fn} is a set
of generators of C[X], it is well-known (see [Pay09]) that the evaluation map evF ,
which sends v ∈ Xan to (v( f1), . . . , v( fn)), maps onto the tropical variety Trop(I) of
I, the ideal of forms that vanish on F. It is difficult to find a section of this map. The
main result of the work of Cueto et al. [CHW14] carries out such a construction in
the projective setting for Gr2(Cn). Part (1) of Theorem 1.1 extends to a version of this
result on the affine cone X. We define a polyhedral complex of trees T(n) in Section
5, which is close (up to a lineality space) to the Biller–Holmes–Vogtmann space of
phylogenetic trees [SS04, BHV01] .

Theorem 1.3 There is a continuous map which identifies T(n) with a connected
subcomplex of the analytification Xan . The evaluation map defined by the Plücker
generators of C[X] takes T(n) isomorphically onto Trop(I2,n).

Representation theory provides many constructions that are useful for construc-
tion of toric degenerations. These methods underlie constructions used by Alexeev
and Brion [AB04], the Newton–Okounkov construction of Kaveh in [Kav15], and
the birational sequence approach used in [FFL17a, FFL17b] (see also [MZ14]). The
construction of vσ ,< in Theorem 1.1 relies instead on properties of the tensor product
in the category of SL2 representations. These valuations are also used in [Man16].
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Grassmannian compactifications 201

The work on canonical bases in cluster algebras by Gross et al. [GHKK18], and
then later used by Rietsch and Williams [RW19] and Bossinger et al. [BFF+18]on
Grassmannians also provides a powerful organizing tool for toric degenerations. In
[KM19, GHKK18, RW19] , compactifications of varieties by nice divisors are linked
with the construction of a toric degeneration. We expect each compactification Xσ
can be realized via a potential function construction in the manner of [GHKK18] and
[RW19]. The compactification Xσ is also closely related to the compactification of the
free group character variety X(Fg , SL2) by a combinatorial normal crossings divisor
constructed in [Man18].

2 Background on valuations and tropical geometry

In this section, we introduce the necessary background on filtrations of commutative
algebras and the functions associated to these filtrations, valuations, and quasi-
valuations. We recall the critical notions of adapted basis and Khovanskii basis for a
valuation, which enable computations with valuations. We also summarize the results
of Kaveh and the first author [KM19], which directly relate higher-rank valuations to
tropical geometry.

2.1 Quasi-valuations and filtrations

Let A be a commutative domain over C, and let Zr be the free Abelian group of
rank r endowed with a total group ordering ≺ (e.g., the lexicographic ordering). A
(decreasing) algebraic filtration F of A with values in Zr is the data of a C-subspace
Fα ⊂ A for each α ∈ Zr such that Fα ⊃ Fβ when α ≺ β, Fα Fβ ⊂ Fα+β , ∀α, β ∈ Zr , and
⋃α∈Zr Fα = A. We further assume that 1 ∈ F0 and 1 ∉ Fβ when 0 ≺ β. For any α ∈ Zr , we
let F≻α be ⋃β≻α Fβ . For any such filtration, we can form the associated graded algebra:

grF(A) = ⊕
α∈Zr

Fα/F≻α .(2.1)

Example 2.1 If A carries a Zr grading, A = ⊕α∈Zr Aα , then for any ≺ there is a
filtration on A defined by setting Fα = ⊕β⪰α Aβ . In this case, grF(A) is canonically
isomorphic to A.

Let f ∈ Fα ⊂ A but f ∉ F≻α , then we have the initial form f̄ ∈ Fα/F≻α ⊂ grF(A). It
is straightforward to show that f g = f̄ ḡ. We say that F only takes finite values if such
an α exists for every f ∈ A. We assume from now on that F only takes finite values;
this is the case for all the filtrations we consider in this paper.

Definition 2.1 Let F be a filtration as above. We define the associated quasi-valuation
vF ∶ A/{0} → Zr as follows:

vF( f ) = α such that f ∈ Fα , f ∉ F≻α .(2.2)

The function vF always has the following properties:
(1) vF( f g) ⪰ vF( f ) + vF(g),
(2) vF( f + g) ⪰ MIN{vF( f ), vF(g)},
(3) vF(C) = 0, ∀C ∈ C.
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More generally, a function that satisfies (1)–(3) above is called a quasi-valuation on
A. If w ∶ A/{0} → Zr is a quasi-valuation, we also get a corresponding filtration Fw

defined as follows:

Fw
α = { f ∣ w( f ) ⪰ α}.(2.3)

One easily checks that the constructions, F → vF and w→ Fw , are inverse to each
other. Finally, a quasi-valuation v is said to be a valuation if v( f g) = v( f ) + v(g),
∀ f , g ∈ A.

2.2 Adapted bases

Now, we recall the notion of an adapted basis [KM19, Section 3]. Adapted bases
facilitate computations and allow quasi-valuations to be treated as combinatorial
objects. We continue to use quasi-valuations with values in Zr , but we observe that
the results in this section work with any ordered group.

Definition 2.2 A C-vector space basis B ⊂ A is said to be adapted to a filtration F if
Fα ∩B is a vector space basis for all α ∈ Zr .

If {Fα} is a collection of vector subspaces of A (not necessarily forming a filtration)
with the property that any intersection Fα ∩B is a basis of Fα , then the same property
holds for any vector subspace of A constructed by intersections and sums of the
members of {Fα}. It immediately follows then that if the Fα forms a filtration F, then
F≻α ∩B is a basis of F≻α and the equivalence classes B̄α of basis members B ∩ Fα/F≻α
form a basis of Fα/F≻α . We let B̄ ⊂ grF(A) be the disjoint union⊔α∈Zr B̄α ; this is a basis
of grF(A), which is adapted to the grading byZr . If a quasi-valuation v corresponds to
a filtration F with adapted basis B, we say that B is adapted to v. The next proposition
summarizes the basic properties of adapted bases.

Proposition 2.2 Let v be a quasi-valuation with adapted basis B, then:
(1) for any f ∈ A with f = ∑i C i b i , v( f ) = MIN{v(b i) ∣ C i ≠ 0},
(2) if B′ is another basis adapted to v, then any b ∈ B has a upper triangular expression

in elements of B′,
(3) ifB is adapted to another quasi-valuationw and v(b) = w(b),∀b ∈ B, then v = w.

Proof For part (1), let α = MIN{v(b i) ∣ C i ≠ 0} and note that f ∈ Fα , {b i ∣ C i ≠
0} ⊂ Fα , and v( f ) ⪰ α. If f ∈ Fβ with β ≻ α, then all b i ∈ Fβ , which is a contradiction.
For part (2), let b ∈ B have value v(b) = α; then we can write b = ∑C i b′i for b′i ∈ B′.
From part (1) we have α = MIN{v(b′i) ∣ C i ≠ 0}. For part (3), note that for any
f ∈ A with f = ∑C i b i , we have v( f ) = MIN{v(b i) ∣ C i ≠ 0} = MIN{w(b i) ∣ C i ≠
0} = w( f ). ∎

More generally, if we are given a direct sum decomposition A = ⊕i∈I A i of A as a
vector space, we say that this decomposition is adapted to a filtration F if for any α ∈ Zr

we have that Fα is a direct sum of a subset of the spaces A i . Notice that, in this case,
any selection of basis for each A i gives a basis adapted to F. It is possible to define a
sum operation on the set of all quasi-valuations adapted to a given basis B ⊂ A.
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Definition 2.3 Let v,w ∶ A/{0} → Zr be quasi-valuations, which share a common
adapted basis B ⊂ A, then we define the sum [v +w] ∶ A/{0} → Zr to be v(b) +w(b)
for any b ∈ B, and extend this to f = ∑C i b i , b i ∈ A, by the setting [v +w]( f ) =
MIN{[v +w](b i) ∣ C i ≠ 0}.

Proposition 2.3 The following holds for the sum operation:
(1) the sum [v +w] of two quasi-valuations is a quasi-valuation,
(2) the sum operation is commutative and associative,
(3) for any v, [∑n

i=1 v] = nv,
(4) the sum has neutral element, the quasi-valuation o ∶ A/{0} → Zr defined by o( f ) =

0, ∀ f ∈ A/{0},
(5) the set of quasi-valuations adapted to B can be identified with the monoid of points

in [Zr]B which satisfy v(b i) + v(b j) ⪯ MIN{v(bk) ∣ b i b j = ∑Ck bk , Ck ≠ 0}.

Proof For part (1), clearly [v +w](C) = 0, ∀C ∈ C.
For f , g ∈ A/{0}, we write f = ∑C i b i and g = ∑K i b i ,∀b i ∈ B. The sum [v +

w]( f + g) is then computed by MIN{v(b i) +w(b i) ∣ C i + K i ≠ 0}; this must be
larger than MIN{v(b i) +w(b i) ∣ C i ≠ 0} or MIN{v(b i) +w(b i) ∣ K i ≠ 0}. Thus,
[v +w]( f + g) ⪰ MIN{[v +w]( f ), [v +w](g)}.

Now, consider the product f g = ∑C i K jb i b j . First, we show that [v +w](bb′) ⪰
[v +w](b) + [v +w](b′) for any b, b′ ∈ B: Let bb′ = ∑k Tk bk , bk ∈ B. Then,

[v +w](bb′) = MIN{[v +w](bk) ∣ Tk ≠ 0} = MIN{v(bk) +w(bk) ∣ Tk ≠ 0}
⪰ MIN{v(bk) ∣ Tk ≠ 0} + MIN{w(bk) ∣ Tk ≠ 0}
= v(bb′) +w(bb′) (by Proposition 2.2)
⪰ v(b) + v(b′) +w(b) +w(b′)
= [v +w](b) + [v +w](b′).

Finally,

[v +w]( f g) ⪰ MIN{[v +w](b i b j) ∣ b i b j appears in f g}
⪰ MIN{[v +w](b i) + [v +w](b j) ∣ b i b j appears in f g}
= MIN{v(b i) +w(b i) + v(b j) +w(b j) ∣ b i b j appears in f g}
⪰ MIN{v(b i) +w(b i) ∣ C i ≠ 0} + MIN{v(b j) +w(b j) ∣ K j ≠ 0}
= [v +w]( f ) + [v +w](g).

For parts (2)–(4), we observe that this operation is commutative and associative by
definition. It is easy to check [∑n

i=1 v](b i) = nv(b i) for any b i ∈ A i ; this implies that
[∑n

i=1 v]( f ) = nv( f ) for any f ∈ A. Similarly, [v + o](b i) = v(b i) for any b i ∈ A i ; this
implies that o is a neutral element. For part (5), we leave it to the reader to consider
the map, which sends v to the tuple (v(b) ∣ b ∈ B) ∈ [Zr]B. ∎
Remark 2.4 For any non-negative real number r ∈ R≥0 and valuation v ∶ A/{0} →
Rd we obtain a new valuation rv ∶ A/{0} → Rd by scaling the values of v by r. In
particular, Proposition 2.3 shows that scaling by a non-negative integer nv coincides
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with the sum [v +⋯+ v]. If v is a grading function, we can also scale v by negative real
numbers and obtain a valuation. Indeed, following Example 2.1, the filtration spaces
Fα(rv) differ from the spaces F(v) for r ∈ R<0, but both associated graded algebras are
canonically isomorphic to the algebra A. If A is a domain, this means that both v and
rv are valuations by definition. This will be important when we discuss the grading
function deg ∶ C[A2]/{0} → Z in Section 5.

Proposition 2.3 illustrates how quasi-valuations with a common adapted basis tend
to work well with each other. The following lemma shows a similar phenomenon.

Lemma 2.5 If v1 , v2 are quasi-valuations which are adapted to the same basis B ⊂ A,
then the function v̄2 on grv1(A), which assigns v2(b) to b̄ ∈ B̄ ⊂ grv1(A), also defines
a quasi-valuation.

Proof We only have to check that we have v̄2(b̄ i b̄ j) ⪰ v̄2(b̄ i) + v̄2(b̄ j). Now,
v̄2(b̄ i b̄ j) = MIN{v̄2(b̄k) ∣ b̄ i b̄ j = ∑Ck b̄k , Ck ≠ 0}. But the equation b̄ i b̄ j = ∑Ck b̄k
is a truncation of the corresponding expansion of b i b j in A, where the associated
inequality holds, that is, v2(b i) + v2(b j) ⪯ MIN{v2(bk) ∣ b i b j = ∑Ck bk , Ck ≠ 0}. ∎

The sum operation also works well with tensor products of algebras. Let v1 be
a quasi-valuation on A1 and v2 be a quasi-valuation on A2, and let F 1 , F2 be the
corresponding filtrations. We get two filtrations F1 ,F2 on A1 ⊗C A2 by setting F1

α =
F 1

α ⊗ A2 and F2
α = A1 ⊗ F2

α , with corresponding quasi-valuations v1 , v2. By picking
adapted bases (this is always possible for the algebras we consider in this paper)
B1 and B2 we obtain a basis B = {b i ⊗ b j ∣ b i ∈ B1 , b j ∈ B2} ⊂ A1 ⊗C A2 , which is
simultaneously adapted to v1 and v2.

Lemma 2.6 For B, v1, and v2 as above, we have grv1+v2(A1 ⊗C A2) ≅ grv1(A1) ⊗C

grv2(A2). Moreover, v1 + v2 is independent of the choice of bases B1 and B2.

Proof Clearly, as vector spaces, we have grv1+v2(A1 ⊗C A2) ≅ grv1(A1) ⊗C

grv2(A2). So, it remains to show that the multiplication operations on both sides
coincide. This follows from the fact that v1 only sees the first tensor component, and
v2 only sees the second tensor component; this, in turn, implies that the lower terms
of the product [b1 ⊗ b′1][b2 ⊗ b′2] = [b1b2 ⊗ b′1b′2] are the same way on both sides. We
leave the second statement to the reader. ∎

Finally, we will need the following notion of Khovanskii basis.

Definition 2.4 (Khovanskii basis) We say B ⊂ A is a Khovanskii basis for a quasi-
valuation v if grv(A) is generated by the equivalence classes B̄ ⊂ grv(A) as an algebra
over C.

2.3 Weight valuations and the tropical variety

For the following construction, see [KM19, Section 4]. We assume that A is presented
as the image of a polynomial ring: π ∶ C[x] → A, with kernel Ker(π) = I. Here, x =
{x1 , . . . , xn} is a system of parameters. We make the further assumption that A is a
positively graded domain. Recall the notion of initial form inw( f ) of a polynomial f ∈
C[x] and initial ideal inw(I) associated to a weight vector w ∈ Qn . We will require the
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notion of the Gröbner fanG(I) associated to I; recall that this is a complete polyhedral
fan in Qn whose cones index the initial ideals of I. In particular, we have inw(I) =
inw′(I) for any w , w′, which are members of the relative interior of the same cone in
G(I). For this and other notions from Gröbner theory, see [Stu96] and [MS15].

The tropical variety Trop(I) can be identified with a subfan of G(I) given by those
cones whose associated initial ideals contain no monomial (see [SS04, MS15]). The
tropical variety Trop(I), and, more generally, the Gröbner fan G(I) of the ideal I help
to organize the quasi-valuations on A with Khovanskii basis π(x) = B by realizing all
such functions as so-called weight quasi-valuations.

Definition 2.5 (Weight quasi-valuations) For w ∈ Qn , the weight quasi-valuation on
A = C[x]/I is defined on f ∈ A as follows:

vw( f ) = MAX{MIN{⟨w , α⟩∣ p(x) = ∑Cαxα , Cα ≠ 0} ∣ π(p) = f }.(2.4)

We summarize the properties of weight quasi-valuations that we will need in the
following proposition (see [KM19, Section 4]). We let grw(A) denote the associated
graded algebra of vw .

Proposition 2.7 Let A be a positively graded algebra presented as C[x]/I for a prime
ideal I, then:
(1) for any w ∈ Qn , grw(A) ≅ C[x]/inw(I),
(2) vw is adapted to any standard monomial basis of A associated to a monomial

ordering on I ⊂ C[x] which refines w,
(3) v ∶ A/{0} → Q is a quasi-valuation with Khovanskii basis B = π(x) if and only if

v = vw for some w ∈ Qn .

If inw(I) is a prime ideal, then part (1) of Proposition 2.7 implies that vw is a
valuation. In this case, we say that the cone Cw of the Gröbner fan containing w in
its relative interior is a prime cone. With a mild assumption (each element of x is a
standard monomial), we can conclude that Cw ⊂ Trop(I).

3 Constructions for SL2 and A2

In this section, we define compactifications of SL2 and A2, which are stable under
the group actions on these spaces (respectively, by SL2 × SL2 and SL2). The divisorial
valuations defined by the boundaries of these compactifications are used as building
blocks in both the tropical and Newton–Okounkov constructions we give for the
Grassmannian variety, and the compactifications themselves are key ingredients in
the construction of the projective variety Xσ . Accordingly, the constructions presented
here for SL2 and A2 provide a reference point for the main results of the paper.

3.1 Representations of SL2

Recall that SL2 is a simple algebraic group over C. This implies that any finite dimen-
sional representation V of SL2 decomposes uniquely into a direct sum of irreducible
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representations:

V ≅ ⊕
n≥0

HomSL2(V(n), V) ⊗ V(n).(3.1)

The representation V(n) is the irreducible representation of SL2 associated to the
dominant weight n ∈ Z≥0. The representation V(n) is isomorphic to the nth symmet-
ric power Symn(C2); in particular, V(0) is isomorphic to C equipped with the trivial
action by SL2. The vector space HomSL2(V(n), V) is the space of SL2-maps from the
irreducible V(n) into V, which is called the multiplicity space of V(n) in V. The space
HomSL2(V(0), V) is called the space of SL2-invariants in V, which is also denoted by
V SL2 .

For any two SL2-representations V and W, we can consider the tensor product V ⊗
W equipped with the diagonal action g ○ (v ⊗w) = g ○ v ⊗ g ○w. Similarly, the vector
space of homomorphisms Hom(V , W) is naturally equipped with a representation
structure; in particular, the dual vector space V∗ = Hom(V , V(0)) is called the dual
representation. For any n ∈ Z≥0, we have V(n)∗ ≅ V(n). These operations endow
the category Rep(SL2) of finite dimensional SL2-representations with the structure
of a symmetric, monoidal, semi-simple category with dualizing object V(0). It is an
important problem for any such category to determine the rule for decomposition of
a tensor product of irreducible representations into irreducibles:

V( j) ⊗ V(k) =⊕
i≥0

HomSL2(V(i), V( j) ⊗ V(k)) ⊗ V(i).(3.2)

We have HomSL2(V(i), V( j) ⊗ V(k)) ≅ HomSL2(V(0), V(i)∗ ⊗ V( j) ⊗
V(k)) ≅ [V(i) ⊗ V( j) ⊗ V(k)]SL2 using the properties of tensor product
and duals, so this problem can be reduced to computing the invariant spaces
[V(i) ⊗ V( j) ⊗ V(k)]SL2 . The following formula can be derived from the Pieri rule
[FH91, 6.1]:

[V(i) ⊗ V( j) ⊗ V(k)]SL2 ≅
⎧⎪⎪⎨⎪⎪⎩

C if i + j + k ∈ 2Z, ∣i − j∣ ≤ k ≤ i + j,
0 otherwise.

(3.3)

We refer to i + j + k ∈ 2Z as the parity condition on a triple of integers. We say that
(i , j, k) satisfy the triangle inequalities if 0 ≤ i , j, k and ∣i − j∣ ≤ k ≤ i + j; this is because
these are precisely the conditions needed to guarantee that i , j, k can be the sides of a
Euclidean triangle.

3.2 Coordinate algebras of SL2 and A2

Recall the isotypical decomposition of the coordinate ring of SL2 as an SL2 × SL2-
representation:

C[SL2] = ⊕
n≥0

V(n) ⊗ V(n).(3.4)

The multiplication operation m ∶ C[SL2] ⊗C[SL2] → C[SL2] is not graded by domi-
nant weight, but the dominant weights still define a filtration. For any n and m ∈ Z≥0,

https://doi.org/10.4153/S0008414X20000735 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000735


Grassmannian compactifications 207

we have:

m([V(m) ⊗ V(m)] ⊗ [V(n) ⊗ V(n)]) ⊂ ⊕
k≤n+m

V(k) ⊗ V(k).(3.5)

In particular, the projection of m([V(m) ⊗ V(m)] ⊗ [V(n) ⊗ V(n)]) onto V(n +
m) ⊗ V(n + m) is an instance of the so-called Cartan multiplication operation on
tensor products of irreducible representations, and is never 0 (see [HMM17, Section
3]). There is an algebraic filtration of C[SL2] by the spaces:

Fm = ⊕
n≤m

V(n) ⊗ V(n).(3.6)

Using equation (3.5), it is straightforward to check that m(Fm ⊗ Fn) ⊂ Fm+n .
Let U ⊂ SL2 be the group of upper triangular 2 × 2 matrices with 1’s along the

diagonal. Using right multiplication by elements of U, any element of SL2 can be
taken to a matrix whose entries depend only on the two entries in the first column.
Since both of these entries cannot be zero, we find that SL2/U ≅ A2/{0}. Since the
origin is a codimension-2 subvariety of A2, we have an isomorphism of the algebra of
U-invariants C[SL2]U with the coordinate ring of A2; namely a polynomial ring on
two variables.

The group U acts on the right hand component of each tensor product V(n) ⊗
V(n) ⊂ C[SL2]. As each V(n) is irreducible, with a one-dimensional subspace of
highest weight vectors, the space V(n)U has dimension 1, so V(n) ⊗ V(n)U ≅ V(n).
It follows that C[A2] = C[SL2]U has the following isotypical decomposition:

C[A2] = ⊕
n≥0

V(n).(3.7)

Indeed, V(n) ≅ Symn(C2), so equation (3.7) is the direct sum decomposition of the
polynomial ring on two variables into its homogeneous components. The multiplica-
tion operation on C[A2], just normal polynomial multiplication, is accordingly the
Cartan multiplication operation for SL2: V(n) ⊗ V(m) → V(n + m). This grading
endows A2 with an action by Gm on the right in addition to its natural action by SL2
on the left. In particular, t ∈ Gm acts on f ∈ V(n) by the rule f ○ t = f tn .

The associated graded algebra grF(C[SL2]) of the filtration F has an identical
isotypical decomposition to C[SL2],

grF(C[SL2]) = ⊕
n≥0

V(n) ⊗ V(n).(3.8)

The difference between these two algebras is found in their multiplication operations,
where the multiplication in grF(C[SL2]) is computed by the Cartan multiplication
operation. Following [HMM17, Section 3] and [Pop87], we say that grF(C[SL2]) is
the coordinate algebra of the horospherical contraction SLc

2 of SL2. The coordinate
ring C[SLc

2] can also be constructed by means of invariant theory. We have Gm
act antidiagonally through the right actions on two copies of the coordinate ring
of A2. In particular, for t ∈ Gm and f ∈ V(n) ⊗ V(m) ⊂ C[A2] ⊗C[A2] we have
f ○ t = f tm−n . The only components that are invariant under this action are those with
m = n. The coordinate ring of the horospherical contraction SLc

2 can be constructed
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by taking invariants with respect to this action:

C[SLc
2] = [C[A2] ⊗C[A2]]

Gm

.(3.9)

3.3 Valuations on C[SL2] and C[A2]

The algebraC[SLc
2] is a domain, so it follows that the filtration F defines a valuation v ∶

C[SL2]/{0} → Z. This valuation is computed on a regular function f ∈ C[SL2] with
f = ∑ fn , fn ∈ V(n) ⊗ V(n), by the rule:

v( f ) = MIN{−n ∣ fn ≠ 0}.(3.10)

Abusing notation, we say that C[SLc
2] is the associated graded algebra of v. Likewise,

the algebra C[A2] is equipped with its degree valuation deg ∶ C[A2]/{0} → Z, which
is computed using almost the same formula; for f ∈ C[A2] with f = ∑ fn , fn ∈ V(n),
we have deg( f ) = MIN{−n ∣ fn ≠ 0}. Notice that this is the negative of the homo-
geneous degree function on C[A2]. Where v is an SL2 × SL2-invariant valuation on
C[SL2], deg is invariant with respect to the action of SL2 ×Gm onA2. This will feature
prominently in our constructions involving the Plücker algebra.

Now, we define the Rees algebra of the valuation v:

R = ⊕
m≥0

Fm tm = ⊕
m≥n≥0

V(n) ⊗ V(n)tm .(3.11)

The parameter t ∈ V(0) ⊗ V(0)t ⊂ F1 t acts by “shifting” the copy V(n) ⊗ V(n)tm

of the space V(n) ⊗ V(n) ⊂ Fm to the copy of the same space V(n) ⊗ V(n)tm+1 ⊂
Fm+1 tm+1. Since t is not a 0-divisor, this action makes R into a flat C[t]-module. For
the following see [HMM17, Section 3].

Lemma 3.1 The following hold for the C[t] action on R.
(1) 1

t R ≅ C[SL2] ⊗C[t, t−1],
(2) R/tR ≅ grF(C[SL2]) ≅ C[SLc

2].
Part (1) of Lemma 3.1 says that away from the origin we have R/(t − a)R ≅ C[SL2],
whereas part (2) says at the special fiber R/tR, we obtain C[SLc

2].
In coordinates C[SL2] ≅ C[a, b, c, d]/⟨ad − bc − 1⟩ for a, b, c, d ∈ V(1) ⊗ V(1).

Cartan multiplication must be surjective (the image is irreducible), so it follows that
a, b, c, d ∈ V(1) ⊗ V(1) generate C[SLc

2] as well. Picking coordinates V(1) ≅ C{x , y}
we can set a = x ⊗ x, b = x ⊗ y, c = y ⊗ x, and d = y ⊗ y (i.e., these are the “matrix
entries” of a 2 × 2 matrix). Computing in C[SLc

2], we see that ad − bc = (x ⊗ x)(y ⊗
y) − (x ⊗ y)(y ⊗ x). In the coordinate ringC[A2] ⊗C[A2] this is (x y − x y) ⊗ (x y −
yx) = 0. It follows that we can identify SLc

2 with the singular 2 × 2 matrices. If we set
A = at, B = bt, C = ct, D = dt ∈ R we can compute AD − BC − t2 = 0; this defines a
presentation of R. Passing from a general point ( t ≠ 0) to the origin ( t = 0) degenerates
SL2 to SLc

2: the singular 2 × 2 matrices.

Remark 3.2 In [HMM17] and [Man18], a different Rees family is used. Instead of
AD − BC − t2, the family is presented by AD − BC − s, where s is a parameter of
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homogeneous degree 2. In this way, the family we consider, Spec(R), is a double cover
of the family cut out by AD − BC − s considered in loc. cit.

3.4 Compactifications

Now, we define a compactification of SL2 by setting SL2 = Pro j(R).

Proposition 3.3 The following are true of the projective scheme SL2:
(1) SL2 has an algebraic action by SL2 × SL2,
(2) SL2 can be identified with the closed subscheme of P4 cut out by AD − BC − t2 = 0,
(3) the SL2 × SL2-stable irreducible divisor D ⊂ SL2 defined by setting t = 0 is isomor-

phic to P1 × P1,
(4) SL2 is isomorphic to the Zariski-open complement of D,
(5) the line bundle O(1) defined by the divisor D satisfies H0(SL2 ,O(m)) ≅ Fm .

Furthermore, this line bundle induces O(1) ⊠O(1) on D ≅ P1 × P1,
(6) the valuation ordD ∶ C[SL2]/{0} → Z is equal to v.

Proof This is essentially contained in [Man18], but we will also give a proof here.
Part (1) follows from the definition of SL2 as Pro j of an SL2 × SL2-algebra. Similarly,
parts (2), (3), (4), and (5) follow from the presentation of R given above. For part
(6), we identify SL2 with the open subset Spec([ 1

t R]0) ⊂ SL2. The role of t as a
placeholder in the direct sum decomposition of the Rees algebra makes the use of “t”
in this description of SL2 misleading; to be precise, we refer to the regular function
1t ⊂ V(0) ⊗ V(0)t1. Taking ordD of a regular function measures divisibility by 1t,
so we will determine what degree of 1t divides an element f ∈ V(n) ⊗ V(n). In
order to be in the degree-0 part of 1

t R, we must divide V(n) ⊗ V(n)tm by (1t)m to
obtain 1

(1t)m [V(n) ⊗ V(n)tm]. However, every function in this component is already
divisible by (1t)m−n , so we obtain 1

(1t)n [V(n) ⊗ V(n)tn]; this is the component that
maps to V(n) ⊗ V(n) under the isomorphism [ 1

t R]0 ≅ C[SL2(C)]. It follows that
ordD( f ) = −n for any f ∈ V(n) ⊗ V(n) ⊂ C[SL2]. Since D is SL2 × SL2-invariant, the
valuation ordD is as well; as a consequence (see [Tim11, Chapter 4]), we compute
ordD( f ) for f = ∑ fn , fn ∈ V(n) ⊗ V(n), by taking MIN{ordD( fn) ∣ fn ≠ 0}. ∎

A similar statement holds for A2. We form the Rees algebra S = ⊕m≥n≥0 V(n)tm

with respect to the valuation deg, and take Pro j(S) to obtain the SL2 ×Gm-
stable compactification A2 ⊂ P2. The divisor at infinity in this compactification is
Pro j(C[A2]) ≅ P1. The sections of this divisor recover O(1) on both P2 and the
boundary P1. The valuation computed by taking order along the boundary recovers
the degree valuation deg ∶ C[A2]/{0} → Z.

4 Construction of X and Xσ

In this section, we describe a construction of the affine cone X over the Plücker
embedding of the Grassmannian variety Gr2(Cn) which depends on the choice of a
tree σ with n labeled leaves. This construction uses aspects of the geometry of SL2 and
A2 described in Section 3. We obtain a compactification Xσ ⊃ X by performing the
same construction with the compactifications SL2 ⊃ SL2 and P2 ⊃ A2. In this section,
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Figure 1: An oriented tree σ .

we make frequent use of the language of Geometric Invariant Theory (GIT). For
background on this subject, see the book of Dolgachev [Dol03].

4.1 Constructing the affine cone X from a tree σ

We fix a tree σ with n leaves labeled by i ∈ [n]with a cyclic ordering i1 →⋯→ in → i1.
Let V(σ) be the set of nonleaf vertices of σ , and E(σ) be the set of edges of σ . We
further define L(σ) to be the set of leaf-edges of σ , i.e., those edges that connect to a
leaf, and E○(σ) to be the set of nonleaf edges. In particular, we have E(σ) = E○(σ) ⊔
L(σ). We let �i ∈ L(σ) denote the leaf-edge, which is connected to the leaf labeled i.

We select an orientation on σ ; in particular, we choose a direction on each e ∈ E(σ)
so that the head of �i ∈ L(σ) points toward the leaf i. This information is necessary
to construct X and Xσ , but ultimately the construction is independent of this choice
(Figure 1).

We define a space M(σ) and an algebraic group G(σ) using elements of the tree σ .
The space M(σ) is a product of copies of SL2 and A2, with one copy of SL2 for each
nonleaf edge, and one copy of A2 for each leaf-edge:

M(σ) = ∏
e∈E○(σ)

SL2 × ∏
�∈L(σ)

A2 .(4.1)

Similarly, the group G(σ) is a product of copies of SL2, with one copy of SL2 for each
nonleaf vertex:

G(σ) = ∏
v∈V(σ)

SL2 .(4.2)

Now, we define an action of G(σ) on M(σ). For a nonleaf vertex v ∈ V(σ), we have
the corresponding copy of SL2 ⊂ G(σ) act on the left-hand side of the space assigned
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Figure 2: The space M(σ) with action by G(σ).

to an outgoing edge, and on the right-hand side of any incoming edge. Notice that leaf-
edges are always assigned a copy of A2, which comes with an action by SL2 ×Gm as
described in Section 3; so for any vertex v connected to a leaf-edge the corresponding
copy of SL2 acts on the left-hand side of A2 by our conventions (Figure 2).

For the argument below, it will be convenient to work with a closely related space,
M̃(σ) = ∏e∈E(σ) SL2, also equipped with an action of G(σ). There is also a right action
of the unipotent group U L(σ) on this space, and taking the GIT quotient by this action
results in an isomorphism of G(σ)-spaces: M̃(σ)//U L(σ) ≅ M(σ).

Proposition 4.1 For any tree σ with n labeled leaves, the GIT quotient M(σ)//G(σ) is
isomorphic to X.

Proof It is well-known (see [Dol03]) that X can be constructed as the GIT quotient
SL2//[A2 ×⋯×A2]; this is equivalent to the fact that the Plücker algebra is generated
by the 2 × 2 minors of a 2 × n matrix of parameters. This quotient can be recovered
from the GIT construction above as the case of the tree σn with n labeled leaves,
one nonleaf vertex, and the natural cyclic ordering 1 →⋯→ n. Therefore, to prove
the proposition, it suffices to show that all of the GIT constructions are isomorphic
to M(σn)//G(σn). The cyclic ordering does not affect the isomorphism type, so
the problem can be reduced to showing the following statement: for any tree σ as
above, and a tree σ ′ obtained from σ by contracting an edge e ∈ E○(σ), we have
M(σ)//G(σ) ≅ M(σ ′)//G(σ ′).

Geometric invariant theory quotients can be performed in stages, so we can further
reduce to the case of the trees σ with only one nonleaf edge e, and σ ′ with no nonleaf
edges. Moreover, as M̃(σ)//U L(σ) ≅ M(σ), we may work with the spaces M̃(σ) and
M̃(σ ′). Let e ∈ E○(σ) have vertices v1 , v2, with the orientation along e pointing v1 →
v2. Let v1 have leaf edges �1 , . . . , �s and v2 have leaf edges k1 , . . . , kr . We orient �1 , . . . , �s
and k1 , . . . , kr away from v1 , v2. We make this choice without a loss of generality as
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we have the involution g → g−1, which is an isomorphism on the scheme SL2, which
interchanges the left and right actions. We let v ∈ V(σ ′) be the lone nonleaf vertex of
σ ′, and by abuse of notation we let �1 , . . . , �s and k1 , . . . , kr be its leaf-edges, oriented
in the same fashion.

We claim that there is an isomorphism M̃(σ)//(SL2 × SL2) ≅ M̃(σ ′)//SL2. Once
more, we appeal to GIT-in-stages and show that (∏�i

SL2) × SL2//SL2 ≅ ∏�i
SL2 as

spaces with an action by SL2. Here, SL2 acts on the right-hand side of the second
component of (∏�i

SL2) × SL2, and on the left-hand sides of the components of
∏�i

SL2.
To prove this, we show something more general. Let X be a G-variety for a reductive

group G, and let G act on X ×G diagonally on X and the left-hand side of G, then
X ×G//G retains an action of G through the right-hand side of G in X ×G. As
G-varieties we have X ×G//G ≅ X. To show this, map (x , g) ∈ X ×G to g−1x ∈ X; this
is a map of G-spaces, which intertwines the right action on G in X ×G with the action
on X. This map is constant on the orbits of X ×G under the diagonal action, which are,
in turn, all closed; and furthermore there is an algebraic section X → X ×G sending
x to (x , Id) for Id ∈ G the identity. This proves the result. ∎

By Proposition 4.1, each tree σ defines a different realization of X = SL2//[A2 ×⋯×
A2] with added “hidden variables” given by the SL2 components along the nonleaf
edges. The combinatorial and geometric constructions we make for X are then derived
from this new information.

4.2 The compactification Xσ

We define a projective variety M(σ) using the same recipe used to define M(σ):

M(σ) = ∏
e∈E○(σ)

SL2 × ∏
�∈L(σ)

P2 .(4.3)

The SL2 × SL2 and SL2 ×Gm actions on SL2 and A2, respectively, both extend to their
compactifications SL2 and P2. It follows that there is an action of G(σ) on M(σ). The
line bundles defined in Proposition 3.3 on SL2 and P2 (both denoted O(1) by abuse of
notation) are linearized with respect to the actions on these spaces; it follows that the
outer tensor product bundle L = ⊠e∈E(σ)O(1) is G(σ)-linearized as well. With these
observations in mind we define Xσ as the corresponding GIT quotient:

Xσ = M(σ)//LG(σ).(4.4)

Before we show that Xσ is a compactification of X (see Proposition 4.3), we
describe the coordinate ringC[X] = C[M(σ)]G(σ) and the projective coordinate ring
C[Xσ] = ⊕n≥0 H0(M(σ),L⊗n)G(σ) in terms of the tree σ . In the sequel, we will
refer to a σ-weight s ∈ ZE(σ)

≥0 , which is an assignment of non-negative integers to the
edges of σ . The following decompositions of the coordinate ring of C[M(σ)] and the
projective coordinate ring C[M(σ)] = ⊕n≥0 H0(M(σ),L⊗n) can be computed from
the isotypical decompositions of C[SL2], C[A2], C[P2] = ⊕n≥0 H0(P2 ,O(n)) and
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C[SL2] = ⊕n≥0 H0(SL2 ,O(n)):

C[X] = C[M(σ)]G(σ) = [ ⊗
e∈E○(σ)

C[SL2] ⊗ ⊗
�∈L(σ)

C[A2]]
G(σ)

=(4.5)

⊕
s∈ZE(σ)

≥0

[ ⊗
e∈E○(σ)

V(s(e)) ⊗ V(s(e)) ⊗ ⊗
�∈L(σ)

V(s(�))]
G(σ)

.

To ease notation, we let Wσ(s) = [⊗e∈E○(σ) V(s(e)) ⊗ V(s(e)) ⊗⊗�∈L(σ)

V(s(�))]G(σ), so that C[X] = ⊕s∈ZE(σ)
≥0

Wσ(s). Roughly speaking, each s ∈ ZE(σ)
≥0

assigns two irreducible representations V(s(e)) ⊗ V(s(e)) to each nonleaf edge
e ∈ E○(σ), one for the head of e and one for the tail of e. This pair is acted on through
the right and left actions of SL2 on the copy of SL2 assigned to e. Similarly, s assigns
one representation V(s(�)) to each leaf-edge � ∈ L(σ); this space is acted on by SL2

through the left action on A2. Note that for any s ∈ ZE(σ)
≥0 , the space Wσ(s) can be

written as the following tensor product:

Wσ(s) = ⊗
v∈V(σ)

[V(s(e1(v))) ⊗⋯⊗ V(s(ek(v)))]
SL2 ,(4.6)

where e1(v), . . . , ek(v) are the edges of σ containing v, see Figure 3.

Lemma 4.2 Let σ ′ be a tree with n leaves, which are obtained from σ by contracting
an edge e ∈ E(σ), then there is a corresponding direct sum decomposition:

Wσ ′(s′) = ⊕
{s∈ZE(σ)

≥0 ∣ ∀e′∈E(σ ′), s(e′)=s′(e′)}
Wσ(s).(4.7)

Proof Let v1 , v2 be the endpoints of e, and let v ∈ V(σ ′) be the vertex created by
bringing v1 and v2 together. We prove this lemma by considering the link of v in σ ′.
Everything we do is compatible with the geometric arguments given in Proposition 4.1.
Let e1 , . . . , ek be the edges of σ ′ which contain v, and let e1 , . . . , es , e and e , es+1 , . . . , ek
be the edges of σ which contain v1 and v2, respectively. For the sake of simplicity, we
orient all edges e i away from the vertices, and we have e point from v1 to v2. Pick
a = (a1 , . . . , ak) ∈ Zk

≥0 and n ≥ 0, and consider the isotypical component of C[SLs
2 ×

SL2 × SLk−s
2 ]SL2×SL2 :

[V(a1) ⊗⋯⊗ V(as) ⊗ V(n)]SL2 ⊗ [V(n) ⊗ V(as+1) ⊗⋯⊗ V(ak)]
SL2

⊗ [V(a1) ⊗⋯⊗ V(ak)].(4.8)

The map SLk
2 → SLs

2 × SL2 × SLk−s
2 which sends (g1 , . . . , gk) to (g1 , . . . , gs , Id ,

gs+1 , . . . , gk) induces the isomorphism of SLk
2 -algebras C[SLk

2 ]SL2 ≅ C[SLs
2 × SL2 ×

SLk−s
2 ]SL2×SL2 from Proposition 4.1. This algebra map is computed on the above

component by plugging the V(n) component into its “dual” V(n). Since this map
preserves the SLk

2 action, it must likewise map the a component of C[SLs
2 × SL2 ×

SLk−s
2 ]SL2×SL2 isomorphically onto the a-component of C[SLk

2 ]SL2 , so we obtain
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Figure 3: Isotypical components Wσ(s) ⊂ C[M(σ)]G(σ). The dotted circle contains those SL2
representations that are acted on by the copy of SL2 associated to the lower right trinode.

[V(a1) ⊗⋯⊗ V(ak)]
SL2 ⊗ V(a1) ⊗⋯⊗ V(ak) as a direct sum over n of the com-

ponents above. ∎
We make use of the decompositions of the Rees algebras R and S from Section 3 to

give a description of C[Xσ] in terms of the spaces Wσ(s). By definition we have:

H0(M(σ),L⊗n) = ⊗
e∈E○(σ)

H0(SL2 ,O(n)) ⊗ ⊗
�∈L(σ)

H0(P2 ,O(n)).(4.9)

In particular, the same power n is used in the computations of the global sections
for each line bundle. Recall that H0(SL2 ,O(n)) = ⊕0≤m≤n V(m) ⊗ V(m)tn and
H0(P2 ,O(n)) = ⊕0≤m≤n V(m)tn . Since tn is a placeholder that agrees across all
components of the tensor product, we obtain:

H0(M(σ),L⊗n) = ⊕
{s∈ZE(σ)

≥0 ∣ ∀e∈E(σ), s(e)≤n}

[ ⊗
e∈E○(σ)

V(s(e)) ⊗ V(s(e)) ⊗ ⊗
�∈L(σ)

V(s(�))].(4.10)
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As a consequence, we obtain the following decomposition of the projective coor-
dinate ring of Xσ :

C[Xσ] = C[M(σ)]G(σ) = ⊕
n≥0

⊕
{s∈ZE(σ)

≥0 ∣ ∀e∈E(σ), s(e)≤n}
Wσ(s)tn .(4.11)

Proposition 4.3 The projective variety Xσ is a compactification of X.

Proof We show that Xσ = Pro j(C[Xσ]) contains X as a dense, open subscheme.
We consider the element 1t ∈ Wσ(0)t1 ⊂ C[Xσ], where 0 ∶ E(σ) → Z≥0 is the weight,
which assigns 0 to every edge of σ . As constructed, each graded component
⊕{s∈ZE(σ)

≥0 ∣ s(e)≤n , ∀e∈E(σ)}Wσ(s)tn ⊂ C[Xσ] is a subspace of C[X], and the multipli-
cation operation on these graded components is computed by the multiplication rule
in C[X]; this is a consequence of the Proposition 4.1 and the definition of C[Xσ]. By
inverting 1t we obtain 1

1tn Wσ(s)tn = 1
1tm Wσ(s)tm for all s with s(e) ≤ n, m,∀e ∈ E(σ)

in the 0-degree part of 1
1tC[Xσ]. It follows that [ 1

1tC[Xσ]]0 ≅ C[X], and that the
complement of the hypersurface 1t = 0 in Xσ is Spec(C[X]) = X. ∎

We let Dσ ⊂ Xσ be the hypersurface defined by 1t ∈ C[Xσ].

5 The cone Cσ of valuations on C[X]

We describe the geometry of the hypersurface Dσ ⊂ Xσ . In order to construct its
irreducible components and describe their intersections, we construct a cone Cσ
of discrete valuations on C[X]. We show that Cσ is simplicial and generated by
distinguished valuations ve , e ∈ E(σ) (see Definition 5.1). In Section 6, we show that
ve is obtained by taking order of vanishing along a component of Dσ .

5.1 Valuations on C[M(σ)]

We introduce a valuation ve ∶ C[X]/{0} → Z for each edge e ∈ E(σ). First, we recall
the valuations v ∶ C[SL2]/{0} → Z and deg ∶ C[A2]/{0} → Z from Section 3. The
space M(σ) is the product ∏e∈E○(σ) SL2 ×∏�∈L(σ)A

2. Accordingly, its coordinate
ring carries a valuation v̄e ∶ C[M(σ)]/{0} → Z for each edge e ∈ E(σ); this is com-
puted by using v when e ∈ E○(σ) and deg when e ∈ L(σ). The associated algebraic
filtration by the spaces F̄ e

m = { f ∈ C[M(σ)] ∣ v̄e( f ) ≥ −m} are given by the following
spaces:

v̄e , e ∈ E○(σ) ∶ F̄ e
m = [ ⊗

e′∈E○(σ), e′≠e
C[SL2]]

⊗ [ ⊕
0≤n≤m

V(n) ⊗ V(n)] ⊗ [ ⊗
�∈L(σ)

C[A2]],(5.1)

v̄� , � ∈ L(σ) ∶ F̄�
m = [ ⊗

e∈E○(σ)
C[SL2]] ⊗ [ ⊕

0≤n≤m
V(n)] ⊗ [ ⊗

�′∈L(σ), �′≠�
C[A2]].(5.2)
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We also have the following strict filtration spaces:

v̄e , e ∈ E○(σ) ∶ F̄ e
<m = [ ⊗

e′∈E○(σ), e′≠e
C[SL2]]

⊗ [ ⊕
0≤n<m

V(n) ⊗ V(n)] ⊗ [ ⊗
�∈L(σ)

C[A2]],(5.3)

v̄� , � ∈ L(σ) ∶ F̄�
<m = [ ⊗

e∈E○(σ)
C[SL2]] ⊗ [ ⊕

0≤n<m
V(n)] ⊗ [ ⊗

�′∈L(σ), �′≠�
C[A2]].

(5.4)

Clearly, F̄ e
<m ⊂ F̄ e

m for any e ∈ E(σ). The reader can verify that the associ-
ated graded algebra of v̄e , e ∈ E○(σ) and v̄� , � ∈ L(σ) are the coordinate rings
of ∏e′∈E○(σ), e′≠e SL2 × SLc

2 ×∏�∈L(σ)A
2 and ∏e∈E○(σ) SL2 ×A2 ×∏�′∈L(σ), �′≠� A

2,
respectively. We observe that rdeg ∶ C[A2]/{0} → R is a valuation for any r ∈ R≥0,
see Remark 2.4.

Definition 5.1 Let r ∈ RE○(σ)
≥0 ×RL(σ), and let v̄r ∶ C[M(σ)]/{0} → R be the valua-

tion [∑ r(e)v̄e] obtained using the sum operation described in Definition 2.3.

The valuations v̄r are built from the valuations v and deg, which can be computed
entirely in terms of the representation theory of SL2. The following lemma shows that
this is also the case for v̄r.

Lemma 5.1 Let s ∈ ZE(σ)
≥0 and f ∈ [⊗e∈E○(σ) V(s(e)) ⊗ V(s(e)) ⊗

⊗�∈L(σ) V(s(�))] ⊂ C[M(σ)], then v̄r( f ) is computed by taking the “dot product” of
r and s over the edges of σ:

v̄r( f ) = ∑
e∈E(σ)

−r(e)s(e) = −⟨r, s⟩.(5.5)

Furthermore, the filtration space F̄r
m = { f ∈ C[M(σ)] ∣ v̄r( f ) ≥ −m} is the following

sum:

F̄r
m = ⊕

{s∣⟨r,s⟩≤m}
[ ⊗

e∈E○(σ)
V(s(e)) ⊗ V(s(e)) ⊗ ⊗

�∈L(σ)
V(s(�))].(5.6)

Proof This is a direct consequence of the formula for computing the valuations
v ∶ C[SL2]/{0} → Z and deg ∶ C[A2]/{0} → Z, and Definition 2.3. In particular,
⟨r, s⟩ ≤ −m if and only if −⟨r, s⟩ ≥ −m. ∎

5.2 Valuations on C[X]

In what follows, we place a partial ordering ⪯ on Z
E(σ)
≥0 , where s ⪯ s′ if s(e) ≤

s′(e), ∀e ∈ E(σ). We let vr ∶ C[X]/{0} → R be the restriction of v̄r from C[M(σ)]
to C[X].
Proposition 5.2 The following hold for a tree σ, the associated decomposition C[X] =
⊕s∈ZE(σ)

≥0
Wσ(s), and the valuation vr for any r ∈ RE○(σ)

≥0 ×RL(σ):
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(1) for f ∈ Wσ(s), we have vr( f ) = −⟨r, s⟩,
(2) for m ∈ R, the filtration space Fr

m = { f ∈ C[X] ∣ vr( f ) ≥ −m} = ⊕{s∣⟨r,s⟩≤m}
Wσ(s),

(3) for f = ∑ fs with fs ∈ Wσ(s), we have vr( f ) = MIN{−⟨r, s⟩ ∣ fs ≠ 0},
(4) for any s, s′ ∈ ZE(σ)

≥0 , we have Wσ(s)Wσ(s′) ⊂ ⊕s′′⪯ s+s′ Wσ(s′′). Furthermore, the
s + s′ component of this product is always nonzero.

Proof The valuations v̄r are all G(σ)-invariant so their filtration spaces F̄r
m

are G(σ)-representations. We have Wσ(s) = [⊗e∈E○(σ) V(s(e)) ⊗ V(s(e)) ⊗
⊗�∈L(σ) V(s(�))]G(σ), so (1) is a consequence of Lemma 5.1. Furthermore, to
prove (2) we can compute Fr

m = F̄r
m ∩C[X] = [F̄r

m]
G(σ) = ⊕{s∣⟨r,s⟩≤m}Wσ(s) by

Lemma 5.1. Part (2) shows that vr is adapted to the direct sum decomposition
C[X] = ⊕s∈ZE(σ)

≥0
Wσ(s) (recall this notion from Section 2), so part (3) follows as a

consequence.
We know that Wσ(s)Wσ(s′) ⊂ ⊕s′′⪯ s+s′ Wσ(s′′) from properties of multiplication

in C[SL2] and C[A2]. For the second part of (4), we first observe that Fr
<m =

⊕{s∣⟨r,s⟩<m}Wσ(s). Let vσ be the valuation obtained from v̄σ = [∑e∈E(σ) v̄e]. Then,
for any f ∈ Wσ(s′′)with s′′ ⪯ s + s′ we must have vσ( f ) ≥ −∑e∈E(σ) s(e) + s′(e), with
equality if and only if s′′ = s + s′. Now (2) implies that the product of the components
Wσ(s) and Wσ(s′) in the associated graded algebra grσ(C[X]) of vσ is projection
onto the Wσ(s + s′) component. Since vσ is a valuation, grσ(C[X]) is a domain, so
this product must be nonzero. ∎

Recall the Berkovich analytification Xan of the affine variety X. Proposition 5.2
allows us to construct a distinguished subset of Xan associated to the tree σ .

Corollary 5.3 There is a continuous map ϕσ ∶ RE○(σ)
≥0 ×RL(σ) → Xan which takes r

to vr.

Proof In Proposition 5.2, we have shown that there is such a map ϕσ . Thus, it
remains to establish that this map is continuous. Using the definition of the topology
on Xan , it suffices to show that any evaluation function ev f , f ∈ C[X], pulls back to
a continuous function on R

E○(σ)
≥0 ×RL(σ). By part (3) of Proposition 5.2, we have

ev f (vr) = MIN{−⟨r, s⟩ ∣ fs ≠ 0}, where fs denotes the Wσ(s) component of f ; this
function is piecewise-linear in r and therefore continuous. ∎

Suppose that a tree σ ′ is obtained from σ by contracting a nonleaf edge e ∈ E○(σ).
There is a natural inclusion, ie ∶ RE○(σ ′)

≥0 ×RL(σ ′) → R
E○(σ)
≥0 ×RL(σ), by regarding

R
E○(σ ′)
≥0 ×RL(σ ′) as the weightings of σ , which are 0 on e.

Lemma 5.4 For r ∈ RE○(σ ′)
≥0 ×RL(σ ′), vr = v ie(r). As a consequence, RE○(σ ′)

≥0 ×RL(σ ′)

can be regarded as a face of RE○(σ)
≥0 ×RL(σ).

Proof This follows by direct computation using Lemma 4.2 and Proposition 5.2. ∎

Definition 5.2 Let T(n) denote the complex ⋃σ R
E○(σ)
≥0 ×RL(σ) obtained as the

push-out of the diagram of inclusions defined by the maps ie .
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The maps ϕσ glue together to define a continuous map Φ ∶ T(n) → Xan . Let Cσ

denote the image, ϕσ(RE○(σ)
≥0 ×RL(σ)). In Section 7, we show that the evaluation

functions evp i j ○Φ ∶ T(n) → R map a tree to its dissimilarity vector in R(
n
2). The

dissimilarity vector is a complete invariant of a metric tree, so Φ must be an injective
map.

6 The geometry of Dσ ⊂ Xσ

With the valuations vr and the decomposition C[X] = ⊕s∈ZE(σ)
≥0

Wσ(s), we have two
useful tools for understanding the geometry of the compactification Xσ . In this
section, we show that Dσ is reduced, and we give a recipe to decompose Dσ into
irreducible components.

6.1 The ideal IS ⊂ C[Xσ]

Much of our understanding of the divisor Dσ is derived from the decomposition of
the projective coordinate ring of Xσ into the spaces Wσ(s):

C[Xσ] = ⊕
n≥0

⊕
{s∈ZE(σ)

≥0 ∣ ∀e∈E(σ), s(e)≤n}
Wσ(s)tn .(6.1)

This decomposition enables us to define a set of distinguished ideals in C[Xσ].
Definition 6.1 For S ⊂ E(σ), a subset of the edges of σ , let IS ⊂ C[Xσ] be the
following vector space:

IS = ⊕
n≥0

⊕
{s∈ZE(σ)

≥0 ∣ ∀e∈E(σ), s(e)≤n , ∃e′∈S , s(e′)<n}
Wσ(s)tn .(6.2)

Proposition 6.1 For any S ⊂ E(σ), IS ⊂ C[Xσ] is a prime ideal.

Proof By definition, IS is a homogeneous ideal, and Wσ(s)Wσ(s′) ⊂
⊕s′′⪯ s+s′ Wσ(s′′) by Proposition 5.2. Now, suppose f g ∈ IS for f , g ∈ C[Xσ],
homogeneous elements of degrees n and m, respectively. We view f and g as regular
functions on X with the property that ve( f ) ≥ −n and ve(g) ≥ −m, ∀e ∈ E(σ).
If f g ∈ IS , it must be the case that ve( f g) = ve( f ) + ve(g) > −(n + m) for some
e ∈ E(σ). But by Proposition 5.2 this can only happen if ve( f ) > −n or ve(g) > −m,
so we conclude that f ∈ IS or g ∈ IS . ∎

We let DS ⊂ Xσ be the zero locus of IS . Clearly, we have that S ⊂ S′ implies that
IS ⊂ IS′ and DS ⊃ DS′ . The following proposition shows that Dσ is built from the
irreducible, reduced subvarieties DS .

Proposition 6.2 For any tree σ the following hold:
(1) IS∪S′ = IS + IS′ , DS ∩ DS′ = DS∪S′ ,
(2) if S ≠ S′ then IS ≠ IS′ .
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Proof All of the ideals IS are sums of the spaces Wσ(s)tn , so for both (1) and (2) it
suffices to check membership on these spaces. We have Wσ(s)tn ⊂ IS∪S′ if and only if
there is some e ∈ S ∪ S′ with s(e) < n; this happens if and only if Wσ(s)tn is either in
IS or IS′ . To show that IS , IS′ are distinct prime ideals, we only need to show that there
is some element which is in IS , but not in IS′ . We define a weighting ωS of E(σ) by
non-negative integers so that 0 ≠ Wσ(ωS)t4 ⊂ C[Xσ], ωS(e) = 4,∀e ∈ S and ωS(e) =
2, ∀e ∉ S. Clearly, Wσ(ωS)t4 ⊂ IS′ but Wσ(ωS)t4 /⊂ IS . This reduces the question to
showing that Wσ(ωS) ≠ 0, which is handled by the following lemma. ∎

For the proof of the following lemma, see 4.6.

Lemma 6.3 For any subset S ⊂ E(σ), the invariant space Wσ(ωS) ⊂ C[X] is nonzero.

Proof It suffices to show that any tensor product V(n1) ⊗⋯⊗ V(nk) where n i ∈
{2, 4} and k ≥ 3 contains an invariant. If k = 3, the Pieri rule (equation (3.3)) shows
that this is the case. Suppose that this holds up to k − 1. The tensor product decom-
position V(n1) ⊗ V(n2) = ⊕V(m) induces a decomposition of the k-fold tensor
product:

V(n1) ⊗⋯⊗ V(nk) =⊕V(m) ⊗ V(n3) ⊗⋯⊗ V(nk).(6.3)

Here, the sum is over all m so that n1 , n2 , m satisfy the Pieri rule. For whatever
combination of 2 and 4 are given by n1 , n2, we know we can have m be 2 or 4 as
necessary from the case k = 3. But then V(m) ⊗⋯⊗ V(nk) contains an invariant
by the induction hypothesis, so V(n1) ⊗⋯⊗ V(nk) does as well. ∎
Corollary 6.4 If σ is a trivalent tree, then the DS are the intersections of the irreducible
components of the reduced divisor Dσ . In particular, Dσ is of combinatorial normal
crossings type.

Proof If σ is trivalent, then ∣E(σ)∣ = dim(Xσ) = 2n − 3. Picking any ordering on
the elements e i ∈ E(σ) we can form an increasing chain of distinct subsets S i =
{e1 , . . . , e i}. From Proposition 6.2, we know that the corresponding ideals IS i form an
increasing chain of distinct prime ideals. It follows that height(IS) = codim(DS) =
∣S∣. In particular, codim(De) = 1 for any e ∈ E(σ), and DS = ∩e∈S De . Finally, we
observe that ⟨1t⟩ ⊂ C[Xσ] is ∩e∈E(σ)Ie ; it follows that Dσ = ∪e∈E(σ)De . ∎
Remark 6.5 We briefly sketch how to show that Dσ ⊂ Xσ is a combinatorial normal
crossings divisor when σ is not trivalent. Choose a trivalent tree σ ′ that surjects onto σ
by collapsing some subset of edges. Using methods from Section 7, we use σ ′ to define a
flat degeneration of Xσ to a toric variety Yσ ′ ,σ . Here, Yσ ′ ,σ is the projective toric variety
associated to a polytope Pσ ′ ,σ defined by intersecting the cone Pσ ′ from Definition
7.1 with the half spaces defined by requiring that the weights on the edges coming
from σ are less than or equal to 1. This polytope is then considered with respect to the
lattice Lσ from 7.1. The degeneration restricts to a degeneration of X to the expected
toric variety for the trivalent tree σ ′ and also degenerates each component DS ⊂ Dσ
to a toric orbit closure YS ⊂ Yσ ′ ,σ corresponding to a face Pσ ′ ,σ(S) ⊂ Pσ ′ ,σ . Now one
can combinatorially determine that the faces Pσ ′ ,σ(S), and therefore the components
DS ⊂ Dσ , have the correct dimension.
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6.2 DS as a GIT quotient

Now, we describe each reduced, irreducible subvariety DS ⊂ Xσ as a GIT quotient in
the style of Section 4. We select a direction on each e ∈ E(σ) and define the following
product space associated to S ⊂ E(σ):

M(σ , S) = ∏
e∈E○(σ)/S

SL2 × ∏
e∈E○(σ)∩S

(P1 × P1) × ∏
�∈L(σ)/S

P2 × ∏
�∈L(σ)∩S

P1 .(6.4)

The space M(σ , S) is naturally a closed, reduced, irreducible subspace of M(σ). We
let LS be the restriction of the line bundle L to this subspace. Following Section 3, we
have:

LS =(6.5)

[ ⊠e∈E○(σ)/S O(1)] ⊠ [ ⊠e∈E○(σ)∩S O(1) ⊠O(1)] ⊠ [ ⊠�∈L(σ)/S O(1)] ⊠ [ ⊠�∈L(σ)∩S O(1)].

where:

H0(SL2 ,O(m)) = Fm = ⊕
0≤n≤m

V(n) ⊗ V(n),(6.6)

H0(P1 × P1 ,O(m) ⊠O(m)) = V(m) ⊗ V(m),(6.7)

H0(P2 ,O(m)) = ⊕
0≤n≤m

V(n),(6.8)

H0(P1 ,O(m)) = V(m),(6.9)

as SL2-representations.

Proposition 6.6 The space DS is isomorphic to the GIT quotient M(σ , S)//LS G(σ).
In particular, there is an isomorphism of graded algebras:

⊕
m≥0

H0(M(σ , S),L⊗m
S )G(σ) ≅ C[Xσ]/IS .(6.10)

Proof Using the descriptions of the components of the graded coordinate rings of
M(σ , S) and M(σ) above and in Section 3, we can form the following exact sequence.

0 → ⊕
m≥0

Jm → ⊕
m≥0

H0(M(σ),L⊗m) → ⊕
m≥0

H0(M(σ , S),L⊗m
S ) → 0,(6.11)

where Jm is the direct sum of components of the form

[ ⊗
e∈E○(σ)/S

V(s(e)) ⊗ V(s(e))] ⊗ [ ⊗
e∈E○(σ)∩S

V(s(e)) ⊗ V(s(e))]

⊗ [ ⊗
�∈L(σ)/S

V(s(�))] ⊗ [ ⊗
�∈L(σ)∩S

V(s(�))],(6.12)

for s ∈ ZE(σ)
≥0 with s(e) ≤ m for all e ∈ E(σ) and s(e) < m (or s(�) < m) for some e ∈ S.

The group G(σ) is reductive. This implies that the subsequence of invariants of 6.11 is
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a direct summand. As a consequence, taking the G(σ)-invariants of (6.11) produces
the exact sequence:

0 → IS → C[Xσ] → ⊕
m≥0

H0(M(σ , S),L⊗m
S )G(σ) → 0,(6.13)

which proves the proposition. ∎
Remark 6.7 Proposition 6.6 gives an interesting interpretation of the compactifi-
cation Dσ ⊂ Xσ ⊃ X, where “going to infinity” in the direction of an edge e ∈ E(σ)
has one passing from SL2 ⊂ SL2 to P1 × P1. This latter space is a Gm-quotient of the
singular 2 × 2 matrices SLc

2. So in the boundary Dσ , we see a variant of a quiver variety
made from singular matrices, as opposed to X ⊂ Xσ , which is made with elements of
SL2.

6.3 The valuations ordDe

Now, we relate the divisorial valuations associated to the irreducible components of
Dσ to the cone of valuations Cσ constructed in Section 5. In Proposition 3.3, we see
that taking order along the boundary divisor D = P1 × P1 ⊂ SL2 produces the valuation
v ∶ C[SL2]/{0} → Z. An identical statement holds for the boundary copy ofP1 inP2 ⊃
A2 and the valuation deg ∶ C[A2]/{0} → Z.

We have a distinguished irreducible divisor M(σ , e) ⊂ M(σ) for each edge e ∈
E(σ) coming from the construction in 6.2. As a product space, M(σ , e) is obtained
by replacing the copy of SL2 or P2 at the edge e with its boundary divisor. Since M(σ)
is a dense, open subspace of M(σ), both the coordinate ring C[M(σ)] and its ring of
G(σ)-invariantsC[X] inherit the valuation ordM(σ ,e). The divisor De is then obtained
from M(σ , e) as the GIT quotient. The following proposition relates the valuations
obtained from these divisors.
Proposition 6.8 For any e ∈ E(σ), the valuations ve , ordM(σ ,e), and ordDe coincide
on C[X].
Proof By definition we have v̄e = ordM(σ ,e), where v̄e ∶ C[M(σ)]/{0} → Z is from
Section 5; so it follows that ve = ordM(σ ,e) on C[X]. Let η̄e be the generic point of
M(σ , e) ⊂ M(σ), with local ring Oη̄e and maximal ideal ⟨t̄e⟩ ⊂ Oη̄e . Then, the local
ring Oηe at the generic point ηe of De is the ring of G(σ)-invariants in Oη̄e , and
furthermore t̄e ∈ Oηe . Computing ve must then coincide with computing ordDe , as
both valuations amount to measuring t̄e degree. ∎

6.4 Xσ is Fano

We finish this section with the observation that the compactifications Xσ are all of
Fano type. For simplicity, we focus on the case when σ is a trivalent tree.
Proposition 6.9 For σ, a trivalent tree, and Dσ ⊂ Xσ , the associated boundary divisor
of the compactification, we have

−KXσ = 3Dσ .(6.14)

In particular, since Dσ is ample, Xσ is Fano.
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We prove Proposition 6.9 in Section 7.2. The proof uses some material from Section
7.2 to produce a toric degeneration of C[Xσ]. Moreover, we use a result of Watanabe
[Wat81] which allows a computation for the anticanonical class of the Pro j of a
positively graded Cohen–Macaulay algebra.

7 The tropical geometry of X

We recall the tropical variety Trop(I2,n) obtained from the homogeneous Plücker
ideal I2,n . The ideal I2,n vanishes on the Plücker generators p i j ∈ C[X], 1 ≤ i < j ≤ n,
and defines the Plücker embedding Gr2(Cn) ⊂ P(⋀2(Cn)) of the Grassmannian of
2-planes. We show that the map evn = (. . . , evpi j, . . .) ∶ Xan → R(

n
2) defined by the

Plücker generators maps T(n) (Definition 5.2) isomorphically onto Trop(I2,n).

7.1 The tropical Grassmannian

The tropical Grassmannian variety Trop(I2,n)was introduced by Speyer and Sturmfels
in [SS04]. It is one of the best understood tropical varieties in part because the Plücker
relations are known to be a tropical basis for I2,n . For any 1 ≤ i , j, k, � ≤ n in cyclic order
we have:

p i j pk� − p i� p jk + p ik p j� = 0.(7.1)

The tropical variety Trop(I2,n) is then the set of tropical solutions d =
(. . . , d i j , . . .) ∈ R(n

2) of the following tropical polynomials:

MIN{d i j + dk� , d i� + d jk , d ik + d j�}.(7.2)

Using a variant of [SS04, Theorem 4.2], it is then possible to use a solution d ∈
Trop(I2,n) to reconstruct a unique tree σ with n labeled leaves along with a cor-
responding real weight vector r ∈ RE○(σ)

≥0 ×RL(σ) such that d i j is the sum of the
negatives −r(e) of the edges e in the unique path in σ between the leaves i and j. We
let d ∶ RE○(σ)

≥0 ×RL(σ) → R(
n
2) be the function that takes a metric tree to the vector

of negatives of pairwise distances between its leaves. The tuple d(r) is called the
dissimilarity vector of r (see [Man11, Man12, PS04] ).

Now, we show that Trop(I2,n) can be realized as the image of T(n) under the
evaluation map defined by the Plücker generators. We let evn ∶ Xan → R(

n
2) be the map

that sends v ∈ Xan to (. . . , v(p i j), . . .). Recall the continuous map Φ ∶ T(n) → Xan

defined in Section 5.2.

Proposition 7.1 The composition evn ○Φ ∶ T(n) → R(
n
2) is an isomorphism of the

complex of polyhedral cones onto Trop(I2,n). In particular, evn(vr) is equal to the
dissimilarity vector d(r) ∈ R(n

2).

Proof A variant of this proposition appears in [Man11]. First, consider the decom-
position of C[X] given by its characterization as the ring of SL2-invariants in C[A2 ×
⋯×A2]:

C[X] = ⊕
a∈Zn

≥0

[V(a1) ⊗⋯⊗ V(an)]SL2 .(7.3)
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The invariant space with ak = 0 except for a i = a j = 1 is 1-dimensional (see Section 3),
and it is spanned by the Plücker generator p i j . Moreover, [V(a1) ⊗⋯⊗ V(an)]SL2 is
the space Wσn(s′), where σn is the unique tree with n leaves and one internal vertex,
and s′ is the unique weighting of the edges of σn where s′(�i) = a i . Now we fix a tree
σ , and note that σn can be obtained from σ by repeatedly collapsing internal edges.
The following decomposition is a consequence of this observation and Lemma 4.2:

[V(a1) ⊗⋯⊗ V(an)]SL2 = ⊕
{s∈ZE(σ)

≥0 ∣ s(�i)=a i}

Wσ(s).(7.4)

For the invariant space containing p i j , exactly one s in this decomposition can have
Wσ(s) ≠ 0. Using (4.6), we observe that the s with this property satisfies s(e) = 1 if e is
in the unique path from i to j and s(e) = 0 otherwise. Now, Proposition 5.2 implies that
vr(p i j) = −⟨r, s⟩ for this s, which is precisely the sum of the −r(e) for e in the unique
path from i to j. The characterization of Trop(I2,n) given in [SS04] now implies that
the image of Cσ under the map evn is precisely the vectors d ∈ R(n

2) coming from trees
with topology and labeling given by σ . Each map r → vr(p i j) is linear, so evn maps
Cσ linearly onto its image. ∎

7.2 Associated graded algebras from T(n)

Now, we will compute the associated graded algebras of the valuations vr ∈ Φ(T(n)).
Lemma 5.4 allows us to regard any valuation vr ∈ Cσ ′ as v ie(r) ∈ Cσ , where σ ′ is
obtained from σ by contracting the edge e. Repeatedly using Lemma 5.4, therefore,
allows us to consider only trivalent trees when we compute with the valuations vr. For
now, we assume that σ is trivalent. We can see from (4.6) that each space Wσ(s) ⊂
C[X] in this case is a tensor product of invariant spaces of the form [V(i) ⊗ V( j) ⊗
V(k)]SL2 . The Pieri rule (3.3) then implies the following lemma.

Lemma 7.2 For σ a trivalent tree, Wσ(s) is multiplicity-free. In particular, Wσ(s) = C

if for every vertex v ∈ V(σ) with edges e1 , e2 , e3, the triple s(e1), s(e2), s(e3) satisfies
the conditions of the Pieri rule, and Wσ(s) = 0 otherwise.

Definition 7.1 For this definition, see (3.3). Let Lσ ⊂ ZE(σ) be the sublattice of
those points ω with the property that ω(e1), ω(e2), ω(e3) satisfy the parity condition
whenever e1 , e2 , e3 share a common vertex. Let Pσ ⊂ R

E(σ)
≥0 be the polyhedral cone

of those points ω with the property that ω(e1), ω(e2), ω(e3) satisfy the triangle
inequalities whenever e1 , e2 , e3 share a common vertex. Finally, let Sσ be the saturated
affine semigroup Pσ ∩ Lσ .

The coordinate algebra C[X] can now be expressed as a direct sum of one-
dimensional spaces Wσ(s):

C[X] = ⊕
s∈Sσ

Wσ(s).(7.5)

Choose one nonzero vector bs ∈ Wσ(s) for each s ∈ Sσ so that C[X] = ⊕s∈Sσ Cbs.
Proposition 5.2 implies that multiplication of basis members has a lower-triangular
expansion: bsbs′ = ∑s′′⪯s+s′ Cs′′

s,s′bs′′ , where ⪯ indicates that s′′(e) ≤ s(e) + s′(e) for
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every e ∈ E(σ). We call Bσ = {bs ∣ s ∈ Sσ} a branching basis of C[X] corresponding to
σ . The following is immediate from Definition 2.2 and part (2) of Proposition 5.2.

Proposition 7.3 A branching basis Bσ ⊂ C[X] is adapted to every valuation in Cσ .

Let the tree σ be equipped with an orientation on its edges, and let S ⊂ E○(σ) be
some subset of nonleaf edges. We define two affine schemes attached to these data:

M(σ , S) = ∏
e∈E○(σ)/S

SL2 ×∏
e∈S

SLc
2 × ∏

�∈L(σ)
A2 ,(7.6)

X(S) = M(σ , S)//G(σ).(7.7)

Here G(σ) acts on M(σ , S) by the same recipe used on M(σ).

Proposition 7.4 For vr ∈ Cσ , let S ⊂ E○(σ) be the set of edges for which r(e) ≠ 0; we
have the following:
(1) the product bsbs′ in grr(C[X]) is the subsum of∑s′′⪯s+s′ Cs′′

s,s′bs′′ consisting of those
terms s′′ where s′′(e) = s(e) + s′(e) when e ∈ S and s′′(e) ≤ s(e) + s′(e) when
e ∉ S.

(2) grr(C[X]) ≅ C[X(S)],
(3) the Plücker generators p i j are a Khovanskii basis for any vr.

Proof First, we observe that Proposition 5.2 implies that the equivalence classes of
the basis members bs ∈ Bσ are still a basis of grr(C[X]). Indeed, any component
Fr

m/Fr
>m ⊂ grr(C[X]) is a quotient of the span of Bσ ∩ Fr

m by the span of Bσ ∩ Fr
>m .

In particular, for any f = ∑Csbs ∈ C[X], the equivalence class f̄ ∈ grr(C[X]) is
computed by taking the subsum of only those terms Csbs for which−⟨r, s⟩ is minimal.
Part (1) follows from this observation.

For part (2), note that C[X(S)] also has a decomposition into the spaces Wσ(s).
Indeed, the coordinate rings of SLc

2 and SL2 have exactly the same isotypical decom-
position, however their multiplication rules are different. In particular, the dominant
weight decomposition defines a grading on C[SLc

2]. This implies that for the com-
ponents corresponding to e ∈ S, the only Wσ(s′′) that contribute to the expansion of
Wσ(s)Wσ(s′) are those with s′′(e) = s′(e) + s(e); this proves part (2).

For part (3), we select r′ with r′(e) > 0 for every e ∈ E○(σ). In this case, the
expansion of bsbs′ ∈ grr′(C[X]) only has a s + s′ component. Since C is algebraically
closed, it follows that grr′(C[X]) ≅ C[Sσ] (see [ES96]). But this top component is
always there when this multiplication is carried out in grr(C[X]); so it follows (see
Lemma 2.5) that grr′(grr(C[X])) ≅ C[Sσ]. This means that a generating set of C[Sσ]
can be lifted to a generating set of grr(C[X]). The following lemma then implies that
(the equivalence classes of) the Plücker generators generate any grr(C[X]). ∎
Lemma 7.5 The affine semigroup Sσ is generated by the weightings ωi j ( 1 ≤ i < j ≤ n)
that assign 1 to every edge on the unique path between leaf i and leaf j and 0 elsewhere.

Proof This is a standard result, see e.g., [HMM11, Proposition 4.6]. We give a short
conceptual proof. Consider a trinode with edges e1 , e2 , e3 weighted with n1 , n2 , n3 ,
which satisfy the Pieri rules (3.3). We can find a graph on three vertices corresponding
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to the three leaves of the trinode such that when we view the edges of the graph as
passing through the trinode’s edges, we recover n i as the number of paths passing
through e i . The number of paths from i to j is x i j = 1

2 (n i + n j − nk). Notice that
x i j + x ik = n i . This proves the lemma for the case n = 3. Now take s ∈ Sσ , and for each
trivalent vertex v ∈ V(σ), extract the paths associated to the edges connected to v. For
two vertices v , v′ connected by an edge e, this process yields the same number of paths
in e, so we may glue these paths together any way we like. The result is a graph on n
vertices (the leaves of σ). Since this graph is a union of edges, s can be realized as a
sum of the ω i j . ∎

Finally, we prove Proposition 6.9:

Proof of Proposition 6.9 By Proposition 6.8, C[Xσ] = ⊕n≥0 H0(Xσ , nDσ), so it
follows that Dσ is ample. The projective coordinate rings of SL2 and P2 are both
normal; as a consequence, algebra C[M(σ)] is normal. Since Xσ is a GIT quotient
of M(σ), we must have that C[Xσ] is normal as well.

The basisBσ ⊂ C[X] induces a basis in B̄σ ⊂ C[Xσ]. The members of B̄σ are labeled
by elements (s, m) in the semigroup S̄σ ⊂ Sσ ×Z. Here s ∈ Sσ and for each edge e ∈
E(σ)we have s(e) ≤ m. It is straightforward to show that this semigroup is generated
by the elements (ω i j , 1)where ω i j is as in Lemma 7.5. The proof of Proposition 7.4 can
be applied to C[Xσ] to show that C[Xσ] has associated graded algebra C[S̄σ].

Next, we show that C[Xσ] is a Gorenstein algebra. The algebra C[S̄σ] is a flat
degeneration of C[Xσ], so by the argument in [LM16, Proposition 3.7], it suffices
to show that C[S̄σ] is Gorenstein. The algebra C[S̄σ] is a normal affine semigroup
algebra, so we use [BH93, Corollary 6.3.8] to show that it is Gorenstein. We consider
(ω, 3) ∈ S̄σ , where ω(e) = 2 for all e ∈ E(σ). If (τ, m) ∈ S̄σ is in the relative interior
of the semigroup, we must have τ(e) < m and for any three edges e , f , g meeting at
a vertex we need τ(e) < τ( f ) + τ(g). Given these inequalities, it is straightforward to
check that in this case (τ, m) − (ω, 3) is still in S̄σ . This proves that C[S̄σ] and C[Xσ]
are Gorenstein algebras.

Finally, we apply [Wat81, Corollary 2.9] to Xσ and its projective coordinate ring
C[Xσ]. Since (ω, 3) is degree 3 in C[S̄σ], as a consequence, the a-invariant of C[S̄σ]
is −3. This information can be recovered from the Hilbert function of C[S̄σ], which
agrees with the Hilbert function of C[Xσ]. It follows that the a-invariant of C[Xσ]
is −3 as well. Furthermore, Dσ is a multiplicity-free sum of irreducible divisors, so
KXσ + 3Dσ = 0 in CL(Xσ). ∎

7.3 Initial ideals from Trop(I2,n)

Now, we relate the associated graded algebras of the valuations vr ∈ T(n) to initial
ideals ind(r)(I2,n) associated to points in the tropical variety Trop(I2,n). Let x = {x i j ∣
1 ≤ i < j ≤ n}.

Proposition 7.6 For any vr ∈ T(n) the following hold:
(1) the valuation vr coincides with the weight quasi-valuation vd(r) (see 2.3),
(2) the associated graded algebra grr(C[X]) is isomorphic to C[x]/ind(r)(I2,n),

https://doi.org/10.4153/S0008414X20000735 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000735


226 C. Manon and J. Jessie Yang

(3) if r ∈ Cσ ⊂ T(n) satisfies r(e) ≠ 0, ∀e ∈ E○(σ), then ind(r)(I2,n) is the prime
binomial ideal that vanishes on the generators [ω i j] of the affine semigroup algebra
C[Sσ].

Proof Part (3) follows from (2). Both (1) and (2) are a consequence of Theorem2.7
and Proposition 7.4. ∎

8 Maximal rank valuations and Newton–Okounkov cones of X

In this section, we use the divisor Dσ ⊂ Xσ to construct maximal rank valuations on
C[X], establishing Dσ in the theory of Newton–Okounkov bodies for the Grassman-
nian variety. In particular, we show that Sσ can be realized as the value semigroup of
a valuation on C[X], which can be extracted from Dσ .

8.1 Maximal rank valuations on C[X]

There are many constructions of valuations on the Plücker algebra C[X] with
representation-theoretic interpretations. Alexeev and Brion [AB04] give a construc-
tion in terms of Lusztig’s dual canonical basis for any flag variety. Kaveh [Kav15] then
shows that the dual canonical basis construction can be recovered from a Parshin point
(see 8.2) construction on a Bott-Samuelson resolution of the flag variety. There are
also many constructions of valuations coming from the theory of birational sequences,
which utilize the Lie algebra action [FFL17b], [FFL17c], and [FFL17a]. Finally, cluster
algebras [GHKK18, BFF+18, RW19] provide another organizing tool for valuations.
The construction we give here is distinct from these approaches, and follows [Man16]
and can be derived from [KM19].

We pick a trivalent tree σ and recall that branching basis Bσ ⊂ C[X] constructed
in Section 7.2. Each member bs ∈ Bσ spans one of the spaces Wσ(s), and there is a
bijection between the members of Bσ and the elements of the semigroup Sσ . We select
a total ordering < on E(σ); this induces a total ordering on Sσ and the basis Bσ , which
we also denote by <. In particular s < s′ if −s(e i) < −s′(e i), where e i is the first edge
(according to <) where s and s′ disagree. Now we define a function vσ ,< ∶ C[X]/{0} →
ZE(σ) as follows:

vσ ,<(∑Csbs) = MIN{s ∣ Cs ≠ 0},(8.1)

where MIN is taken with respect to the ordering < on Sσ . The following is essentially
proved in [Man16].

Proposition 8.1 The function vσ ,< is a discrete valuation on C[X] of rank 2n − 3
adapted to Bσ with value semigroup Sσ and Newton–Okounkov cone Pσ .

Proof Let Fσ ,<
s = ⊕s≤s′ Wσ(s′), then Fσ ,<

s = { f ∣ vσ ,<( f ) ≥ s} by definition; this
shows that vσ ,< is adapted to Bσ . Furthermore, for any s, s′ the product Fσ ,<

s Fσ ,<
s′

is a subspace of Fσ ,<
s+s′ by Proposition 5.2. This implies that vσ ,< is a quasi-valuation

with value set equal to Sσ . To show that it is actually a valuation, we observe that
part (4) of Proposition 5.2 implies that vσ ,<(bsbs′) = s + s′. This, in turn, implies that
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vσ ,<( f g) = vσ ,<( f ) + vσ ,<(g), as vσ ,< will only see the values of the top components
of f and g according to the ordering <. ∎

It is also possible to show that there is a rank ∣E(σ)∣ valuation vσ ,< ∶ C[X]/{0} →
ZE(σ) for any nontrivalent σ . In fact, one can apply [KM19, Theorem 4] to the integral
generators of the extremal rays of evn(Cσ) ⊂ Trop(I2,n) to recover any such valuation.
For this construction, one needs to compute the values ve i (p i j) for each edge e i ∈
E(σ) and each member of the Khovanskii basis of Plücker generators p i j ∈ C[X]. This
makes a (2n − 3) × (n

2) matrix Mσ ,< which captures all the information of vσ ,<.
Proposition 8.1 shows that the branching basis Bσ is adapted to the valuation vσ ,<.

Now, we describe a different basis which is also adapted to vσ ,<. Lemma 7.5 shows
that the Plücker generators p i j give a Khovanskii basis for vσ ,<, so a basis of standard
monomials in the p i j will be adapted to vσ ,< as well. We say that σ is a planar tree if the
cyclic ordering on the leaves of σ give an embedding of σ into the plane. In the proof of
Lemma 7.5 we can choose to decompose a weighting of σ in a planar way, in particular,
it is always possible to construct the paths in a noncrossing way. Furthermore, this
reconstruction process shows that any two distinct planar arrangements give distinct
weightings of σ . Let B+ be the set of monomials pα in the Plücker generators such
that for any i , j, k, � in cyclic order α ik α j� = 0; such monomials correspond to planar
graphs on [n] [HMSV09]. Our remarks imply the following proposition.

Proposition 8.2 The set B+ is an adapted basis of vσ ,< for any planar σ. Furthermore,
B+ and Bσ are related by upper-triangular transformations with respect to the ordering
on Sσ induced by <.

8.2 A Parshin point construction of vσ ,<

In order to make a connection with the theory of Newton–Okounkov bodies, we
present vσ ,< as a so-called Parshin point valuation (see [Kav15, KK12, LM09]). Roughly
speaking, a Parshin point provides a higher-rank generalization for the construction of
a discrete valuation from a prime divisor on a normal variety. Instead of taking degree
along one height 1 prime, one takes successive degrees along a flag of subvarieties.

Definition 8.1 (Parshin point valuation) Let p ∈ Y be a point in a variety of dimen-
sion dim(Y) = n, and V1 ⊃ ⋯ ⊃ Vn = {p} be a flag of irreducible subvarieties. We
further assume that Vi is locally cut out of Vi−1 at p by t i . This information defines
a Parshin point, which we denote by F. For f ∈ C(Y) we define a valuation vF

as follows. Let s1 = ordt1( f ), f1 = t−s1
1 f ∣V1 and then continue this way to get s i =

ordt i ( f i−1), f i = t−s i
i f i−1 ∣Vi . We set vF( f ) = (s1 , . . . , sn).

Let σ be a trivalent tree, and let < be a total ordering on E(σ). We use < to define
a flag of subvarieties on Xσ . Using the total ordering <, we can label the edges E(σ):
e1 , . . . , e2n−3. This defines a flag De1 ⊃ De1 ,e2 ⊃ ⋯ ⊃ DE(σ), where DS is the subvariety
defined in Section 6. In particular, DE(σ) is the point in Xσ defined by the maximal
ideal IE(σ).

Proposition 8.3 The Parshin point De1 ⊃ De1 ,e2 ⊃ ⋯ ⊃ DE(σ) defines a valuation
wσ ,< ∶ C[X]/{0} → ZE(σ) which coincides with vσ ,<.
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Proof We start by considering the ideal JE(σ) ⊂ C[M(σ)]:

JE(σ) = ⊕
n≥0

⊕
{s∈ZE(σ)

≥0 ∣∀e∈E(σ),s(e)≤n , ∃e′ ,s(e′)<n}
[ ⊗

e∈E○(σ)
V(s(e)) ⊗ V(s(e))]

⊗ [ ⊗
�∈L(σ)

V(s(�))]tn .(8.2)

Notice that JE(σ) ∩C[Xσ] = IE(σ), JE(σ) is G(σ)-fixed, and O
G(σ)
JE(σ)

= OIE(σ) , where
these are the local rings for the corresponding points on M(σ) and Xσ , respectively.
We work with the space M(σ) because it has the advantage of being smooth. Let te be
the local equation for the prime divisor M(σ , e) (this element can be taken to coincide
with t̄e from Proposition 6.8). Note that te is G(σ)-fixed, so te ∈ OIE(σ) . Furthermore,
M(σ) is a product over e ∈ E(σ), so we must have ordte (te′) = 0 when e ≠ e′. The
subvarieties De1 , . . . ,ek with their local equations tek define a Parshin point of Xσ ; in
particular tek locally cuts out De1 , . . . ,ek in De1 , . . . ,ek−1 , because this is the case for the
corresponding ideals in OJE(σ) .

We construct DS as a GIT quotient of the space M(σ , S) in 6.2. We let M(σ , S)o ⊂
M(σ , S) be the subvariety obtained by the same product construction, only replacing
SL2 with SL2 (respectively, P2 with A2 where appropriate) whenever e (respectively,
�) ∉ S. Now we choose bs ∈ C[X]. Proposition 6.8 shows that ordte1

= −s(e1). Regard-
ing ts(e1)

e1 bs as a function on M(σ , e1)o , we use the same argument in 6.8 to show
that ordte2

(ts(e1)
e1 bs) = 0 − s(e2), where te2 locally cuts out M(σ , e1 , e2) along the

boundary of M(σ , e1)o . Continuing this way, we obtain the valuation wσ ,<, which
has the property that wσ ,<(bs) = vσ ,<(bs) for any bs ∈ Bσ . Since both valuations are
maximal rank, and since they take the same distinct values on the basis Bσ , they must
coincide (see Proposition 2.2). ∎

9 Example

Let us consider the simplest case: n = 4. There are three trivalent trees with four
ordered leaves (Figures 4–6). The Tropical Grassmannian Trop(I2,4) ⊂ R6 is a fan with
three five-dimensional cones Bσ1 , Bσ2 , Bσ3 glued along a four-dimensional lineality
space, which can be constructed as the image of the map

ψ ∶ R4 → R6 , (x1 , x2 , x3 , x4) ↦ (x1 + x2 , x1 + x3 , x1 + x4 , x2 + x3 , x2 + x4 , x3 + x4) ∶

Bσ1 ∶ w13 +w24 = w14 +w23 ≤ w12 +w34 , image(ψ) +R≥0e13 + e14 + e23 + e24

Bσ2 ∶ w12 +w34 = w14 +w23 ≤ w13 +w24 , image(ψ) +R≥0e12 + e14 + e23 + e34

Bσ3 ∶ w12 +w34 = w13 +w24 ≤ w14 +w23 , image(ψ) +R≥0e12 + e13 + e24 + e34 ,

where w i j are the coordinates of R6 = R(
4
2) and e i j are the standard basis

of R6 = R(
4
2). Note that image(ψ) is spanned by ψ(e1) = (1, 1, 1, 0, 0, 0), ψ(e2) =

(1, 0, 0, 1, 1, 0), ψ(e3) = (0, 1, 0, 1, 0, 1), ψ(e4) = (0, 0, 1, 0, 1, 1).
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Figure 4: σ1 = ({1, 2}, {3, 4}). Figure 5: σ2 = ({1, 3}, {2, 4}). Figure 6: σ3 = ({1, 4}, {2, 3}).

Now, we see how to recover the tropical geometry and Newton–Okounkov
information from the compactification X ⊂ Xσ1 ⊃ Dσ1 . From each component De ⊂
Dσ1 , (e ∈ E(σ1)), we get a vector in Trop(I2,4) ⊂ R6 using Proposition 6.8 and Propo-
sition 7.1:

D�1 ↦ (ordD�1
(p12), ordD�1

(p13), ordD�1
(p14), ordD�1

(p23), ordD�1
(p24),

ordD�1
(p34)) = (v�1(p12), v�1(p13), v�1(p14), v�1(p23), v�1(p24), v�1(p34))

= (1, 1, 1, 0, 0, 0) = ψ(e1)
D�2 ↦ (ordD�2

(p12), ordD�2
(p13), ordD�2

(p14), ordD�2
(p23), ordD�2

(p24),
ordD�2

(p34)) = (v�2(p12), v�2(p13), v�2(p14), v�2(p23), v�2(p24), v�2(p34))
= (1, 0, 0, 1, 1, 0) = ψ(e2)

D�3 ↦ (ordD�3
(p12), ordD�3

(p13), ordD�3
(p14), ordD�3

(p23), ordD�3
(p24),

ordD�3
(p34)) = (v�3(p12), v�3(p13), v�3(p14), v�3(p23), v�3(p24), v�3(p34))

= (0, 1, 0, 1, 0, 1) = ψ(e3)
D�4 ↦ (ordD�4

(p12), ordD�4
(p13), ordD�4

(p14), ordD�4
(p23), ordD�4

(p24),
ordD�4

(p34)) = (v�4(p12), v�4(p13), v�4(p14), v�4(p23), v�4(p24), v�4(p34))
= (0, 0, 1, 0, 1, 1) = ψ(e4)

De○ ↦ (ordDe○ (p12), ordDe○ (p13), ordDe○ (p14), ordDe○ (p23), ordDe○ (p24),
ordDe○ (p34)) = (ve○(p12), ve○(p13), ve○(p14), ve○(p23), ve○(p24), ve○(p34))
= (0, 1, 1, 1, 1, 0),

where e○ is the nonleaf edge.
We describe them as row vectors of the following matrix, which span the maximal

cone Bσ1 of Trop(I2,4).

⎛
⎜⎜⎜⎜⎜⎜
⎝

ordD�1
ordD�2
ordD�3
ordD�4
ordDe○

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

p12 p13 p14 p23 p24 p34

⎛
⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟
⎠

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
0 1 1 1 1 0
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For Newton–Okounkov information, we fix a total order < on E(σ), for example,
�1 > �2 > �3 > �4 > e○, the order we used for the tropical geometry above. It corre-
sponds to the flag of subvarieties (Parshin point), D�1 ⊃ D�1 ,�2 ⊃ ⋯ ⊃ DE(σ) and the
valuation vσ ,< (see Proposition 8.3). Now we compute the values of Plücker generators
under this valuation:

vσ ,<(p12) = (1, 1, 0, 0, 0).
vσ ,<(p13) = (1, 0, 1, 0, 1).
vσ ,<(p14) = (1, 0, 0, 1, 1).
vσ ,<(p23) = (0, 1, 1, 0, 1).
vσ ,<(p24) = (0, 1, 0, 1, 1).
vσ ,<(p34) = (0, 0, 1, 1, 0).
These coincide with the column vectors of the matrix above, which generate the

semigroup Sσ . Thus, from the perspective of the compactification Xσ , we have a
unified understanding of the tropical geometry and Newton–Okounkov theory for
the affine cone X of the Grassmannian Gr2(C4).

Moreover, these generators of Sσ correspond to the parametrization of the toric
variety defined by C[Sσ]:

(C∗)5 → C6 , (t1 , t2 , t3 , t4 , t5) ↦ (t1 t2 , t1 t3 t5 , t1 t4 t5 , t2 t3 t5 , t2 t4 t5 , t3 t4).

The ideal presenting C[Sσ] is equal to the kernel of the homomorphism,

C[p12 , p13 , p14 , p23 , p24 , p34] → C[ye1 , ye2 , ye3 , ye4 , ye5],

p12 ↦ ye1 ye2 , p13 ↦ ye1 ye3 ye5 , ..., p34 ↦ ye3 ye4 ,

which is the the principal ideal generated by p13 p24 − p14 p23. Now, this ideal is equal
to the initial ideal inσ(I2,4) associated to the cone Bσ in Trop(I2,4).

References

[AB04] V. Alexeev and M. Brion, Toric degenerations of spherical varieties. Selecta Math. (N.S.)
10(2004), no. 4, 453–478.

[Ber90] V. G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields.
Mathematical Surveys and Monographs, 33, Amer. Math. Soc., Providence, RI, 1990.

[BHV01] L. J. Billera, S. P. Holmes, and K. Vogtmann, Geometry of the space of phylogenetic trees.
Adv. Appl. Math. 27(2001), no. 4, 733–767.

[BFF+18] L. Bossinger, X. Fang, G. Fourier, M. Hering, and M. Lanini, Toric degenerations
of Gr (2, n) and Gr (3, 6) via plabic graphs. Ann. Comb. 22(2018), 491–512.

[BH93] W. Bruns and J. Herzog, Cohen-Macaulay rings. Cambridge Studies in Advanced
Mathematics, 39, Cambridge University Press, Cambridge, UK, 1993.

[CHW14] M. A. Cueto, M. Häbich, and A. Werner, Faithful tropicalization of the Grassmannian of
planes. Math. Ann. 360(2014), nos. 1–2, 391–437.

[Dol03] I. Dolgachev, Lectures on invariant theory. London Mathematical Society Lecture Note
Series, 296, Cambridge University Press, Cambridge, UK, 2003.

[ES96] D. Eisenbud and B. Sturmfels, Binomial ideals. Duke Math. J. 84(1996), no. 1, 1–45.
[FFL17a] X. Fang, G. Fourier, and P. Littelmann, Essential bases and toric degenerations arising from

birational sequences. Adv. Math. 312(2017), no. 25, 107–149.
[FFL17b] X. Fang, G. Fourier, and P. Littelmann, Favourable modules: filtrations, polytopes,

Newton-Okounkov bodies and flat degenerations. Transform. Groups 22(2017), 321–352.
[FFL17c] X. Fang, G. Fourier, and P. Littelmann, On toric degenerations of flag varieties. In: H.

Krause, P. Littlemann, G. Malle, K.-H. Neeb, and C. Schweigert (eds.), Representation
theory: current trends and perspectives, EMS Series of Congress Reports, European
Mathematical Society, Zürich, Switzerland, 2017, pp. 187–232.

https://doi.org/10.4153/S0008414X20000735 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000735


Grassmannian compactifications 231

[FH91] W. Fulton and J. Harris, Representation theory. Graduate Texts in Mathematics, 129,
Springer-Verlag, New York, NY, 1991. A first course, Readings in Mathematics.

[GHKK18] M. Gross, P. Hacking, S. Keel, and M. Kontsevich, Canonical bases for cluster algebras. J.
Amer. Math. Soc. 31(2018), no. 2, 497–608.

[HMM17] J. Hilgert, C. Manon, and J. Martens, Contraction of hamiltonian K-spaces. Int. Math. Res.
Not. 20(2017), no. 1, 6255–6309.

[HMM11] B. Howard, C. Manon, and J. Millson, The toric geometry of triangulated polygons in
Euclidean space. Can. J. Math. 63(2011), no. 4, 878–937.

[HMSV09] B. Howard, J. Millson, A. Snowden, and R. Vakil, The equations for the moduli space
of n points on the line. Duke Math. J. 146(2009), no. 2, 175–226.

[Kav15] K. Kaveh, Crystal bases and Newton-Okounkov bodies. Duke Math. J. 164(2015), no. 13,
2461–2506.

[KK12] K. Kaveh and A. G. Khovanskii, Newton-Okounkov bodies, semigroups of integral points,
graded algebras and intersection theory. Ann. Math. 176(2012), no. 2, 925–978.

[KM19] K. Kaveh and C. Manon, Khovanskii bases, higher rank valuations, and tropical geometry.
SIAM J. Appl. Algebra Geom. 3(2019), no. 2, 292–336.
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