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THICKET DENSITY

SIDDHARTH BHASKAR

Abstract. We define a new type of “shatter function” for set systems that satisfies a Sauer–Shelah type

dichotomy, but whose polynomial-growth case is governed by Shelah’s two-rank instead of VC dimension.

We identify the least exponent bounding the rate of growth of the shatter function, the quantity analogous

to VC density, with Shelah’s ù-rank.

§1. Introduction. The shatter function is a function from N to N that measures
of the complexity of a set system. The shatter function of any set system satisfies
the Sauer–Shelah dichotomy: it is either the binary exponential function n 7→ 2n,
or is polynomially bounded. Whether or not the shatter function is polynomially
bounded or exponential depends on whether a certain integer parameter, the VC
dimension, is finite or infinite. In the finite case, the least exponent bounding the
polynomial growth of the shatter function is a real number called the VC density.
VCdensity was discovered byVapnik andChervonenkis [13] and found important

applications in probability theory, combinatorial geometry, and computational
learning theory.1 The relevance of VC density to theories without the independence
property was pointed out by Laskowski [8], and subsequently developed by
Aschenbrenner et al. [1, 2].
In the present paper, we associate a new function with any set system, which we

call the thicket shatter function. It also satisfies the Sauer–Shelah dichotomy, but
the quantity that distinguishes between polynomial and exponential growth is an
instance of Shelah’s local two-rank, and its rate of growth is an instance of Shelah’s
local ù-rank. In this context, we call these two quantities thicket dimension and
thicket density to emphasize the analogy.
Seen from another angle, our work can be read as a way to calculate Shelah’s

local ù-rank using the asymptotic growth of certain finite combinatorial objects.
Notably, this can be performed in any model of a theory, not just a saturated one.
Our work was foreshadowed by Tiuryn, whose Lemma 3.6 in [12] contains a

special case of our Theorem 4.3 below, the Sauer–Shelah dichotomy for thicket
shatter functions. It is remarkable that he was concerned with problems in dynamic
logic—at best a distant relative of model theory, and even further from geometry
and computational learning theory.
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Figure 1. A binary tree with leaves ℓ1,ℓ2,ℓ3,ℓ4 and non-leaves u,v,w. Depending
on the context, this could be ordered or unordered.

Organization of this paper. In §2, we discuss some basic facts about binary trees.
In §3, we introduce thicket versions of the dimension and shatter function, and in
§4, we prove the thicket version of the Sauer-Shelah dichotomy. In §5, we identify
thicket density with a local model-theoretic rank, and in §6, we formulate a notion
of degree, or multiplicity, for thicket density.

§2. Trees. Our fundamental objects of study are set systems and binary trees;
the latter are the only sort of trees we will consider. Binary trees come in two
varieties: ordered, and unordered, and this refers to whether we distinguish left from
right children of non-leaves. Trees are normatively ordered; we shall say “unordered
trees,” when we mean it.

Definition 2.1. A tree is either a single leaf or an ordered pair of subtrees, which
we call left and right. An unordered tree is either a single leaf or an unordered pair
of subtrees.

Notice that this definition allows for both finite trees and infinite trees of depth
ù. In a set-theoretic account, a tree T would be defined as a nonempty prefix-
closed subset of 2<ù such that for every u ∈ 2<ù , u0 ∈ T ⇐⇒ u1 ∈ T . We prefer
the “coinductive data type” definition presented here, which has the advantage of
giving amore succinct definition of unordered trees. However, we will freely imagine
a tree as a set of vertices, one of which is the root, some of which are leaves, equipped
with a partial order defining the ancestor relation. We trust that this will cause no
difficulty.

Definition 2.2. For a tree T and vertices u,v,w ∈ T , we say
• u ≺ v in case v 6= u, but v is contained in the subtree with root u,
• u ≺L v if v is contained in the subtree whose root is the left child of u, and
• u ≺R v if v is contained in the subtree whose root is the right child of u.

For fixed v ∈ T , the set of vertices P(v) = {u : u ≺ v} is linearly ordered by ≺ and
is partitioned by PL(v) = {u : u ≺L v} and PR(v) = {u : u ≺R v}. For example in
Figure 1, PL(ℓ3) = {u} and PR(ℓ3) = {v,w}.
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For vertices u,v in an unordered binary treeT, we cannot of course say that u ≺L v
or u ≺R v. What we can say is that v and w are contained in the same subtree of u,
or different subtrees of u.

Definition 2.3. For an unordered tree T, and vertices u,v,w ∈ T , we say
• u ≺ v in case v 6= u, but v is contained in the subtree with root u,
• v ∼u w in case u ≺ v, u ≺ w, and v and w lie in the same subtree of u, and
• v ⊥u w in case u ≺ v, u ≺ w, and v and w lie in different subtrees of u.

Notice that, for any v andw, there is a unique u such that v ⊥u w. For example, if we
interpret the tree in Figure 1 to be unordered, then ℓ2 ∼u ℓ3, ℓ2 ∼v ℓ3, but ℓ2 ⊥w ℓ3.
An important example of trees are the finite, balanced trees, which we call Bn:

Definition 2.4. The tree B0 is the single leaf. The tree Bn+1 is the ordered pair of
trees (Bn,Bn). Similarly, we define the unordered tree B

◦
n by letting B

◦
0 be the single

leaf, and B◦
n+1 be the unordered pair {B◦

n ,B
◦
n }.

Definition 2.5. An embedding of the tree T1 into the tree T2 is an injection of
the vertices of T1 into the vertices of T2 that preserves the ≺L and ≺R relations. An
embedding of the unordered tree T1 into the unordered tree T2 is an injection of the
vertices of T1 into the vertices of T2 that preserves the ≺, ∼, and ⊥ relations. The
dimension d of a tree (respectively, unordered tree) T is the largest n such that Bn
(respectively, B◦

n ) can be embedded into T, or∞ if there are arbitrarily large such n.
Remark 2.6. For finite (ordered or unordered) trees T, dimension satisfies the

following useful recursive identity. If T is a leaf, then d = 0. Otherwise, if d1 and d2
are the dimensions of its two subtrees, then

d =

{

max{d1,d2} if d1 6= d2,
d1+1 if d1 = d2.

§3. Labeled trees and their solutions. A set system (X,F, ∈) is a two-sorted
structure with sorts X and F , equipped with a single binary relation ∈⊆ X ×F .
Usually, we shall just write (X,F), suppressing ∈. A typical example of a set system
is obtained by taking X to be some set, F to be a family of subsets of X, and
∈ to be the containment relation. (But, in general, elements in F need not be
extensional.) Given any set system (X,F, ∈), its dual is the set system (F,X, ∈⋆),
where F ∈⋆ x ⇐⇒ x ∈ F . Clearly, the dual of the dual of any set system is identical
to the original.

Definition 3.1. Let (X,F) be a set system and T be a tree. An X -labeling of
T is an assignment of elements of X to non-leaves of T. If T is an X -labeled tree
with labeling u 7→ xu , and if v ∈ T is a leaf, then we say F ∈ F solves v in case
(∀u ≺ v)(xu ∈ F ⇐⇒ u ≺L v), or equivalently, F ∩P(v) = PL(v). In the special
case that T has depth 0, i.e., is a single leaf v, the quantifier ∀u ≺ v is vacuous, so v
has a solution in F iff F is nonempty (Figure 2).
If T is an unordered tree, an X -labeling is an assignment of vertices of T to

elements of X. The solution of a single leaf is meaningless, but we can still speak of
a solution to the whole tree.
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Figure 2. A N-labeling of B3. Leaves are labeled with solutions in
(

N

2

)

, the family
of all two-element subsets of N, when they have one.

Definition 3.2. If T is an X -labeled unordered tree and L ⊆ T is the set of its
leaves, a solution to T (in F) is an assignment L→F , denoted v 7→ Fv , satisfying

v1 ∼u v2 =⇒ xu ∈ Fv1 ↔ xu ∈ Fv2,
v1 ⊥u v2 =⇒ xu ∈ Fv1 6↔ xu ∈ Fv2 .

In other words, any pair of sets labeling two leaves must disagree on whether they
include the element of X labeling their most recent common ancestor, and agree on
all other common ancestors.

Definition 3.3. Say that a set system (X,F) admits a tree T in case there is an
X -labeling of T such that each leaf of T has a solution inF . Similarly, (X,F) admits
an unordered tree T in case there exists an X -labeling of T which has a solution in
F . If a set system does not admit a tree or an unordered tree, then it forbids that
tree.

Remark3.4. For a typical treeT, it is amuch stronger statement to say that (X,F)
admits T, rather than (X,F) admits the underlying unordered tree of T. Similarly, it
is much stronger to say that (X,F) forbids the underlying unordered tree ofT, rather
than (X,F) forbids T. However, when T = Bn, there is no difference: admitting or
forbidding Bn is equivalent to admitting or forbidding B

◦
n . This is because, if (X,F)

admits B◦
n , it must admit some ordered tree which is obtained from B

◦
n by assigning

“left” and “right” to each pair of siblings. But, each such tree is simply Bn.

Remark 3.5. Suppose T is an unordered tree with subtrees T1 and T2. Then if
(X,F) admits T, there is an X -labeling of T with a solution in F . Any solution can
be partitioned into the leaves labeling T1 and the leaves labeling T2. If x is the label
of the root of T, then the two parts of this solution disagree on x. Let Fx and Fx̄
be the elements of F containing and excluding x respectively. Then, either (X,Fx)
admits T1 and (X,Fx̄) admits T2, or (X,Fx) admits T2 and (X,Fx̄) admits T1.
Conversely, suppose that for some x ∈ X , (X,Fx) admits T1 and (X,Fx̄) admits

T2. Then (X,F) admits T, by combining the X -labelings of T1 and T2 into an X -
labeling of T, labeling the root by x. Similarly, if (X,Fx) admits T2 and (X,Fx̄)
admits T1, then (X,F) admits T.
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Definition 3.6. The thicket dimensionof (X,F), denoteddim(X,F), is the largest
n such that Bn is admissible, or∞ if there are arbitrarily large such n. If there are
no such n, equivalently if F is empty, the dimension is – 1.
Remark 3.7. This is a well-known quantity that occurs in many different

contexts. The thicket dimension of (X,F) is equal to Shelah’s rankR(x= x,{ϕ},2),
where ϕ is the formula x ∈ F, relative to the theory Th(X,F) [7, 11]. It is also called
Littlestone dimension in the context of computational learning theory [4]. Hodges
calls it the branching index [7].

Definition 3.8. For a given set system (X,F), let ñ(n) be the maximum, as T
varies over X -labelings of Bn, of the number of leaves of T with solutions in F . The
resulting function ñ : N→ N is the thicket shatter function associated with (X,F).
Remark 3.9. The thicket shatter function of any set system is bounded above by

the binary exponential function n 7→ 2n.
Remark 3.10. To show that ñ(n) ≥m, it suffices to find an X -labeled tree T of

depth at most n, such that at least m distinct leaves of T have solutions in F . For
then we could superimpose T on Bn, label all remaining non-leaves arbitrarily, and
obtain an X -labeling of Bn at least m of whose leaves have solutions.

Dual Quantities. Given a set system (X,F) and a tree T, an F-labeling of T is
an assignment of vertices of T to elements of F . If T is an X -labeled tree with
labeling u 7→ Fu , and if v ∈ T is a leaf, then we say x ∈ X is a solution to v in
case (∀u ≺ v)(Fu ∈ x ⇐⇒ u ≺L v). This allows us to define corresponding “dual”
versions of thicket dimension and the thicket shatter function, which are identical,
respectively, to the thicket dimension and thicket shatter function of the dual set
system (X,F)⋆.
Remark 3.11. VC dimension and dual VC dimension are each bounded above

by a single exponent of the other [3]. On the other hand, thicket dimension and dual
thicket dimension are each bounded above by a double exponent of the other, by
the following argument.
Consider the ladder dimension of a set system (X,F), which is the largest n

such that there exists tuples (x1, ...,xn) from X and (F1, ...,Fn) from F , such that
xi ∈ Fj ⇐⇒ i < j, or∞ if there exist arbitrarily large such n. The ladder dimension
of a set system is clearly equal to the dual ladder dimension, by reversing the roles
of the xi ’s and Fj ’s. On the other hand, the thicket and ladder dimensions of a set
system are each bounded above by single exponent of the other (see [7], Lemma
6.7.9).
Therefore, the thicket dimension is bounded above by a single exponent of the

ladder dimension, which is identical to the dual ladder dimension, and hence is
bounded above by a double exponent of the dual thicket dimension. We do not
know whether this double-exponent bound is tight.

§4. The Sauer–Shelah dichotomy. We now come to our first central result, that
the Sauer–Shelah Lemma, relating the growth of the (usual) shatter function to VC
dimension, holds verbatim in the thicket context.
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Definition 4.1. Define the function ÷ : N2→ N by ÷(n,k) =
(

n
0

)

+
(

n
1

)

+ ···+
(

n
k

)

.
Additionally, define ÷(n, – 1) = 0, and ÷(n,∞) = 2n, for any n ∈ N.

Remark 4.2. Since ÷(n,k) =
∑

0≤i≤k

(

n
i

)

, it makes sense to identify ÷(n, – 1) with

the empty sum, 0. Similarly, it makes sense to identify ÷(n,∞) with the formal sum
(

n
0

)

+
(

n
1

)

+
(

n
2

)

+ ··· . But as
(

n
k

)

= 0 when k > n, this sum is supported only by the

finite part
(

n
0

)

+
(

n
1

)

+ ···+
(

n
n

)

, which is 2n.

Note that for k < ù, ÷(n,k) ∈O(nk).
Theorem 4.3. For any set system (X,F) and k ∈ {– 1}∪ù,

dim(X,F) =∞ =⇒ ∀n ñ(n) = ÷(n,∞),
dim(X,F)≤ k =⇒ ∀n ñ(n)≤ ÷(n,k).

The first implication is immediate: if dim(X,F) =∞, then (X,F) admits Bn for
each n, so ñ(n) = 2n. If however dim(X,F) ≤ k, then (X,F) forbids Bk+1. The
conclusion follows by the second sentence of the next theorem.

Theorem 4.4. For every finite unordered tree T of dimension d, there’s a function

f(n) ∈ O(nd–1) such that if any set system (X,F) forbids T, then ñ(n) ≤ f(n).
Moreover, when T is Bd , ñ(n)≤ ÷(n,d – 1).
Proof. Suppose that (X,F) forbids T. We proceed by induction on the

construction of T. If T is the single leaf B0, then it has dimension 0. If (X,F)
forbids T, then F must be empty, so ñ(n) = 0, which is O(n–1).
Otherwise, suppose that T has subtrees T1 and T2. Suppose their dimensions are

d1 and d2, and suppose that f1(n) ∈ O(nd1–1) and f2(n) ∈ O(nd2–1) are given by
induction. For x ∈ X , let Fx be the collection of those sets in F that include x, and
let Fx̄ be the collection of those which exclude x. Let ñx(n) and ñx̄(n) be the thicket
shatter functions of (X,Fx) and (X,Fx̄) respectively. It is easy to see that for any
x ∈ X , ñ(n) ≤ ñx(n)+ñx̄(n); simply take the X -labeled tree witnessing ñ(n) and
observe that the solutions to its leaves can be partitioned into those containing x
and those not containing x.
Let Pi(x) express that (X,Fx) admits Ti , and Qi(x) express that (X,Fx̄) admits

Ti . Then by Remark 3.5,

(X,F) admits T ⇐⇒ ∃x ∈ X
(

(P1(x)∧Q2(x))∨ (P2(x)∧Q1(x))
)

.

Taking the negation, (X,F) forbids T if and only if for all x ∈ X ,
(¬P1(x)∧¬P2(x))∨ (¬P1(x)∧¬Q1(x))∨
(¬Q2(x)∧¬P2(x))∨ (¬Q2(x)∧¬Q1(x)).

By induction, this implies, for all x ∈ X ,
(ñx ≤ f1∧ñx ≤ f2)∨ (ñx ≤ f1∧ñx̄ ≤ f1)∨
(ñx̄ ≤ f2∧ñx ≤ f2)∨ (ñx̄ ≤ f2∧ñx̄ ≤ f1),

where, e.g., ñx ≤ f1 abbreviates ∀n ∈ ùñx(n) ≤ f1(n). Label the four disjuncts
(i)–(iv) respectively.
Suppose that for some x ∈ X , case (ii) holds. Then ñ(n) ≤ ñx(n) + ñx̄(n) ≤

2f1(n). The right-hand side isO(n
d1–1), which isO(nd–1), and we are done. Similar
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reasoning applies if for some x ∈X , case (iii) holds. If neither (ii) nor (iii) holds for
any x, then

∀x ∈ X
(

(ñx ≤ f1∧ñx ≤ f2)∨ (ñx̄ ≤ f2∧ñx̄ ≤ f1)
)

,

in which case,

∀x ∈ X
(

(ñx ≤ f1∨ñx̄ ≤ f1)∧ (ñx ≤ f2∨ñx̄ ≤ f2)
)

,

so

∀x ∈ X (ñx ≤ f1∨ñx̄ ≤ f1)∧∀x ∈ X (ñx ≤ f2∨ñx̄ ≤ f2).
We claim that for any function g, (∀x)(ñx ≤ g ∨ñx̄ ≤ g) =⇒ ñ ≤

∫

g, where
∫

g
is defined by (

∫

g)(n) = 1+
∑

k<n g(k). If so ñ, would be bounded above by both
∫

f1 and
∫

f2, which areO(n
d1) andO(nd2) respectively.2 If d1 = d2, then d = d1+1,

and ñ would be bounded by a function inO(nd1), which isO(nd–1). If d1 6= d2, then
suppose without loss of generality that d1 < d2. Then ñ would be bounded above by
∫

f1, a function in O(n
d1), which is again O(nd–1), which completes the proof.

It remains to justify the claim. We show that ñ(n)≤ (
∫

g)(n) by induction on n. If
n = 0, ñ(n) ≤ 1 ≤ (

∫

g)(n). Otherwise, consider the labeled tree w witnessing ñ(n),
and let r be the label of its root. By hypothesis either ñr or ñr̄ is bounded above by
g. Therefore, either the number of solutions to the left of the root or the number of
solutions to the right must be bounded by g(n – 1). The number of solutions in the
remaining half is bounded by ñ(n – 1), which by induction is at most (

∫

g)(n – 1).
Therefore the total number of solutions is at most g(n – 1)+(

∫

g)(n – 1) = (
∫

g)(n).
This concludes the proof of the first sentence. Finally, we must show that if T

is Bd , ñ(n) is bounded by ÷(n,d – 1). The base case d = 0 is the same as before.
Otherwise, if (X,F) forbids Bd , then for any x ∈ X , either (X,Fx) forbids Bd–1 or
(X,Fx̄) forbids Bd–1. Therefore, for any x ∈ X , ñx ≤ ÷(·,d – 1), or ñx̄ ≤ ÷(·,d – 1).
Hence, by the above claim, ñ ≤ (

∫

÷)(·,d – 1), which is ÷(·,d ).3 ⊣
The VC density of a set system is defined to be the least exponent bounding the

growth rate of the shatter function. Analogously,

Definition 4.5. Thicket density dens(X,F) is defined by
inf{c ∈ R : ñ(n) ∈O(nc)},

where ñ(n) is the thicket shatter function of (X,F). In case ñ(n) ∈ O(nc) for all
c ∈ R, dens(X,F) =–∞, and in case ñ(n) ∈O(nc) for no c ∈ R, dens(X,F) =∞.
The dual thicket density is defined with the dual thicket shatter function ñ⋆ instead
of ñ.

Remark 4.6. By Theorem 4.3, if dim(X,F) = k < ∞, then ñ(n) ≤ ÷(n,k),
which is O(nk). Therefore, dens(X,F) ≤ dim(X,F) for any set system (X,F), as
R∪{–∞,∞}-valued quantities.

2The fact that g ∈O(np) =⇒
∫

g ∈O(np+1) follows, for example, from elementary calculus, or from
Faulhaber’s formula, which expresses the sum

∑

k<n k
p as a polynomial in n of degree p+1.

3This can be shown by induction on n and d. When both n,d > 0, (
∫

÷)(n,d – 1) = (
∫

÷)(n – 1,
d – 1)+÷(n – 1,d – 1), which is ÷(n – 1,d )+÷(n – 1,d – 1) by induction. Observe that the latter quantity
is ÷(n,d ), by Pascal’s identity.
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x0

F0x1

F1x2

F2

Figure 3. The unordered tree of Lemma 4.7.

Lemma 4.7. The thicket density of (X,F) is –∞, 0, or ≥ 1, depending on whether
the cardinality of F modulo extensionality is zero, positive and finite, or infinite.

Proof. If F is empty, then ñ(n) = 0, and dens(X,F) =–∞. If F has nonempty
but has finitely many elements modulo extensionality, say at most B, then for all
nñ(n)≤ B . Therefore, dens(X,F) = 0. On the other hand, if F has infinitely many
elements modulo extensionality, then we can extract a sequence (xi,Fi)i<ù such that
for any i < j, Fi and Fj agree on xh for h < i , but disagree on xi . (Given F , pick
some x ∈X such that bothFx andFx̄ are nonempty. One of them, call itF⋆ must be
infinite; pick some F that comes from the other, F†. Replace F by F⋆ and repeat.)
Then the unordered tree pictured in Figure 3 has a solution, and, by truncating
the tree at depth n for each n, we observe by Remark 3.10 that ñ(n)≥ n+1, hence
dens(X,F)≥ 1. ⊣

An alternate formulation of density. Theorem 4.3 says roughly that, for set systems
of finite thicket dimension, trees which are balanced cannot have very many realized
leaves. Then it stands to reason that admissible trees, i.e., those with every leaf
realized, must be far from balanced. This idea yields another way to define thicket
density.

Definition 4.8. Let ó(n) be the minimum depth of any finite X -labeled tree, at
least n of whose leaves have solutions.

If (X,F) has infinite thicket density, then ó(n) = ⌊log2(n)⌋, as witnessed by a
balanced binary tree. If (X,F) has zero density, then ó(n) is undefined for arbitrarily
large n. The interesting case is when (X,F) has finite and positive density, in which
case ó(n) is bounded below by nå for some å > 0. In fact, the rate of growth of ó is
the inverse of the density:

Lemma 4.9. For any set system (X,F) of finite positive density ä, if å = sup{c ∈R :
ó(n) ∈Ω(nc)}, then å = 1ä .

Proof. Fix n. Let T be any finite X -labeled binary tree, at least n of whose leaves
have solutions, and let ∆ be the depth of T. By Remark 3.10, n ≤ ñ(∆). Since T is
arbitrary, by taking the T with the least possible ∆, we obtain n ≤ ñ(ó(n)), for all
n ∈ ù. This implies that å ≥ 1

ä .
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2
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{1, 9}{1, 8}
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Figure 4. A N-labeled tree with all leaves realized in
(

N

2

)

. The depth of such trees
grows like Ω(

√
n), where n is the size.

On the other hand, fix ∆. Let T be any finite, balanced X -labeled binary tree of
depth ∆, and let n be the number of leaves of T with solutions. Then ∆ ≥ ó(n), by
definition of ó. Since T is arbitrary, by taking T with the greatest possible n, we
obtain ∆ ≥ ó(ñ(∆)), for all ∆ ∈ ù. This implies that ä ≤ 1

å , which completes the
proof (Figure 4). ⊣

§5. Rank. In this section, we establish an equivalence between thicket density and
“Shelah’s local ù-rank” R(p,{ϕ},ù), the local analogue of Morley rank.4 From a
model-theoretic perspective, the significance of this result is probably reversed, i.e.,
we identify R(p,{ϕ},ù) with the thicket density of a particular set system.
The arguments in the next two sections involve moving between lower bounds

for ranks, the admissibility of certain trees, and the consistency of certain theories.
They recall Shelah’s proof of Unstable Formula Theorem (Theorem 2.2 of [11]).
In this section and henceforth, we use typewriter script to distinguish syntactic
variables, e.g., x, from values, e.g., x ∈ X or a ∈M .
Concretely, given any partitioned first-order formulaϕ(x,y), and for anymodelM

of a complete theoryT, define a set system (M x,M y, ∈) by a ∈ b ⇐⇒ M |=ϕ(a,b).
Then, roughly speaking, we can calculate the rankR(x= x,{ϕ},ù) of a finiteϕ-type
modulo T using the thicket shatter function of the set system (M x,M y, ∈). Since
the thicket shatter function depends only on T and not the particular choice of
M, we can carry out this calculation in any model M |= T , not only a sufficiently
saturated one.
In this section, fix a set system (X,F), and a sufficiently saturated model M of

Th(X,F, ∈) (so that we can calculate ù-rank). Let MX and MF be the two sorts
ofM. Let ϕ be the formula x ∈ F. By a ϕ-formula, we mean a formula of the form
ϕ(a,F) or ¬ϕ(a,F) for some a ∈MX . Whenever we assert that some sentence holds,
we always mean relative to the modelM.

4We do not know of a commonly accepted name for this rank. However, it is equivalent to
R(p,{ϕ},∞), and the Cantor–Bendixson rank of the space of ϕ-types.
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By a finite ϕ-type, we mean a conjunction of ϕ-formulas, including the empty
conjunction⊤. Two finite ϕ-types p and q are contradictory in case there exists some
a ∈MX such that one of {ϕ(a,F),¬ϕ(a,F)} occurs as a conjunct in p, and the other
occurs as a conjunct in q. In this case, we say that p and q disagree on ϕ(a,F). By
p(F) we mean the subfamily of F satisfying the type p.

Definition 5.1. For any unordered tree T, let L be its set of leaves and N be its
set of non-leaves. Let LT be the signature {∈} expanded by a new set of constant
symbols {au : u ∈N} of sortX, and {bv : v ∈L} of sortF . Given in addition a finite
ϕ-type p, define a first-order LT -theory AdmTp by:
1. p(bv) for any v ∈ L,
2. ϕ(au,bv) 6↔ ϕ(au,bw) if v,w ∈ L, u ∈N , and v ⊥u w, and
3. ϕ(au,bv)↔ ϕ(au,bw) if v,w ∈ L, u ∈N , and v ∼u w.

Remark 5.2. The following hold of AdmTp :

• If (X,p(F)) admits T, then Th(X,F) is consistent with AdmTp . If T is finite,
then the converse holds as well.

• Since M is sufficiently saturated, the consistency of Th(X,F) ∪AdmTp is
equivalent the admissibility of T in (MX ,p(MF )). (Concretely: the existence
of injections u 7→ au : N →MX and v 7→ bv : L→MF such that properties
(1)–(3) of Definition 5.1 hold inM.)

Lemma 5.3. Suppose that T is a finite-dimensional unordered tree and that there

is an embedding of the unordered tree S into T.5 Then if Th(X,F) is consistent with
AdmTp , it is consistent with Adm

S
p .

Proof. First observe that for every vertex v ∈T , the subtree rooted at v contains
some leaf. For otherwise (since each non-leaf has two children) T would have a
complete infinite binary subtree, and not be finite-dimensional. Fix an embedding
é : S→ T , and let map leaves of S to leaves of T, such that for each leaf ℓ ∈ S, (ℓ)
is contained in the subtree rooted at é(ℓ). Then notice that for any non-leaf s and
leaf ℓ in S, s ≺ ℓ in S iff é(s) ≺ (ℓ) in T. Moreover, if ℓ ′ is another leaf of S, then
ℓ ⊥s ℓ ′ in S iff (ℓ)⊥é(s) (ℓ ′) in T. Similarly, ℓ ∼s ℓ ′ in S iff (ℓ)∼é(s) (ℓ ′) in T.
Suppose that T is admissible in (MX ,p(MF )), witnessed by the labeling u 7→ au ,

v 7→ bv . For any non-leaf s ∈ S, label it by aé(s), and for any leaf t ∈ S, label it by
b(t). Since the relations ⊥ and ∼ are preserved by the map é on non-leaves and  on
leaves, properties (2) and (3) of Definition 5.1 carry over from T to S. Since  maps
leaves to leaves, property (1) of Definition 5.1 carries over from T to S. Hence, S is
admissible in in (MX ,p(MF )). ⊣

Next, we define the rank R(p,{ϕ},ù), for finite ϕ-types p. Here we follow the
definition and notation of Pillay [10], who writes Rϕ

ℵ0
, but we omit the cardinality

ℵ0, and just write Rϕ .

5cf. Definition 2.5.

https://doi.org/10.1017/jsl.2020.55 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.55


120 SIDDHARTH BHASKAR

Figure 5. The two-branching tree from Definition 5.7. The spine is indicated by
the thick edge. The vertices of any Tk+1 can be partitioned into the vertices on the
spine, plus countably many copies of Tk .

Definition 5.4. For any finite ϕ-type p(F), let

• Rϕ(p)≥ 0 if p is consistent, i.e., there exists some b ∈MF such that p(b).
• Rϕ(p)≥ α+1 in case there is a pairwise contradictory family of finite ϕ-types
{pi : i < ù}, such that for each i, Rϕ(p∧pi )≥ α.

• For limit ordinal α, Rϕ(p)≥ α just in case Rϕ(p)≥ â for all â < α.
We sayRϕ(p) = α in caseRϕ(p)≥ α butRϕ(p) 6≥ α+1,Rϕ(p) =–∞ ifRϕ(p) 6≥ 0,
and Rϕ(p) =∞ in case Rϕ(p)≥ α for all α.
Remark 5.5. If Rϕ(p) ≥ ù, then Rϕ(p) =∞. (Pillay [10] Exercise 6.53) Hence

Rϕ takes values in ù∪{–∞,∞}.
In fact, we can rearrange the quantifiers in the second clause to be a little bit

stronger (Figure 5):

Lemma 5.6. Suppose that {pi : i < ù} is a sequence of pairwise contradictory finite
ϕ-types. Then there is an infinite set S ⊆ ù such that for any r ∈ S, there exists
a ∈MX , such that for any s > r in S, pr and ps disagree on ϕ(a,F).
Proof. For any infinite set S ⊆ ù, let m be its least element. Since pm is finite,

theremust be somea ∈MX andan infinite subsetS ′ ⊆S \{m} such thatpm disagrees
with pn on ϕ(a,F) for any n ∈ S ′. Let S0 =ù, and for each i < ù, obtain Si+1 from
Si in this manner. Obtain mi and ai from Si as above. Then S0 ⊃ S1 ⊃ S2 ⊃ ··· ,
m0 < m1 < m2 < ··· , and mi ∈ Sj ⇐⇒ i ≥ j. Moreover, for every i < j, pmi and
pmj disagree on ϕ(ai,F). Therefore, we may take S = {m0,m1,m2, ...}. ⊣
Definition 5.7. The 0-branching tree T0 is a single leaf. For k ≥ 1, the k-

branching tree Tk is the unordered binary tree with subtrees Tk and Tk–1.
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Remark 5.8. Tk has dimension k, and is isomorphic to the (unordered) tree
{ó ∈ 2<ù : ó has at most k many zeros}. Therefore, the number of vertices in Tk at
depth n is ÷(n,k), since ÷(n,k) =

∑

i≤k

(

n
i

)

is the number of binary strings of length
n with at most k many zeros.

Theorem 5.9. Rϕ(p)≥ k if and only if Th(X,F)∪AdmTkp is consistent.
Proof. We work inM, by Remark 5.2, and induct on k. If k = 0, then Rϕ(p)≥

k iff there exists some b ∈ MF such that p(b), iff the tree T0 is admissible in

(MX ,p(MF )), iff Th(X,F)∪AdmT0p is consistent.
Otherwise, suppose that Rϕ(p)≥ k+1, and let {pi}i<ù witness this. By Lemma

5.6, there is an infinite set S ⊆ù such that for any r ∈ S, there is some a ∈MX , such
that for any s > r in S, pr and ps disagree on ϕ(a,F). Let {qi}i<ù enumerate the set
{pi}i∈S in order. Let a(i) witness the ϕ-formula distinguishing qi from qj , for j > i .
Let N and L be the sets of non-leaves and leaves, respectively, of Tk+1. The tree

Tk+1 can be partitioned into a single infinite spine plus countably many copies of
Tk .

6 Let N =
⋃

i<ùNi ∪Ns , where Ni is the set of non-leaves of the i-th copy of Tk ,
andNs are the vertices down the spine. LetL=

⋃

i<ùLi , whereLi is the set of leaves
of the i-th copy of Tk .
For each i < ù, we have Rϕ(p ∧ qi) ≥ k. Therefore, by induction, there are

injections u 7→ au : Ni →MX and v 7→ bv : Li →MF satisfying properties (1)–
(3) for each p∧qi . By taking the union over all i, we have a map v 7→ bv : L→MF .
Similarly, we can get a map u 7→ au : N →MX if we specify au for u ∈ Ns . But for
u ∈Ns of distance i from the root, simply let au = a(i).
For any v ∈ L, bv satisfies p∧ qi for some i; in particular it satisfies p. Thus we

have verified (1), and it remains to verify (2) and (3). Fix two leaves v,w ∈ L and a
common ancestor u ∈N .

• If for some i, v,w ∈ Li and u ∈ Ni , then the relations v ⊥u w, v ∼u w are
identical in the ambient tree Tk+1 and the i-th copy of Tk , hence (2) and (3)
are inherited from the given maps Ni →MX and Li →MF .

• If for some i, v,w ∈ Li and u /∈Ni , then v ∼u w, and u must be a vertex in Ns
of distance at most i from the root. Therefore, au is a

(j) for some j ≤ i . Since
bv and bw both satisfy qi , and qi contains either ϕ(a

(j),F) or its negation for
each j ≤ i , bv and bw must agree on ϕ(au,F).

• If for some i < j, v ∈ Li and w ∈ Lj , then u must be some vertex on the spine
of distance at most i from the root; moreover, qi (bv) and qj(bw). Therefore,

bv and bw disagree on ϕ(a(i),F), and agree on ϕ(a(i
′),F) for all 0≤ i ′ < i . But,

au = a
(i) just in case v ⊥u w, and au = a(i

′) for some 0 ≤ i ′ < i just in case
v ∼u w. This concludes the forward direction.

In the other direction, suppose that we have injections u 7→ au : N → MX and
v 7→ bv : L→MF satisfying (1)–(3). Let Ns , Ni , and Li be as above, and let a

(i)

be the sequence of vertices along the spine. For i < ù, define pi = {ϕ⋆(a(i),F)}∪
{¬ϕ⋆(a(i′),F) : i ′ < i}, where ϕ⋆(a(i),F) is either ϕ(a(i),F) or ¬ϕ(a(i),F), depending
on which one the leaves in Li satisfy (Figure 6).

6Under the identification of Tk+1 with the set of binary strings i with at most k+1 zeros, the spine
consists of 1<ù , and the countably many copies of Tk are rooted at 1

i0, for i < ù.
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Figure 6. By Theorem 5.9, Rϕ(p) ≥ 2 is equivalent to the admissibility of the
unordered tree T2 inM, such that every bij satisfies p.

For each i, by restricting the maps u 7→ au and v 7→ bv to Ni and Li respectively,
we get injections which inherit (2) and (3) from the original function. Towards
(1), notice that for each v ∈ Li , bv satisfies p∧pi , by definition of pi . Hence, by
induction, Rϕ(p∧pi)≥ k. Since for each i < j, pi and pj disagree on ϕ(a(i),F), we
have that Rϕ(p)≥ k+1, which concludes the proof. ⊣

Theorem 5.10. The thicket density of (X,p(F)) is identical to Rϕ(p), as
R≥0∪{–∞,∞}-valued quantities.

Proof. We show that both quantities are bounded above by each other.
For some 0 ≤ k < ù, suppose that Rϕ(p) ≥ k. By Theorem 5.9, Th(X,F) is

consistent with Adm
Tk
p . By Remark 5.2, for any finite subtree S of Tk , Adm

S
p

is consistent, so (X,p(F)) admits S. But if we obtain S by truncating Tk to
depth n, then S has O(nk) leaves, thus ensuring dens(X,F) ≥ k. Hence Rϕ(p) ≤
dens(X,p(F)).
Conversely, suppose that for some 0≤ k<ù,Rϕ(p) 6≥ k. By Theorem 5.9,AdmTkp

is inconsistent with Th(X,F). By compactness, some finite fragment of AdmTkp is
inconsistent with Th(X,F), and hence there exists a finite subtree S of Tk such that
AdmSp is inconsistent with Th(X,F). By Remark 5.2, (X,p(F)) forbids S. Since Tk
has dimension k,S has dimension atmost k. By Theorem 4.4, dens(X,p(F))≤ k – 1.
Hence dens(X,p(F))≤Rϕ(p). ⊣

As an immediate corollary, we deduce that thicket density is integer-valued, in
contrast to VC density. This fact was first proven by James Freitag and Dhruv
Mubayi, using elementary combinatorics, and a very short elementary proof has
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been found by Ross Berkowitz. (Both of these results are unpublished and were
communicated to us in person.)

§6. Degree. Many model-theoretic ranks admit an associated notion of degree
(sometimes called multiplicity); roughly, given a formula p, this is the maximum
number of pairwise contradictory extensions of p which each have rank no less than
p. For any fixed rank, this degree must be absolutely bounded by some cardinal
κ, where the rank of a formula is at least α + 1 if there are at least κ many
pairwise contradictory extensions of rank α. For example, we can define the degree
D associated with the rank Rϕ as follows.

Definition 6.1. For any finite ϕ-type p, let D(p) be the greatest integer n < ù
such that there exist pairwise contradictory finite ϕ-types p1, ...,pn, such that for
each 1≤ i ≤ n, Rϕ(p∧pi) =Rϕ(p).7

In this section, we develop a notion of degree that seems natural and appropriate
for thicket density. Like in §5, we fix a set system (X,F) and a sufficiently saturated
modelM of Th(X,F). For a finite ϕ-type p to have parameters from X means every
conjunct of p is of the form ϕ(x,F) or¬ϕ(x,F) for some x ∈X . For such a type p, let
dens(p) abbreviate dens(X,p(F)), where p(F) = {F ∈ F : p(F )}. More generally,
for any formula ø(F), let dens(ø) abbreviate dens(X,ø(F)).8

Definition 6.2. Given a vertex v in an X -labeled tree T, define the finite ϕ-type
pv(F) to be the conjunction of literals ϕ(xu,F) for u ≺L v, and ¬ϕ(xu,F) for u ≺R v.
Then pv is a finite ϕ-type with parameters from X, and if v is a leaf, F solves v if
and only if pv(F ).

Definition 6.3. Let p be a finite ϕ-type with parameters from X. An X -labeled
tree T factors p in case dens(p∧pv) = dens(p), for each leaf v of T. Furthermore,
T irreducibly factors p if, in addition, no proper extension T ′ of T factors p. We say
that p is irreducible if it is irreducibly factored by a single leaf. We say that (X,F) is
irreducible in case the empty type is.

Lemma 6.4. For every finite ϕ-type p with parameters from X, if 0≤ dens(p)<∞,
then p is irreducibly factored by some finite tree.

Proof. Fix the domainX. For each finite type p ∈ Sϕ(F), we build anX -labeled
tree Π(p) irreducibly factoring p via a nondeterministic construction.

• If p is irreducible, Π(p) is a single leaf.
• Otherwise, let x ∈X satisfy dens(p∧ϕ(x,F)) = dens(p∧¬ϕ(x,F)) = dens(p).
Let Π(p) have root x and left and right subtrees Π(p ∧ϕ(x,F)) and Π(p ∧
¬ϕ(x,F)) respectively.

We claim that this construction terminates after finitely many steps. For otherwise,
there would be an infinite branch x0,x1,x2, ... and an infinite sequencep= p0 ⊂ p1 ⊂
p2 ⊂ ··· such that for each i < ù, either pi+1 = pi ∧ϕ(xi,F) or pi+1 = pi ∧¬ϕ(xi,F),

7If therewere arbitrarily large such n, the theremust exist an infinite familypi of pairwise contradictory
ϕ-types, such that for each i, R(p∧pi ) = R(p), contradicting Definition 5.4.
8We consider the density of one non-type, namely, dens(p∧ (pv ∆pw)) in Lemma 6.5.
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x

z

dens( )

dens( x̄ )

dens( x̄ z̄ )dens( x̄z )

dens( x )

Figure 7. An illustration suggesting Π(⊤) (on the left), and the densities of the
corresponding set systems (on the right). Each of these densities is the same, but the
set systems labeling the leaves are irreducible, and cannot be “split” into subsystems
of the same density by any element of X.

and dens(pi) = dens(pi ∧ϕ(xi,F)) = dens(pi ∧¬ϕ(xi,F)). Let p†

i be the extension of

pi that is not pi+1. Then, for each i < ùdens(p
†

i ) = dens(p), and for each i < j < ù,

p†

i and p
†

j agree on ϕ(xh,F ) for h < i , and disagree on ϕ(xi,F).

Letk=dens(p). ByTheorems 5.9 and 5.10, for each i <ù, we canfinda consistent
labeling of Tk by elements ofM, such that each leaf satisfies p

†

i . By stringing these
trees along a spine labeled by the sequence x0,x1,x2, ... , we get a consistent labeling
of Tk+1 by elements of M, such that each leaf satisfies p. But this implies that
dens(p)≥ k+1, a contradiction (Figure 7). ⊣
We now show that even though there may not be a unique tree that irreducibly

factors a set system, the number of vertices in any such tree is the same. Even
stronger, the partition induced by such a tree is unique up to rearrangement by
pieces of strictly smaller density. This is analogous to the situation for, e.g., Morley
rank.

Lemma 6.5. Let p be a finite type with parameters from X. Suppose ä = dens(p) is
finite and nonnegative, and suppose T1 and T2 are X-labeled trees that each irreducibly
factor p. Then T1 and T2 have the same number of leaves. A fortiori, there is a bijection
between the leaves of T1 and the leaves of T2, such that dens(p∧ (pv ∆pw)) < ä for
any bijective pair (v,w).

Proof. For i ∈ {1,2}, letLi be the set of leaves of Ti . Since T1 and T2 each factor
p, dens(p∧pv) = dens(p∧pw) = ä for each v ∈ L1 and w ∈ L2.
For any fixed v ∈ L1, the types {p∧pv ∧pw : w ∈ L2} partition p∧pv . Hence

dens(p∧pv) =max{dens(p∧pv∧pw) :w ∈L2}.9Hence, for somew ∈L2, dens(p∧
pv ∧pw) = ä. However, such a w must be unique; if dens(p∧pv ∧pw) = dens(p∧
pv ∧pw′) = ä, then T1 does not irreducibly factor p: the leaf v can be replaced by a
non-leaf labeled by the least common ancestor of w and w′ in T2.
Reasoning symmetrically, for any w ∈ L2, there is a unique v ∈ L1 such that

dens(p∧pv ∧pw) = ä. Hence, the relation R(v,w) ⇐⇒ dens(p∧pv ∧pw) = ä is
the graph of a bijection, so |L1|= |L2|. Furthermore, for any bijective pair (v,w),
dens(p∧ (pv ∆pw)) = max{dens(p∧pv ∧pw′),dens(p∧pv′ ∧pw) : v′ 6= v,w′ 6= w},

9In general, dens(p∨ q) = max{dens(p),dens(q)}. The thicket shatter function ñp∨q on is bounded
below by both ñp and ñq , and bounded above by ñp+ñq .
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again, since the types {p∧pv ∧pw′,p∧pv′ ∧pw}v 6=v′,w 6=w′ partition p∧ (pv ∆pw).
Hence, dens(p ∧ (pv ∆pw)) must be strictly less than ä, since we maximize over
finitely many densities all strictly less than ä. ⊣
Hence, we can now define a notion of degree for thicket density.

Definition 6.6. For any finite ϕ-type p with parameters from X, the thicket
degree deg(p) is the number of leaves of any tree irreducibly factoring p. The degree
deg(X,F) is defined to be deg(⊤), the degree of the empty conjunction.
Remark 6.7. Given any tree T irreducibly factoring p, the types pv are pairwise

contradictory as v varies over the leaves of T, and moreover Rϕ(p∧pv) = Rϕ(p)
for any leaf v. Hence deg(p)≤D(p).
Remark 6.8. By a finite ϕ⋆-type q with parameters from F , we mean a finite

conjunction of formulas of the form ϕ(x,F ) and ¬ϕ(x,F ), where F ranges over
F . We can define the dual degree , deg⋆(q), by switching the roles of X and F
throughout. Concretely, the dual degree of q is the number of leaves of any F-
labeled binary tree T, such that dens⋆(q∧qv) = dens⋆(q) for any leaf v of T, and T
is maximal with respect to this property. (The dual degree of q is simply the degree
of q in the dual set system.)

Remark 6.9. Even though thicket density is equivalent to the rank R, the thicket
degree can differ from the degree D associated with the rank R. It suffices, and
is easier, to exhibit a difference between the corresponding dual quantities. Let
X be any infinite set, and let F be a partition of X with arbitrarily large finite
sets, but no infinite set. Then dens⋆(X,F) ≥ 1, since X is infinite, but for any
F ∈F , dens⋆(F,F ↾ F ) = 0, as F is finite (cf. Lemma 4.7). Hence, (X,F) is (dually)
irreducible: any F-labeled tree that irreducibly factors (X,F) must be a single leaf,
and hence deg(X,F) = 1. On the other hand, using compactness, we can find an
element b ∈MF that has infinitelymanymembers and infinitelymany non-members
among elements ofMX . Therefore, R

⋆(ϕ(x,b)) and R⋆(¬ϕ(x,b)) are both at least
1, so D⋆(⊤)≥ 2.

§7. Conclusion and future work. We have established a relationship between
a measure of asymptotic growth of certain finite objects with the ordinal rank
of an infinite object, a common phenomenon relating infinitary and finitary
combinatorics. There are several lines of inquiry that our work raises. For example,
from a technical standpoint, we do not know what other information about a set
system is contained in its thicket shatter function. We suspect that other invariants
(like the leading coefficient) might encode something interesting. Furthermore, there
are many identities that the rank Rϕ is known to satisfy, and it would be interesting
to see if they might admit a purely combinatorial proof.
The similarity between theSauer–ShelahLemmaand thepresent “thicket” version

naturally raises the question of whether they both share a general setting. Chase and
Freitag [5] answer this question positively by formulating a shatter function for
op-rank of Guingona and Hill [6], which interpolates Shelah’s two-rank with VC
dimension, and establishing a dichotomy which interpolates both versions of the
Sauer–Shelah Lemma. Most questions about the corresponding notion of density
remain open, for example, what values it takes “between” the VC and thicket cases.
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Finally, as we mentioned in §1, this work was originally inspired by reading
Tiuryn’s paper [12] separating deterministic from nondeterministic dynamic logic.
Several branches of computer science, such as dynamic logic, descriptive complexity
theory, and program schematology, are concerned with programs that operate over
first-order structures. A fundamental invariant of a deterministic, sequential program
its underlying decision tree, which encodes the sequence of tests made on the input
data during execution of the program.Many algorithmic lower bounds are obtained
by considering decision trees, for example, theΩ(n logn) lower bound on the number
of comparisons in any deterministic sorting program.
We can leverage the thicket shatter function, if it is bounded by a polynomial,

to prove stronger lower bounds that what we would otherwise be able to show
using binary decision trees. (In fact, Tiuryn does just this.) We suspect there are
other applications in this vein. For example, Lynch and Blum pose the question
of which first-order structures with domain the set of binary strings are adequate,
which is roughly a polynomial-time version of Turing completeness [9]. We have
some preliminary results which give a sufficient condition for inadequacy, which
uses Theorem 4.3 in an essential way.
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