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The changes in discharge in pressure-driven flows through channels with longitudinal
grooves have been investigated in the laminar flow regime and in the turbulent flow
regime with moderate Reynolds numbers (Re2H ≈ 6000) using both analytical and
numerical methodologies. The results demonstrate that the long-wavelength grooves
can increase discharge by 20 %–150 %, depending on the groove amplitude and
the type of flow, while the short-wavelength grooves reduce the discharge. It has
been shown that the reduced geometry model applies to the analysis of turbulent
flows and the performance of grooves of arbitrary form is well approximated by
the performance of grooves whose shape is represented by the dominant Fourier
mode. The flow patterns, the turbulent kinetic energy as well as the Reynolds stresses
were examined to identify the mechanisms leading to an increase in discharge. It
is shown that the increase in discharge results from the rearrangement of the bulk
fluid movement and not from the suppression of turbulence intensity. The turbulent
kinetic energy and the Reynolds stresses are rearranged while their volume-averaged
intensities remain the same as in the smooth channel. Analysis of the interaction
of the groove patterns on both walls demonstrates that the converging–diverging
configuration results in the greatest increase in discharge while the wavy channel
configuration results in a reduction in discharge.

Key words: drag reduction, flow control, turbulent flows

1. Introduction
In wall-bounded flows, power must be supplied to the flow in order to overcome

dissipation by means of viscous and pressure drag. Increasing energy costs motivate
the search for methods to reduce the power consumption and one way to achieve this
goal is to reduce drag. Techniques resulting in the reduction of pressure drag are well
established while methods that result in the reduction of friction drag are still being
actively researched.

† Email address for correspondence: yuchen1986sg@gmail.com
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It is well known that turbulent flows have higher skin friction than laminar flows
and, thus, one of the popular drag-reducing techniques relies on the delay of the
laminar–turbulent transition. Once the turbulent flow has been established, its structure
can be rearranged using either passive or active devices with the hope that the new
flow will be characterized by a smaller skin friction.

Since the beginning of modern fluid mechanics, it has been commonly believed that
the drag on a smooth surface is always lower than that on a rough surface (Hagen
1854; Darcy 1857; Nikuradse 1933; Moody 1944). This is actually not the case, as
documented through the development of special drag-reducing surface topographies;
see a recent review in García-Mayoral & Jiménez (2011). The advantage of such
topographies is in the passive character of the drag reduction which eliminates the
energy costs associated with the use of active techniques (Choi, Jukes & Whalley
2011; Quadrio 2011). The physics of turbulent drag reduction is well summarized by
Kim (2011).

One of the early passive methods of drag reduction was the large eddy break up
(LEBU) method (Savill & Mumford 1988). This method usually employs small flat
or airfoil shaped ribbons within the boundary layer. The wake behind such ribbons
interacts with the turbulent boundary layer and suppresses the velocity normal to the
wall (Balakumar & Widnall 1986; Graham 1998), resulting in a reduction in turbulent
motion and skin friction immediately downstream of the devices. The drag reduction
is up to 40 % as reported by Sahlin, Johansson & Alfredsson (1988), however there
is a large spread and doubt in the drag reduction value due to the difficulty and
inaccuracies of indirect measuring methods at relatively low Reynolds numbers
(Savill & Mumford 1988). In addition, drag reduction at practically high Reynolds
numbers seems implausible as LEBU devices reduce skin friction via breaking up
the large-scale motions whose size becomes much smaller than the devices. This
is supported by the direct force measurements conducted by Sahlin, Alfredsson &
Johansson (1986), Sahlin et al. (1988) at Reynolds numbers up to 260 000.

Nature provides numerous examples of special drag-reducing surface topographies.
Shark (superorder Selachimorpha) is one of the fastest swimming fish, whose speed
can exceed 40–50 km h−1 (the ‘shortfin mako shark’ and the ‘great white shark’)
during hunting. Microscopic examination of shark skin showed that it consists of
small jagged and overlapping scales with a valley/ridge structure (denticle) in the
flow direction. The scales are believed to disrupt the turbulent flow structures and in
this manner they reduce the drag (Bechert, Bruse & Hage 2000; Dean & Bhushan
2010). Riblets, inspired by the shark skin, have the form of streamwise microgrooves
and represent one of the well-known skin-friction reducing methods (Walsh 1980,
1983). The structure of riblets is different from shark skin, as the former has a
continuous geometry while the latter is discrete in the streamwise direction. Riblets
generally have two types of cross-section: wedge-like and blade-like (see Sudo et al.
2002). The height and spacing expressed in terms of wall units for the ‘wedge’
or ‘blade’ are approximately 10–30. It is generally accepted that the highest drag
reduction that can be achieved in turbulent channel flow by riblets is approximately
7 %–9 % (Bechert et al. 1997; Itoh et al. 2006). The direct numerical simulations
of Choi, Moin & Kim (1993) demonstrated that the drag reduction is achieved by
depressing the velocity and vorticity fluctuations as well as the Reynolds stresses.
See also Bechert & Bartenwerfer (1989) and Choi (1989).

Sirovich & Karlsson (1997) employed randomly patterned ‘V’ protrusions and
experimentally found an approximately 10 % drag reduction in turbulent channel flow
(15 000 < Re2H < 40 000) as compared to a smooth channel. The experimental and
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numerical results obtained by Sagong et al. (2008), however, showed that the drag
on randomly patterned ‘V’ protrusions is increased by 0 %–15 %. The disagreement
among researchers as to whether ‘V’ protrusions induce drag reduction led Chen,
Chew & Khoo (2010) to conduct numerical simulations for Reynolds numbers
10 000< Re2H < 40 000. Their results showed that neither the random nor aligned ‘V’
protrusions can reduce drag in a fully developed turbulent channel flow.

Another alternative is offered by the so-called super-hydrophobic effect (Rothstein
2010) which results from a combination of the hydrophobicity of the liquid and
surface material and surface topography. When a super-hydrophobic surface is
submerged inside a liquid, gas bubbles become trapped in surface micro-pores
effectively reducing the shear stress experienced by the liquid, as shear between
the liquid and the solid is replaced by shear between the liquid and the gas, with
the research being inspired by the unique water-repellent properties of the lotus leaf
(Barthlott & Neinhuis 1997). The drag reducing abilities can be increased by correctly
shaping the surface pores/roughness (Samaha, Tafreshi & Gad-el Hak 2011) and by
increasing hydrophobicity through changes in surface chemistry (Gao & McCarthy
2006; Quéré 2008; Reyssat, Yeomans & Quéré 2008; Zhang et al. 2008; Zhou et al.
2011). While laminar drag reduction due to the super-hydrophobic effect is well
documented (Ou, Perot & Rothstein 2004; Ou & Rothstein 2005; Joseph et al. 2006;
Truesdell et al. 2006), techniques which rely on this effect to reduce turbulent drag
are still being developed (Daniello, Waterhouse & Rothstein 2009; Martell, Perot &
Rothstein 2009; Park, Park & Kim 2013).

Dimpled surfaces, which were first designed and have been studied extensively
for heat transfer enhancement (Burgess, Oliveira & Ligrani 2003), may also have
the potential to reduce drag (Alekseev et al. 1998). Conflicting views on their drag
reduction capability are reported; some studies (Alekseev et al. 1998; Veldhuis &
Vervoort 2009) reported dramatic drag reduction even up to 10%–20 % compared to
flat surfaces, while others (Lienhart, Breuer & Köksoy 2008; Tay, Khoo & Chew
2015) reported little (approximately 3 %) to no drag reduction in both external and
internal turbulent flow. Tay et al. (2015) revealed that the turbulent motion on the
small scales is suppressed by the streamwise vorticity generated on the dimpled
surfaces, leading to the reduction of turbulent skin friction. It was also shown that,
although increasing dimple depth further reduces skin friction, the net drag reduction
may drop because of the significant increase in form drag due to the flow separation.

Besides the three-dimensional dimples, another macro-scale device is represented
by two-dimensional grooves in channel flow. In order to examine the drag over
such surfaces, Mohammadi & Floryan (2013b) investigated such grooves of arbitrary
shape with an arbitrary orientation in laminar flow. It was found that transverse
grooves produce the highest drag while longitudinal grooves produce the lowest
drag. Drag reduction was reported for longitudinal grooves with long wavelengths, in
spite of an increase in the wetted surface area. This reduction was attributed to the
redistribution of the mass flow, with the largest mass flow taking place in the widest
channel opening. It was found that short-wavelength grooves increase the drag when
compared to the smooth channel. A detailed study of grooves of various shapes can
be found in Mohammadi & Floryan (2015). Moradi & Floryan (2013) have shown
that similar grooves reduce laminar drag in an annulus flow. It is possible that the
same grooves may be able to reduce turbulent drag.

Several active methods have been developed for drag reduction and they are briefly
reviewed for completeness. Spanwise in-plane wall oscillations have the potential for
up to 40 % drag reduction (Quadrio 2011). The creation of such waves using plasma
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actuation is discussed in Choi et al. (2011). Considering the energy needed to drive
the oscillation, the maximum net energy saving is approximately 5 %–10 %. Upstream
travelling waves produced by suction/blowing can reduce the turbulent drag to below
that for the laminar flow (Min et al. 2006). A similar effect is achieved by elastic wall
deformation waves (Hoepffner & Fukagata 2009). Schoppa & Hussain (1998) showed
that counter-rotating streamwise vortices produced by colliding wall jets were able to
reduce drag by 20 %. Iuso et al. (2002) experimentally showed that counter-rotating
vortex pairs, which are generated by jet injection, reduce the mean skin friction by
15 %.

Though considerable effort has been expended to develop various potential drag-
reducing techniques, techniques that are readily applicable in engineering practice are
yet to be identified. Riblets, ‘V’ protrusions and super-hydrophobic surfaces containing
micro-scale structures are difficult to manufacture and maintain. Active methods need
additional power, which reduces their efficiency and creates hardware needs which
can be difficult to overcome. Thus, there is a need to design a novel device which is
passive (no additional energy input), has a macro-scale format (easy to manufacture
and maintain) and still has a high level of drag reduction (no less than that of riblets).

Considering the advantages of macro-scale surface modifications over micro-scale
modifications (e.g. riblets, superhydrophobic surfaces, etc), the objective of this
analysis is to carry out a detailed investigation of turbulent flows in channels with
surfaces modified with longitudinal grooves of arbitrary shape and wavelength. It is
known that grooves with long wavelengths are able to reduce the laminar drag. Our
intent is to determine if there are classes of such grooves which are able to reduce the
turbulent drag, to explore in detail the performance of such grooves and to identify
the possible mechanism(s) responsible for the drag reduction. The drag-reducing
potential is measured by comparing the discharge through the grooved channel with
the discharge through a smooth channel when both channels are exposed to the same
pressure gradient.

This paper is organized as follows. The channel geometry and the governing
equations are introduced in § 2. The analytical results for the laminar flows are
presented in § 3. Turbulent flows are investigated numerically in § 4. The concluding
remarks are provided in § 5.

2. Problem formulation
2.1. Channel geometry

Consider fluid flow driven by a known pressure gradient through a channel extending
to ±∞ in the x-direction bounded by walls fitted with straight grooves parallel to the
flow direction (see figure 1) and of arbitrary shape in the spanwise z-direction. The
channel geometry is described using Fourier expansions of the form

yL(z)=−1+
m=NA∑

m=−NA

H(m)
L eimαz, (2.1a)

yU(z)= 1+
m=NA∑

m=−NA

H(m)
U eimαz, (2.1b)

where the subscripts L and U refer to the lower and upper walls, respectively,
λ = 2π/α denotes the groove wavelength, α stands for the groove wavenumber,
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FIGURE 1. Sketch of the flow configuration.

H(m)
L = H(−m)∗∗

L and H(m)
U = H(−m)∗∗

U are the reality conditions, double stars denote the
complex conjugates, NA represents the number of Fourier modes required to describe
the geometry and the half-channel height H∗ of the reference smooth channel has
been used as the length scale. The objective of this analysis is to describe the effects
of the flow modulations on the channel discharge and, accordingly, it is assumed that
the mean openings of the grooved and the reference smooth channels are the same,
i.e. H(0)

L =H(0)
U = 0.

2.2. Field equations
It is assumed that the introduction of the grooves does not affect the mean
streamwise pressure gradient and, thus, the pressure is represented as p(x, y, z, t) =
−x + p′(x, y, z, t) + const. The discharge is, however, affected and its evaluation
requires solving the field equations of the form

∂u
∂x
+ ∂v
∂y
+ ∂w
∂z
= 0, (2.2a)

∂u
∂t
+ ∂(uu)

∂x
+ ∂(uv)

∂y
+ ∂(uw)

∂z
= 1− ∂p′

∂x
+ 1

Reτ

(
∂2u
∂x2
+ ∂

2u
∂y2
+ ∂

2u
∂z2

)
, (2.2b)

∂v

∂t
+ ∂(vu)

∂x
+ ∂(vv)

∂y
+ ∂(vw)

∂z
=−∂p′

∂y
+ 1

Reτ

(
∂2v

∂x2
+ ∂

2v

∂y2
+ ∂

2v

∂z2

)
, (2.2c)

∂w
∂t
+ ∂(wu)

∂x
+ ∂(wv)

∂y
+ ∂(ww)

∂z
=−∂p′

∂z
+ 1

Reτ

(
∂2w
∂x2
+ ∂

2w
∂y2
+ ∂

2w
∂z2

)
, (2.2d)

where (u, v, w) are the components of the velocity vector in the (x, y, z) directions,
respectively, the friction velocity defined as u∗τ =

√
β∗H∗/ρ∗ is used as the velocity

scale, β∗ stands for the mean pressure gradient in the x-direction, ρ∗ denotes density,
H∗ is the mean channel half-height, H∗/u∗τ is used as the time scale, ρ∗u∗2τ is used
as the pressure scale and Reτ = u∗τH

∗/ν∗ is the friction Reynolds number where
ν∗ denotes the kinematic viscosity. For interpretation purposes we shall also need
the Reynolds number based on the bulk fluid velocity U∗b and the full height of the
reference smooth channel defined as Re2H =U∗b 2H∗/ν∗ where U∗b =

∫∫
U∗ dA∗/

∫∫
dA∗
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with A∗ standing for the channel cross-sectional area associated with one groove
wavelength. In the above, stars denote the dimensional quantities. System (2.2) is
subject to the homogeneous boundary conditions of the form

u= v =w= 0 at y= yL(z) and y= yU(z). (2.3)

The discharge is determined during the post-processing according to the formula

Q(t, x)|mean =
[

1
2π/α

∫ z=2π/α

z=0

∫ y=yU(z)

y=yL(z)
u(y, z) dy dz

]∣∣∣∣
mean

. (2.4)

An increase of Qmean above the reference discharge created by the same pressure
gradient in the smooth channel demonstrates an increase in the effectiveness of the
flow system, or effective drag reduction.

3. Laminar channel flow

We begin the analysis with the laminar flow. It has been demonstrated that long-
wavelength grooves are able to reduce the pressure gradient which is required to drive
a prescribed discharge (Mohammadi & Floryan 2013a,b; Moradi & Floryan 2013).
The same grooves increase the discharge through the channel if the same pressure
gradient is applied to both the smooth as well as the grooved channels. We shall
review these results before proceeding to the analysis of turbulent flows. We shall
also demonstrate existence of an analytic solution which is valid for the range of
parameters where the grooves are able to increase the flow discharge.

Equations (2.2) can be reduced to the form

1u=−Reτ , (3.1)

where 1 = ∂2/∂y2 + ∂2/∂z2. The Reynolds number is a multiplicative factor, which
can be scaled out by defining a new velocity ur

u= urReτ , (3.2)

and leading to the field equation of the form

1ur =−1. (3.3)

The boundary conditions take the form

ur = 0 at y= yL(z) and y= yU(z). (3.4)

So the solution of ur is independent of Reynolds number for laminar flow.
The solution in the case of smooth channel has the form

ur = 1− y2

2
, Q0 = 2

3
Reτ (3.5a,b)

and defines the reference point for the determination of changes in the system
performance.
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Equations (3.3)–(3.4) can be solved using expansions in terms of the groove
amplitude. To demonstrate the construction and range of validity of such solutions,
we shall consider a channel with grooves on both walls with the channel shape
described by one Fourier mode, i.e.

yL =−1− S
2

sin(αz), yU = 1+ S
2

sin(αz), (3.6a,b)

where S is the amplitude of the corrugation non-dimensionalized with H∗.
This particular geometry represents a reduced geometry model of grooves with

arbitrary shapes (Mohammadi & Floryan 2013b; Moradi & Floryan 2013).
Assume the solution to be of the form

ur(y, z)= u(0)r + Su(1)r + S2u(2)r + S3u(3)r + · · · . (3.7)

By substituting into (3.3)–(3.4), transferring boundary conditions to y = ±1 and
collecting terms of the same order of magnitude, we arrive at the following set of
problems:

O(S0) :1u(0)r =−1, u(0)r (±1, z)= 0, (3.8)
O(S1) :1u(1)r = 0, u(1)r (±1, z)=∓ 1

2 u(0)r,y(±1, z) sin(αz), (3.9)

O(S2) :1u(2)r = 0, u(2)r (±1, z)=∓ 1
2 u(1)r,y(±1, z) sin(αz)− 1

8 u(0)r,yy(±1, z) sin2(αz), (3.10)

O(S3) : 1u(3)r = 0, u(3)r (±1, z)=∓ 1
2 u(2)r,y(±1, z) sin(αz)− 1

8 u(1)r,yy(±1, z) sin2(αz)

∓ 1
48 u(0)r,yyy(±1, z) sin3(αz). (3.11)

Their solutions have the form

u(0)r =
1− y2

2
, (3.12)

u(1)r =
cosh(αy) sin(αz)

2 cosh(α)
, (3.13)

u(2)r =
[1− 2α tanh(α)]

16

[
1− cosh(2αy)

cosh(2α)
cos(2αz)

]
, (3.14)

u(3)r =
α{−3α + [−2+ 4α tanh(α)] tanh(2α)}

64
cosh(αy)
cosh(α)

sin(αz)

+ α{α + [2− 4α tanh(α)] tanh(2α)}
64

cosh(3αy)
cosh(3α)

sin(3αz). (3.15)

Evaluation of the discharge results in the following expression

Q(α, S)
Reτ

= α

2π

∫
Ω

ur dy dz= α

2π

(∫
u(0)r + S

∫
u(1)r + S2

∫
u(2)r + S3

∫
u(3)r + · · ·

)
= 2

3
+ S
α

I1

(
αS
2

)
− αS2 tanh(α)

4

+ αS4[1− 2α tanh(α)] tanh(2α)
128

(
1+ α

2S2

12

)
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+ S3{−3α + [−2+ 4α tanh(α)] tanh(2α)}
32

I1

(
αS
2

)
− 3α3S6{α + [2− 4α tanh(α)] tanh(2α)}

4096

(
1+ 9

64
α2S2

)
+O(α6S8)+O(αS5), (3.16)

where I1 is the first-order modified Bessel function of the first kind. This solution is
valid for αS� 1. A similar procedure for grooves located on one wall only results in
a channel geometry of the form

yL =−1− S
2

sin(αz), yU = 1. (3.17a,b)

This leads to a solution of the form

u(0)r =
1− y2

2
, (3.18)

u(1)r =
sin(αz)

4

[
cosh(αy)
cosh(α)

+ sinh(αy)
sinh(α)

]
, (3.19)

u(2)r =
[1− 2α ctanh(2α)]

16

{
y+ 1

2

− 1
2

[
cosh(2αy)
cosh(2α)

+ sinh(2αy)
sinh(2α)

]
cos(2αz)

}
, (3.20)

u(3)r = Ĉ1

[
cosh(αy)
cosh(α)

+ sinh(αy)
sinh(α)

]
sin(αz) (3.21)

+ Ĉ2

[
cosh(3αy)
cosh(3α)

+ sinh(3αy)
sinh(3α)

]
sin(3αz), (3.22)

where

Ĉ1 =−{3α
2 + [1− 2α ctanh(2α)][1+ 2α ctanh(4α)]}

128
,

Ĉ2 = α{α + 2[1− 2α ctanh(2α)]ctanh(4α)}
128

.

 (3.23)

The discharge can be evaluated as

Q(α, S)
Reτ

= α

2π

∫
Ω

ur dy dz= α

2π

(∫
u(0)r + S

∫
u(1)r + S2

∫
u(2)r + S3

∫
u(3)r + · · ·

)
= 2

3
+ ReτS

2α
I1

(
αS
2

)
− ReταS2 ctanh(2α)

8

+ αS4[1− 2α ctanh(2α)]
512

+ αS4[1− 2α ctanh(2α)]ctanh(4α)
256

(
1+ 1

12
α2S2

)
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+ 2Ĉ1S3

α
I1

(
αS
2

)
+ Ĉ2α

2S6

[
3
64
+ 27

4096
α2S2

]
+O(α6S8)+O(αS5). (3.24)

One may note that the ratio of the discharges in the smooth and corrugated channels
Q/Q0 is independent of Reτ . The normalized discharge difference defined as

1Q(α, S)= Q−Q0

Q0
= Q

Q0
− 1, (3.25)

can be used to evaluate the system effectiveness with positive 1Q indicating
improvements. It is simple to show that

lim
S→0

1Q= 0, (3.26)

lim
α→0

1Q=


3S2

8
for channels with both walls grooved

3S2

32
for channels with a single grooved wall.

(3.27)

One can also show that

max1Q= lim
α→0,S→2

1Q= 3
2
, (3.28)

which demonstrates that both a reduction of α as well as an increase of S can lead
to an increase in the discharge. The dependence of 1Q on α and S, as illustrated
in figure 2, demonstrates the existence of a critical wavenumber αc which separates
grooves which improve the system performance from those which compromise
the system performance, in agreement with the prediction of Mohammadi & Floryan
(2013a,b). According to Moradi & Floryan (2013): αc≈ 1.2 for channels with grooves
on both walls and αc ≈ 0.96 for channels with grooves on one wall. Reduction of
α increases the system efficiency but an excessive reduction is not helpful as 1Q
very rapidly reaches its asymptotic state and an excessive reduction of α results
in negligible improvements. Although one may expect the increase in discharge
to double with two corrugated walls (versus just one corrugated wall), it in fact
becomes approximately four times as large due to the nonlinear interaction between
flows induced by both corrugated walls.

Figure 2 also displays results determined numerically using a spectrally accurate
solution (Mohammadi & Floryan 2013b). It can be seen that the theoretical predictions
match very well with the numerical results for αS< 1 and begin to diverge for larger
α despite using several terms in the boundary conditions transfer procedure. This is
in agreement with the results of Cabal, Szumbarski & Floryan (2001).

Since the streamwise pressure gradient is assumed to be the same with and without
grooves, the total drag experienced by the moving fluid remains the same in both
cases. Any increase in the discharge indicates the reduction of wall friction coefficient
as the fluid velocity must increase in order to create the friction required to balance
the pressure gradient. Introducing grooves increases the wetted area and, thus, greater
discharge implies flow rearrangements which sufficiently reduce the wall friction so
that the total drag remains the same in spite of the increase of the wetted area.

Figure 3 illustrates the velocity in the (y, z) channel cross-section. The results in
figure 3(a) are for α = 0.5 < αc and correspond to an increase in discharge, while
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FIGURE 2. (Colour online) Variations of 1Q as a function of the groove wavenumber and
the amplitude in a channel with grooves on both walls (a) and on one wall only (b). Solid
lines correspond to the analytical solution discussed above and dashed lines correspond to
a numerical solution determined using the method described in Mohammadi & Floryan
(2013b).
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FIGURE 3. Streamwise velocity ur in the y–z plane: (a) α= 0.5, S= 1; (b) α= 2, S= 1.

results in figure 3(a) for α = 2 > αc correspond to a decrease in discharge. The
formation of stream tubes of high velocity fluid is visible in both cases, however, the
maximum velocity in the former case approaches 1 while in the latter case it reaches
only approximately 0.5, which is the same as the maximum velocity in the smooth
channel. It is then not surprising that the discharge increases in the former case while
it decreases in the latter.

The drag is generated only by friction. The spanwise distribution of the normalized
x-component of the shear stress Sm/Sm0 is illustrated in figure 4. Here Sm0 denotes
the reference skin friction (skin friction in the smooth channel) and Sm stands for the
actual skin friction, i.e. the x-component of the local shear stress acting on the channel
wall per unit wall is projected on the x–z plane, and is defined as

Sm= ∂u
∂y
− ∂u
∂z

dyL

dz
. (3.29)

The reader may note that Sm integrated in the z-direction over one groove wavelength
always results in the same value regardless of the groove shape; this value is equal
in the average shear as the shear drag must balance the pressure drop. It can be
seen that when α = 0.5 < αc (increased discharge), Sm/Sm0 > 1 in the wide portion
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FIGURE 4. (Colour online) Normalized shear acting on the fluid at the lower surface.

and Sm/Sm0 < 1 in the narrow portion of the channel. Conversely, when α = 2> αc
(reduced discharge), Sm/Sm0 < 1 in the wide portion and Sm/Sm0 > 1 in the narrow
portion of channel. It can be concluded that the increase in discharge associated with
the presence of the grooves results from the rearrangement of the velocity field which
leads to a decrease in the wall shear stress. Since the pressure gradient remains the
same with and without grooves, the flow accelerates in the former case until the
additional shear is able to balance the applied pressure gradient, resulting in an
increase in discharge.

4. Turbulent flow
4.1. Methodology

The field equations (2.2) are solved in a computational box formed by the walls and
x ∈ (0, L), z ∈ (0, W). The minimum size of the box has been determined through
numerical testing to be discussed later in this presentation. The relevant boundary
conditions consist of (2.3) and

u(0, y, z, t)= u(L, y, z, t), v(0, y, z, t)= v(L, y, z, t),w(0, y, z, t)=w(L, y, z, t), (4.1a)
u(x, y, 0, t)= u(x, y,W, t), v(x, y, 0, t)= v(x, y,W, t),w(x, y, 0, t)=w(x, y,W, t),

(4.1b)

where (4.1) expresses the periodicity conditions in the x- and z-directions.
The results are presented as sums of the mean value and fluctuations defined as

G= lim
T→∞

∫ T

0
g dt

T
, g′ = g−G, 〈g′h′〉 = lim

T→∞

∫ T

0
g′h′ dt

T
, (4.2a−c)

where G stands for the mean value of any flow quantity (e.g. u, v, w, p), T denotes
the sampling time, g′ denotes the fluctuating component and 〈g′h′〉 denotes statistical
variables such as Reynolds stress 〈u′v′〉. In the computations, t= 0–40 is treated as a
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transient period required for the flow to reach a statistically steady state. Data from
t = 40–80 are used to determine averages (such as U, V , W). During the sampling
time, i.e. from t = 40 to t = 80, the fluid can travel in the streamwise direction for
approximately 60 length units (distance equal to 30 channel heights). Flow data for
t = 80–120 are used to evaluate statistical quantities such as Reynolds stress and to
carry out turbulent quadrant analysis.

It is useful to introduce scales used in the description of turbulent flows. The ratio
of the channel half-height and the friction velocity defines the time scale and the
dimensionless time expressed using this time scale is denoted as t. Velocity scaled
with the friction velocity u∗τ is typically denoted as U+ but we shall continue using the
notation introduced in the previous section. The viscous length scale l∗= ν∗/u∗τ leads
to the dimensionless quantities to be identified with the superscript +. In particular,
we shall move the origin of the y+-axis to the lower wall, e.g.

y+ = y∗w
l∗

= y∗ + y∗L
l∗

= y∗ + y∗L
H∗

u∗τH
∗

ν∗
= (y+ yL)Reτ , (4.3)

where y∗w refers to the dimensional distance from the wall. The relation between the
dimensionless coordinates in the other two directions can be similarly determined, e.g.
x+ = xReτ and z+ = zReτ .

The statistical quantities (e.g. mean velocity, turbulent kinetic energy) are typically
averaged in the horizontal plane (e.g. averaged in both the streamwise and spanwise
directions; (Kim, Moin & Moser 1987)). We shall use streamwise only averaging
for grooved channels as plane averaging eliminates the groove induced modulations.
We shall use horizontal averaging for the smooth channel unless explicitly stated
otherwise, following Quadrio, Floryan & Luchini (2007).

4.1.1. Direct numerical simulation
The field equations (2.2) subject to boundary conditions (2.3) and (4.1) have been

solved as an initial value problem through direct numerical solution (DNS) of the time-
dependent problem. One can use for spatial discretization either spectral (Kim et al.
1987; Moser, Kim & Mansour 1999) or finite-volume (Wang, Yeo & Khoo 2006)
methods. The spectral methods are difficult to implement in domains with complex
boundaries and thus we shall use the finite-volume method. Second-order implicit
time integration and second-order central spatial differencing have been used. The
standard multi-grid algorithm (Wesseling & Oosterlee 2001) has been used for the
discretized pressure correction equation and the discretized momentum equation with
the three-dimensional (3-D) alternating direction implicit (ADI) solver (Douglas 1955;
Chang, Chow & Chang 1991) used as the smoother. The solver has been parallelized
using domain decomposition concepts coupled with MPI (message passing interface).
The interface communications between the adjacent computational blocks has been
handled using ghost volumes with one level of overlap.

The algorithm has been validated using simulations of turbulent flow in a smooth
channel at Reτ = 180 with a computational box of size L = 2π (L+ ≈ 1131) and
width W = 2π (W+ ≈ 1131). The friction coefficient Cf 0 has been used as the test
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Mesh Cells number 1x+ 1z+ 1y+min 1t Re2H Cf 0/C0
f (%)

1 64× 64× 64 17.671 17.671 0.5006 0.004 5929.3 90.91
2 64× 64× 64 17.671 17.671 0.5006 0.002 5928.1 91.35
3 96× 96× 96 11.781 11.781 0.3572 0.002 5861.2 95.43
4 128× 128× 128 8.836 8.836 0.2368 0.004 5830.4 97.74
5 128× 128× 128 8.836 8.836 0.2368 0.002 5829.8 97.95
6 128× 196× 128 8.836 8.836 0.1254 0.002 5827.5 99.91

TABLE 1. Mesh convergence study for the DNS method.

quantity and has been compared with the empirical friction coefficient C0
f taken from

the Petukhov & Gielinski correlation (Incropera & DeWitt 2002), i.e.

C0
f = [1.58 ln(Re2H)− 2.185]−2, 1500 6 Re2H 6 2.5× 106. (4.4)

Here, the friction coefficient is defined as

Cf = τ ∗w
1
2ρ
∗U∗2b
= 2

U2
b
, (4.5)

where, τ ∗w is the dimensional skin-friction stress and Ub represents the non-dimensional
bulk fluid velocity U∗b/uτ . Friction coefficients Cf 0 with subscript ‘0’ are calculated
from numerical simulations while C0

f with superscript ‘0’ are empirical results given
by (4.4).

A uniform grid has been used in the x- and z-directions and a stretched grid based
on the hyperbolic tangent has been used in the y-direction (Moin & Kim 1982;
Abe, Kawamura & Matsuo 2001). Results summarized in table 1 demonstrate that
Cf 0/C0

f → 1 as the grid is refined, as expected. It can be concluded that the grid 1283

as well as the time step 0.002 provide sufficient accuracy. The reader may note that
Re2H is not imposed but has been computed after the statistically convergent state has
been reached.

4.1.2. Detached eddy simulation
The detached eddy simulation (DES) model is a hybrid technique originally

developed for turbulent flows with massive separation. It was first introduced by
Spalart, Jou & Allmaras (1997) as a modification of the Spalart–Allmaras (S–A)
model (Spalart & Allmaras 1992). The S–A model is a one-equation model for the
eddy viscosity νT dependent on the distance to the closest wall dw; dw from the
original S–A model has been replaced with d̃ defined as

d̃=min(dw,CDES∆), (4.6)

where CDES is a parameter that controls the switch point between the near wall
and far fields and ∆ represents the largest grid spacing in all three directions,
i.e. ∆ = max(1x, 1y, 1z), resulting in the DES model. In the near-wall regions
(dw < CDES∆), the DES model acts as the Reynolds average Navier–Stokes (RANS)
model. Conversely, it behaves as the large eddy simulation (LES) model when
dw > CDES∆. Overall, the grid resolution of DES is not as demanding as the pure
LES approach, thereby reducing the cost of computations. The DES model has been
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Mesh Cell number 1x+ 1z+ 1y+min Re2H Cf 0/C0
f (%)

1 16× 64× 16 70.686 70.686 0.5006 6856.8 90.8
2 32× 64× 32 35.343 35.343 0.5006 6432.8 85.6
3 64× 64× 64 17.671 17.671 0.5006 5927.5 91.2
4 32× 128× 32 35.343 35.343 0.2368 6440.3 84.5
5 64× 128× 64 17.671 17.671 0.2368 5932.4 94.3
6 96× 128× 96 11.781 11.781 0.2368 5860.7 95.1
7 128× 128× 128 8.836 8.836 0.2368 5829.2 95.4

TABLE 2. Mesh convergence study for the DES method.

Domain Domain size Re2H Cf 0/C0
f (%)

1 2π× 2×π 5923.8 93.8
2 2π× 2× 2π 5932.4 94.3
3 4π× 2×π 5898.5 93.9

TABLE 3. Study of the effects of the size of the computational box for the DES method.

used in this work with the constant CDES taken as 0.65 (see Shur et al. 1999). It is
a proper choice which ensures a narrow transition region between RANS and LES,
resulting in accurate results from DES (Keating & Piomelli 2006). The convergence
has been enhanced using modifications to the S–A model as described by Tu et al.
(2009). The time step size and the spatial grid used in the DES algorithm are the
same in the DNS.

A mesh resolution study for DES has been carried out in the same manner as for
DNS. The results displayed in table 2 demonstrate that the grid 64×128×64 provides
sufficient accuracy. While the grid 1283 provides greater accuracy, the potential gains
are outweighed by the computational cost. As the primary objective of this study is to
determine variations of the discharge as a function of the wall geometry, it has been
concluded that the grid 64× 128× 64 provides a good compromise between the cost
and the desired accuracy.

The size of the computational box may affect the overall accuracy if this box is
too small and thus unable to capture large coherent flow structures. Results of testing
displayed in table 3 for three different computational boxes demonstrate that variations
of (Cf 0/C0

f ) are within 0.5 % and, thus, the smallest box is large enough to accurately
reproduce the flow physics.

Next, the domain independence study is conducted to obtain the effects of spatial
dimensions on capturing the relevant flow structures which may impact the calculated
friction. The results of three different domain sizes are listed in table 3. The fact that
the variations of the friction ratio (Cf 0/C0

f ) are in the range of 0.5 % demonstrates the
present results are fairly independent of the domain size.

4.1.3. The mean velocity profile, the turbulent kinetic energy and the Reynolds stress
The mean velocity profiles, the turbulent kinetic energy and the Reynolds stress

determined using both DNS with grid 1283 and DES with grid 64× 128× 64 and a
computational box (2π× 2× 2π) as displayed in figure 5 demonstrate the consistency
between DNS and DES. The mean velocity profiles match fairly well with those
obtained by Moser et al. (1999), though the velocities given by DNS and DES
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FIGURE 5. (Colour online) Distribution of the mean velocity U in a smooth channel
for Reτ = 180.
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FIGURE 6. (Colour online) Distributions of the turbulent kinetic energy components (a)
and the Reynolds stress 〈u′v′〉 (b) for Reτ = 180.

are slightly higher in the log-law region, leading to an underestimation of the drag
coefficient (approximately 6 % for DES and 2 % for DNS). Figure 6 displays the
turbulent kinetic energy components (〈u′2〉, 〈v′2〉 and 〈w′2〉) and the Reynolds stress
(〈u′v′〉). Results produced using DES and DNS agree fairly well with those given
by Moser et al. (1999) with the peak value of 〈u′2〉 given by DES and DNS being
slightly higher than that of Moser et al. (1999) while the position of the peak at
y+ = 15 is captured correctly.

One can conclude that the DES and DNS results produced during code validation
agree fairly well with the DNS results obtained by Moser et al. (1999); the minor
differences are likely due to the lower spatial resolution of the finite-volume method
(FVM). The FVM-based DNS/DES with the selected resolution may not provide the
same level of accuracy as the spectral DNS method due to the possibly unresolved
small-scale motions, which may lead to underestimation of the turbulent kinetic
energy and the Reynolds stress herein. However, the bulk flow manipulation inside
the corrugated channel is directly influenced by the cross-section shape (as opposed
to the near-wall effect); the small-scale motions near the wall and its effects are
not the main focus of the current study. In addition, the key features and trend of
the turbulent flow like the drag coefficient, the velocity profile, the turbulent kinetic
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FIGURE 7. (Colour online) Sinusoidal, triangular and trapezoidal grooves used in the
analysis.

1Q DES (%) DNS (%)

α = 0.5, S= 0.5 1.29 0.98
α = 0.4, S= 1 4.38 3.77
α = 0.25, S= 1 6.72 6.43

TABLE 4. The difference of the discharge determined using the DES and DNS methods
for Reτ = 180.

energy and the Reynolds stress, can be well reproduced using the finite-volume-based
DES method and thus this method has been used in the study of corrugated channels.

4.2. Validation of DES for turbulent flows in corrugated channels
Tests carried out for flows in smooth channels demonstrated that DES provides
accuracy similar to DNS. It remains to be demonstrated that both methods provide a
similar accuracy for grooved channels. Results presented in table 4 show a discharge
difference of less than 0.5 % between the methods which justifies the use of the more
computationally efficient DES method.

4.3. Reduced geometry model for turbulent channel flows
It has been demonstrated that sinusoidal grooves play the role of the reduced geometry
model for laminar flows (Mohammadi & Floryan 2013b; Moradi & Floryan 2013).
We shall demonstrate that such grooves also represent the reduced geometry model in
turbulent flows. We shall use triangular and trapezoidal grooves illustrated in figure 7
for this demonstration.

Table 5 displays results for groove wavenumber α = 0.25 and amplitude S = 1.
It can be seen that the difference in the discharge obtained for the actual groove
and for the same groove with its shape approximated by the leading Fourier mode
from its Fourier expansion is less than 1 %. This demonstrates that the concept of
the reduced geometry model can be used in the analysis of turbulent flows and thus
further discussion is focused on sinusoidal grooves only. It shall be noted that although
there are indications that the reduced geometry model works for turbulent flows, the
assessment of uncertainties herein is approximate.
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1Q Original shape (%) First Fourier mode (%)

Triangular (a= c, b= 0) 5.04 4.82
Trapezoidal (a= c= b/2) 8.75 8.43
Trapezoidal (a= c= b/4) 10.11 9.48

TABLE 5. Comparison of the discharge through the grooved channel with α = 0.25 and
S = 1 determined using the actual groove geometry as well as its approximation in the
form of a leading Fourier mode from its Fourier expansion for Reτ = 180.

α S 0 0.25 0.5 1 1.5

0.25 Y* Y
0.33 Y Y
0.4 Y*
0.5 Y Y Y* Y Y
0.67 Y Y
1 Y Y
2 Y* Y

TABLE 6. List of the groove configurations studied. ‘Y’ identifies configurations studied
using only DES and ‘Y*’ identifies configurations studied using both DNS and DES.

4.4. Analysis of flows in channels with sinusoidal grooves
We shall now discuss the characteristics of turbulent flows in channels with sinusoidal
grooves. The channel geometry is described by (3.6) and the computations have been
carried out for Reτ = 180 (Re2H ≈ 6000) using 64× 128× 64 mesh and 1t = 0.002.
DNS has been used only for a few geometries (see table 6) due to high computational
cost for channels with long-wavelength grooves.

Figure 8 displays variations of the difference between the discharges through
the corrugated and smooth channels generated by the same pressure gradient. The
existence of a critical groove wavenumber αc, which separates the discharge-increasing
grooves from the discharge-reducing grooves, is clearly documented. The critical
wavenumber is estimated to be αc ≈ 1 for S = 0.5 and approximately αc ≈ 0.8
for S = 1. These values are similar to the αc found in laminar flows (αc = 1.2).
An increase of the groove amplitude S decreases the discharge when α > αc and,
conversely, increases the discharge when α < αc. A decrease of α increases the
discharge but this increase rapidly approaches an asymptotic limit where any further
decrease of α brings in negligible contributions. The highest increase of the discharge
at S = 0.5 is approximately 2 %–3 % , and it is approximately 9 % at S = 1. The
maximization of the discharge requires the use of the minimum possible groove
wavenumber α as well as the largest possible groove amplitude S.

Figure 9 displays distributions of U in spanwise cross-sections. The fluid either
accelerates or retains its velocity in the wide segment of the channel and slows
down in the narrow segment. When α < αc (figure 9a–d), the difference between the
maximum velocity in the widest and narrowest sections of the channel is larger than
the similar difference for channels with α > αc (figure 9e, f ). The velocity maximum
at the widest section of the channel for α<αc is higher than the maximum velocity in
the smooth channel (U≈ 19; figure 10) and this results in an increase in the discharge.
The discharge increase is most pronounced for conditions used in figure 9(b) where
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FIGURE 8. (Colour online) Variations of the discharge correction 1Q as a function of the
groove wavenumber α, (a) and as a function of the groove amplitude S (b) for channel
with geometry described by (3.6) for Reτ = 180. Symbols identify computed cases while
lines result from interpolation.

the maximum velocity reaches value of U ≈ 24. When α > αc (figure 9e, f ), the
maximum velocity in the widest portion of the channel is U ≈ 18–19, which is
similar to that found in the smooth channel and, since velocity decreases in the
narrow section, there is an overall reduction in the discharge.

The effect of the grooves on the flow discharge is qualitatively similar to that found
in laminar flows. The presence of the grooves results in the rearrangement of the bulk
motion which leads to the formation of stream tubes of high velocity fluid centred at
the widest channel opening, as illustrated in figure 9. The stream tubes exist for α<αc
as well as for α>αc but play a different role in each case. The difference is illustrated
in figure 11 which displays distributions of U in the y–z plane. It can be seen that
the flow is redirected towards the wider channel section when α < αc with a minor
velocity decrease in the narrow section; it is the increase of the channel opening in
the widest section which dominates the discharge. When α > αc, the flow is ‘choked’
in the narrowest section while it retains the original velocity in the widest section; it
is the decrease of the channel opening in the narrowest section which dominates the
discharge.

The lack of smoothness of velocity contours in figure 9 is due to the turbulent
structures whose effect has not been completely eliminated by the averaging procedure.
The scale of these structures depends on the wall length scale l∗ but is almost
independent of the groove wavelength (compare figures 9 and 11).

We shall now discuss changes in the velocity profiles resulting from the introduction
of the grooves. The velocity profile for the smooth wall consists of three layers, i.e.

(i) viscous sub-layer, (y+ < 7, where U = y+),
(ii) buffer layer, (7< y+ < 30) and

(iii) inertial sub-layer, (y+ > 30, U = (1/κ) ln y+ + C, with κ ≈ 0.38–0.41 and C ≈
5–5.5).

The velocity profiles in the corrugated channel for conditions leading to an increase
in discharge (α = 0.5, S = 0.5) and a reduction in discharge (α = 2 and S = 0.5)
are displayed in figure 12 for three locations in the spanwise direction; plane 1
corresponds to the narrowest channel opening, plane 2 corresponds to the mean
channel opening (the neutral section) and plane 3 corresponds to the widest channel
opening (see figure 12a). In all cases, the velocity profiles consist of the linear region,
the buffer region and the log-law region, similarly as in the smooth channel.
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FIGURE 9. Distributions of the mean velocity component U in the y–z plane of channel
with geometry described by (3.6) with α = 0.25, S = 0.5 (a), α = 0.25, S = 1 (b),
α = 0.5, S = 0.5 (c), α = 0.5, S = 1 (d), α = 2, S = 0.5 (e) and α = 2, S = 1 ( f ) for
Reτ = 180.

In the case of the discharge increase (α= 0.5, S= 0.5), the velocity profile in plane
2 is nearly identical to the velocity in the smooth channel. The velocity in plane 1 (the
narrowest opening) is smaller than in the smooth channel resulting in smaller ∂U/∂y+

at the wall (see figure 12d). The velocity in plane 3 (the widest opening) is higher
than in the smooth channel with the difference increasing as y+ increases. In the case
of the discharge reduction (α= 2, S= 0.5), U in plane 2 is smaller than in the smooth
channel resulting in smaller ∂U/∂y+. Values of U in the remaining planes are slightly
smaller than in the smooth channel for y+ < 20 (see figure 12e); as y+ increases, the
velocity in plane 3 (the widest channel opening) becomes similar to that in the smooth
channel while the velocity in plane 1 (the narrowest channel opening) becomes smaller
than in the smooth channel.
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FIGURE 10. Distribution of the mean velocity component U in the y–z plane of a smooth
channel and averaged only in the streamwise direction for Reτ = 180.
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FIGURE 11. Distributions of the mean velocity U in the y–z plane for channel geometry
described by (3.6) with α = 0.5, S= 0.5 (a) and with α = 2, S= 0.5 (b) for Reτ = 180.

4.5. Skin friction
An understanding of the skin friction is essential as it describes the mechanism
responsible for drag creation. The total drag is unaltered by the addition of the
grooves as the mean pressure gradient is kept unchanged. Thus, the integration of
the shear stress over the wetted area must produce the same result regardless of the
groove shape while the discharge may vary significantly depending on the groove
shape. The reader may note that the addition of the grooves increases the wetted
area and thus an increase in the discharge may occur only if the shear decreases
sufficiently in order to balance the larger wetted area. Variations of the normalized
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FIGURE 12. (Colour online) Variations of the mean velocity U as a function of y+ at
three spanwise locations identified in (a) for channel geometry described by (3.6) with
α = 0.5, S = 0.5 (b,d) and with α = 2, S = 0.5 (c,e) for Reτ = 180. The origins of the
y-coordinates at different planes have been overlapped to simplify comparisons.

skin friction Sm/Sm0 are presented in figure 13(b,c). Here the projected area represents
the projection of the actual surface onto the plane y = const. and it is the same as
the relevant area of the smooth channel.

Data displayed in figure 13(a) provide a comparison between the distribution of the
local shear stress (Sm(0, z) on a slice at x = 0) and its streamwise average (Sm(z)).
Spanwise fluctuations of the local shear stress at a specific x-location are reduced
when the streamwise averaging is used (see figure 13a). We shall use the streamwise
averaged data in the following discussion.

Figure 13(b) depicts the effect of the groove wavenumber on the skin friction. When
α<αc in the discharge-increase case, Sm/Sm0> 1 in the wide section and Sm/Sm0< 1
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FIGURE 13. (Colour online) The normalized shear acting on the corrugated surface in a
channel with geometry described by (3.6) for Reτ = 180. Comparison of the streamwise
averaged and non-averaged data is given in (a). The spanwise distributions for S = 0.5
and selective α are given in (b), and for α = 0.5 and selective S are given in (c).

in the narrow section. Reduction of α produces larger Sm/Sm0 in the wide section
and smaller Sm/Sm0 in the narrow section (compare results for α = 0.25 and 0.5).
When α > αc in the discharge reduction case, Sm/Sm0 ≈ 1 in both the wide and
narrow sections. The physical distance between these two sections are small, which
results in similar momentum transport characteristics and leads to a more uniform
skin friction. The reader may note that the shear variations in the streamwise direction
must average out as the mean stress Sm/Sm0 is always 1 (the total drag remains the
same).

Figure 13(c) illustrates the effects of the groove amplitude for α= 0.5<αc. Sm/Sm0
in the wide section increases with increasing S, but decreases in the narrow section.
This is due to the fact that the larger groove amplitude accentuates the velocity
difference between the wide and narrow sections of the channel.

4.6. The turbulent flow quantities
It has been documented so far that the presence of the grooves leads to the
rearrangement of the mean velocity profile which results in an increase in the
discharge. We shall now discuss how the turbulence characteristics change in response
to the grooves.

The components of the turbulent kinetic energy (TKE) k= (〈u′2〉 + 〈v′2〉 + 〈w′2〉)/2
and the dominant component of Reynolds shear stress (〈u′v′〉) for grooves with α=0.5,
S= 0.5 and α= 2, S= 0.5, determined using DNS, are displayed in figures 14 and 15
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FIGURE 14. (Colour online) Distributions of the TKE in the corrugated and smooth
channels for Reτ = 180. (a) and (c) display 〈u′2〉, 〈v′2〉 and 〈w′2〉 for grooves described
by (3.6) with α = 0.5, S = 0.5 while (b) and (d) display the same quantities for α = 2,
S= 0.5. The total kinetic energy total k is displayed in (e) and ( f ) for α = 0.5, S= 0.5
and α = 2, S= 0.5, respectively.

respectively. Our intention is to show and highlight the behaviour of the dominant
component of Reynolds stress 〈u′v′〉 at the three planes in comparison to the smooth
channel at plane 2. The remaining components of (lower magnitude) Reynolds stress
〈u′w′〉 and 〈v′w′〉 are plotted in the y–z plane for comparison of the different cases as
shown in figure 16. It should be noted that 〈u′w′〉 and 〈v′w′〉 are zero for a smooth
channel.

Figure 14 displays data for the narrowest channel opening (plane 1 in figure 12a),
the mean opening (plane 2) and the widest opening (plane 3). Note that the y-axis
used herein based on the same y origin location is different from the y+ starting from
wall used in figure 12. The qualitative characteristics of variations of all quantities in
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FIGURE 15. Distributions of 〈u′v′〉 in the corrugated channel with shape described by (3.6)
and in the smooth channel for Reτ = 180. Data displayed in (a) correspond to α = 0.5,
S = 0.5 (discharge-increase case); data displayed in (b) correspond to α = 2, S = 0.5
(discharge-reduction case).

all planes are similar to those found in the smooth channel, i.e. they rapidly increase
in the viscous sub-layer (y+< 15), reach peak values in the buffer layer (y+≈ 15) and
decrease in the inertial sub-layer (y+ > 15).

Results displayed in figure 14(a,c,e) demonstrate that all quantities in plane 2 for
α = 0.5< αc (discharge-increase case) are nearly the same as in the smooth channel.
The peak values in plane 1 (the narrowest section) are lower than in the smooth
channel, which is possibly due to the maximum velocity being smaller than in the
smooth channel. The peak values in plane 3 (the widest opening) are higher than
those in the smooth channel due to the maximum velocity being larger than in the
smooth channel. In the discharge-reduction case (α = 2 > αc) the situation becomes
more complex (see figure 14b,d, f ). In plane 2 (the neutral section), 〈u′2〉 is slightly
smaller than in the smooth channel in both the viscous sub-layer and the buffer layer,
but is slightly larger in the inertial sub-layer. One may conclude that the distribution
of 〈u′2〉 in this plane shifts towards the centre of the channel when compared to the
smooth channel. In plane 1, the peak of 〈u′2〉 is smaller than in the smooth channel,
and similar to plane 1 for the discharge-increase case (α= 0.5). The peak of 〈u′2〉 in
plane 3 is similar to the smooth channel and, thus, smaller than that in the discharge-
increase case. Both 〈v′2〉 and 〈w′2〉 in all three planes are approximately similar to
the smooth channel, which is possibly due to the weak rearrangement of the bulk
motion. One can observe that 〈u′2〉 represents the largest component of TKE and, thus,
it dictates the properties of TKE.

Figure 15 displays distributions of 〈u′v′〉. In the discharge-increase case (α = 0.5),
its magnitude in plane 2 (the neutral section) is slightly smaller than in the smooth
channel, it is smaller in plane 1 (the narrowest section) and it is larger in plane 3 (the
widest section). In the discharge-reduction case (α = 2), its magnitude in plane 2 is
smaller within the viscous sub-layer and in the buffer layer but slightly larger within
the inertial sub-layer. In plane 1 (the narrowest section), the peak values are lower
than in the smooth channel. In plane 3 (the widest section), the peak value is similar
to that in plane 1.

It can be concluded that in the discharge-increase case (α <αc), TKE and Reynolds
shear stress 〈u′v′〉 in the wide section are higher and in the narrow section are
smaller than in the smooth channel. In the discharge-reduction case (α > αc), TKE
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FIGURE 16. Distributions of 〈u′w′〉 and 〈v′w′〉 in the corrugated channel with shape
described by (3.6) for Reτ = 180. Data displayed in (a) and (c) correspond to α = 0.5,
S=0.5 (discharge-increase case); data displayed in (b) and (d) correspond to α=2, S=0.5
(discharge-reduction case).

and Reynolds shear stress 〈u′v′〉 are smaller in the narrow section and similar to the
smooth channel in the wide section. The distributions of TKE and Reynolds shear
stress 〈u′v′〉 shift towards plane 2 (neutral plane) for the discharge-reduction case
(α > αc). This may be due to the smaller physical distance between the wide and
narrow sections and, hence, larger spanwise velocity gradients which, in turn, produce
more intense turbulent fluctuations near the neutral plane.

In order to show the complexity of distributions of Reynolds shear stresses 〈u′w′〉
and 〈v′w′〉, these quantities are presented in the form of contour plots in the y–z plane
(see figure 16) rather than as 1-D cuts along the y-axis in planes 1, 2, 3 as such cuts
do not exhibit any distinctive features. The theoretical arguments suggest that 〈u′w′〉
and 〈v′w′〉 should be zero in the smooth channel and very close to zero in numerical
simulation of such a flow with non-zero values arising from numerical round-off errors.
One may interpret 〈u′w′〉 and 〈v′w′〉 as representing the interactions between the fast
fluid in the wide section of the channel and the slow fluid in the narrow section.
As a result, the highest magnitudes of 〈u′w′〉 and 〈v′w′〉 are located around plane 2
(neutral plane) where the strongest spanwise interactions occur. Such interactions for
the discharge-reduction case (α = 2) are more intense than for the discharge-increase
case (α= 0.5) because of the reduction in the physical distance between the wide and
narrow sections of the channel.

The effects of the groove wavenumber can be clarified by looking at the volume-
averaged values of TKE [k] and the absolute values of the Reynolds shear stresses
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FIGURE 17. (Colour online) The volume-averaged (a) TKE [k]; (b) [|〈u′v′〉|]; (c) [|〈u′w′〉|]
and [|〈v′w′〉|] for Reτ = 180.

[|〈u′v′〉|], [|〈u′w′〉|], [|〈v′w′〉|], which are displayed in figure 17 for α= 0.5, 1, 2 with
S= 0.5. The volume-averaging operator [ ] is defined as

[\] =

∫
Ω

\ dV∫
Ω

dV
. (4.7)

The reader may note that [|〈u′w′〉|] and [|〈v′w′〉|] are both zero in the smooth
channel. The volume-averaged TKE [k] for the corrugated channel is slightly higher
(approximately 6 %) than that for the smooth channel, [|〈u′w′〉|] and [|〈v′w′〉|] are
also higher than in the smooth channel and increase with increasing wavenumber.
[|〈u′v′〉|] in the corrugated channel is slightly higher than in the smooth channel for
the discharge increase case (α= 0.5) and is slightly lower for the discharge reduction
case (α = 2).

The above discussion shows that corrugations can rearrange the distribution of TKE
and the Reynolds stress, but are unable to significantly reduce the global turbulence
intensity.

The distributions of the TKE and the Reynolds stress discussed in the previous
section imply that there is less turbulent activity in the narrow portion of the
corrugated channel and stronger turbulent activity in the wide portion in the
discharge-increase case (α < αc). We shall now look at the turbulence structures
in order to better understand the character of the flow in each case.

In figure 18, the ensemble time-averaging Reynolds shear stress 〈u′v′〉 is presented
with quadrant detection for ejection events (Q2) and for sweep events (Q4).
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FIGURE 18. Ensemble time-averaging Reynolds shear stress 〈u′v′〉 with quadrant detection
(Q2 for ejection events (a,b) and Q4 for sweep events (c,d)) in a corrugated channel
described by (3.6) with α= 0.5, S= 0.5 (a,c) and with α= 2, S= 0.5 (b,d) for Reτ = 180.

Figure 18(a,c) demonstrates that in the discharge increase case (α < αc) most of
the near-wall turbulent motions (ejection and sweep) tend to gather in the wide
section of the channel. This may be due to the fact that the maximum velocity in
the wide portion is much larger than that in the narrow portion. An increase in the
ejection/sweep suggests the occurrence of more intense bursting phenomena, stronger
turbulent motions and higher TKE, and this is consistent with the findings presented
in figures 14(a,e) and 15(a).

Results presented in figure 18(b) demonstrate that in the discharge-reduction case
(α > αc) the ejection motions tend to occur in the neutral section, which may be
associated with the strong velocity gradient between the wide and narrow sections
with a short physical distance between them. Figure 18(d) shows that there is no
obvious tendency of gathering of sweep motions either in the wide or in the narrow
portions of the channel, which is balanced by the momentum transport between the
wide and narrow sections. This observation is consistent with the results displayed in
figures 14(b, f ) and 15(b). It is very interesting to observe that the ejection and sweep
behave differently in the discharge-increase and discharge-reduction cases.

In summary, the analysis of TKE, the Reynolds stress and the turbulent structures
shows that the turbulence intensity in the narrow portion of the channel is suppressed.
When the groove amplitude is high (S→ 2), the narrow section shrinks to a triangular
corner and the flow is expected to relaminarize (Eckert & Irvine Jr 1956). These
results led to the creation of the concept of riblets for turbulent drag reduction (Walsh
& Weinstein 1978; Walsh & Lindeman 1984).
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4.7. Analysis of flow changes caused by the small-wavenumber grooves
Interactions between the wide and narrow sections of the channel weaken when α→ 0
and thus each section might behave as a smooth channel but with different heights and
the same pressure gradient.

First, we shall demonstrate that the local flow properties become very similar when
expressed in terms of the local scales. The local half-channel height δ∗, the local
friction velocity u∗τe, the local friction Reynolds number Reτe and the local wall length
l∗e are defined as

δ∗ =H∗
(

1+ S
2

sin αz
)
, (4.8a)

u∗τe =
√
β∗δ∗

ρ∗
, (4.8b)

Reτe = u∗τeδ
∗

ν∗
= Reτ

(
1+ S

2
sin αz

)3/2

, (4.8c)

l∗e =
ν∗

u∗τe

, (4.8d)

where the subscript e stands for local scalar and the superscript ∗ stands for
dimensional scalar.

It can be shown that the ratio between the local and the average friction velocities,
the average streamwise velocity scaled with the local friction velocity denoted as Ue
and the wall distance scaled with the local wall length denoted as y+e are of the form

u∗τe

u∗τ
=
(

1+ S
2

sin αz
)1/2

, (4.9a)

Ue = U∗

u∗τe

= U(
1+ S

2
sin αz

)1/2 , (4.9b)

y+e =
y∗

ν∗/u∗τe

= y+
(

1+ S
2

sin αz
)1/2

. (4.9c)

Distributions of U and Ue as functions of y+ and y+e are presented in figure 19(a,b),
respectively. The velocity distributions in the widest, mean and narrowest sections
of the corrugated channel are similar to the smooth channel when the local scales
are used (figure 19b) but different when the original scales are used (figure 19a).
Distributions of the largest component of TKE, 〈u′2〉, displayed in figure 20
demonstrate that the values for all three planes nearly overlap when scaled using
the local scales. This suggests that properties of the flow in different planes can be
deduced from properties of the flow in a smooth channel through the use of the
proper scaling.

Use of (4.3), (4.9b) and (4.9c) leads to the local velocity gradient at the wall of the
form

∂U
∂y
= ∂Ue

∂y+e
Reτ

(
1+ S

2
sin αz

)
. (4.10)
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FIGURE 19. (Colour online) Distributions of the average mean velocity U for Reτ = 180
as a function of y+ (a) and the local mean velocity Ue as a function of y+e (b) at the
widest, mean and narrowest sections of channel with geometry described by (3.6) with
α = 0.25 and S = 0.5. Symbols identify velocities in the smooth channels with different
mean openings.
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FIGURE 20. (Colour online) Distributions of 〈u′2〉 as functions of y+ (a) and 〈u′2e 〉 as
functions of y+e (b) for Reτ = 180 at the widest, mean and narrowest sections of channel
with geometry described by (3.6) with α = 0.25 and S= 0.5. Symbols identify velocities
in the smooth channels with different mean openings.

As ∂Ue/∂y+e = 1 near the wall,

Sm
Sm0
= 1+ S

2
sin αz. (4.11)

Figure 21 displays the distribution of Sm/Sm0 given by (4.11) together with
DNS results. When α decreases, Sm/Sm0 approaches the theoretical estimate. Values
computed for α = 0.25 are already very close to the theoretical estimate, implying
that the interactions between fluid flowing in different sections of the corrugated
channel at α = 0.25 are very weak and could be neglected.

The above discussion shows that the velocity distribution in an arbitrary x–y plane
of the corrugated channel is similar to the smooth channel when described using the
local friction velocity, the local wall length and local friction Reynolds number. Thus,
the local mean velocity scaled using the local effective friction velocity u∗τe can be
written as (Pope 2000)

Ube = U∗b
u∗τe

= 5.6818 log10 Reτe + 3.5418, (4.12)
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FIGURE 21. Distribution of the ratio of wall shear Sm/Sm0 for S= 0.5 and Reτ = 180.

where U∗b is the dimensional local bulk velocity, and depends on the local effective
friction Reynolds number Reτe. The local mean velocity scaled using the friction
velocity u∗τ can be written as

Ub =
[

5.6818 log10 Reτ + 8.5227 log10

(
1+ S

2
sin αz

)
+ 3.5418

] (
1+ S

2
sin αz

)1/2

.

(4.13)

Integration of the mean velocity in the spanwise direction z leads to the discharge

Q|α→0 = 1
2π/α

∫ 2π/α

0
2δUb dz

= (5.6818 log10 Reτ + 3.5418)
π

∫ 2π

0

1+
8.5227 log10

(
1+ S

2
sin ξ

)
[5.6818 log10 Reτ + 3.5418]


×
(

1+ S
2

sin ξ
)3/2

dξ, (4.14)

where 2δ is the local channel opening at the location z.
The discharge for a smooth channel has the form

Q0|α→0 =Q|α→0|S=0 = 2(5.6818 log10 Reτ + 3.5418). (4.15)

The ratio of discharges in the corrugated and smooth channels at the same friction
Reynolds number (i.e. the same pressure gradient) is

Q
Q0

∣∣∣∣
α→0

= 1
2π

∫ 2π

0

1+
8.5227 log10

(
1+ S

2
sin ξ

)
[5.6818 log10 Reτ + 3.5418]

(1+ S
2

sin ξ
)3/2

dξ, (4.16)
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and gives the discharge difference of the form

1Q|α→0(S)= Q
Q0

∣∣∣∣
α→0

− 1. (4.17)

The above predictions are compared with the DNS results for a channel with S=0.5
and S = 1 at Reτ = 180. Equation (4.17) gives 1Q|α→0 = 1.88 % and 1Q|α→0 =
7.57 %, respectively, while the numerical results displayed in figure 8(a) give 2 %
and 10 %, respectively. This suggests that the above estimate provides quite a good
approximation of the discharge through the corrugated channel when the corrugation
wave number is sufficiently small.

The above analysis can be extended to flow conditions not accessible to numerical
simulations. As an example, consider the limit of very high friction Reynolds number.
The discharge ratio for the corrugated and smooth channels is of the form

lim
Reτ→∞

1Q|α→0 = 1
2π

∫ 2π

0

(
1+ S

2
sin ξ

)3/2

dξ − 1. (4.18)

Figure 22 displays predictions of 1Q based on (4.17) for different Reynolds
numbers and groove amplitudes for small α. Data for the laminar flow have
been added for comparison. The discharge increases with S at any Reτ . There is
a significant drop in the discharge increase when the flow changes from the laminar
to turbulent form. In the turbulent state, the magnitude of the discharge increase
decreases very slowly as Reτ increases but remains large enough to be of practical
interest.

It has been shown in § 3 that the discharge increases linearly with Reτ in the case
of laminar flow. The above analysis suggests that in the case of turbulent flows the
discharge increase is nearly independent of Reτ . The discharge increase is 7.57 % for
Reτ =180 and would be 7.28 % and 7.15 % for Reτ = 395 and 590 which are the other
values of Reτ frequently used in DNS studies. These cases have not been attempted
during the present study due to computational cost and, thus, the Reτ dependence
conjectured above remains to be proven.

It can be concluded that the maximization of the discharge is achieved using
grooves with decreasing wavenumber and increasing amplitude. The resulting
discharge can increase 20 %–30 % above the smooth channel discharge, depending
on the Reynolds number. Though this increase is not as high as in laminar flows
(150 %), it is still much higher than what can be achieved using other more traditional
drag-reducing methods. It can also be concluded that the discharge-increase results
from the bulk velocity rearrangement rather than from the suppression of the
turbulence intensity.

4.8. Additional cases with phase shift
The above discussion dealt with the positioning of the grooves at the upper and
lower walls in such a manner that the maximum height of the upper grooves was
located above the minimum height of the lower grooves, i.e. the diverging–converging
configuration. It is of interest to check how the relative positioning of the upper and
lower groove systems affects the flow discharge. This positioning is parameterized
using the phase shift ϕ, i.e. the channel geometry is described as

yL =−1− S
2

sin(αz), yU = 1+ S
2

sin(αz+ ϕ). (4.19a,b)
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FIGURE 22. (Colour online) Variations of the discharge correction 1Q as a function of
S at different Reτ for α→ 0.

Use of ϕ = 0 produces the converging–diverging channel and ϕ = π results in the
sinusoidal channel for α= 0.5 and S= 1 (see figure 23). Results displayed in figure 24
demonstrate the converging–diverging channel produces the largest discharge increase.
Increase of ϕ from 0 to π reduces this increase and can reduce the total discharge
below the smooth channel level if ϕ is close enough to π. The deterioration of the
system performance is associated with the reduction and eventual elimination of the
stream tube with the fast moving fluid forming in the wide section of the channel, as
documented in figure 23. The corresponding changes of the skin-friction distribution
are documented in figure 25.

5. Concluding remarks
An analysis of the laminar and turbulent flows through corrugated channels, with

the grooves being parallel to the flow direction, has been carried out. The analysis
relied on the theoretical solution in the laminar case and on the DES method in
the turbulent case. It has been demonstrated that the use of the grooves results
in an increase of the discharge through the grooved channel when compared with
a smooth channel operating under the same pressure gradient. It has been shown
that the reduced geometry model applies to turbulent flows, i.e. the groove shape
can be replaced by the leading Fourier mode from its Fourier representation and
the resulting error is acceptable for most applications. It is therefore possible
to parameterize the groove effects using just two parameters, i.e. the groove
wavenumber and the groove amplitude. Detailed results have been presented for
sinusoidal grooves in the range the Reynolds numbers of interest. Changes in
the discharge, the mean velocity distribution, the mean shear distribution, the
TKE, the Reynolds stress and the turbulence structures have been documented and
discussed.

It has been shown that the corrugated channel, subject to the same pressure gradient
as the smooth channel, can produce either larger or smaller discharge depending on
the groove wavenumber. There exists a critical groove wavenumber αc ≈ 0.8–1
separating both types of grooves, with grooves with α < αc increasing discharge. An
increase of the groove amplitude S increases the discharge for α < αc and decreases
the discharge for α > αc. The grooves are less effective in increasing the discharge
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FIGURE 23. Distributions of the streamwise velocity U in the y–z plane at Reτ = 180 for
α = 0.5 and S= 1 with different phase shifts. (a) ϕ = 0; (b) ϕ =π/2; (c) ϕ =π.
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FIGURE 24. (Colour online) Variations of the discharge correction 1Q as a function of
the phase shift ϕ for Reτ = 180.

in turbulent flows when compared with the laminar flows. The discharge increase in
the turbulent flow is approximately 10 % when α = 0.25 and S= 1, which is similar
to the discharge increase that can be achieved using riblets (7 %–10 %). A maximum
discharge can be achieved for α→ 0 and S→ 2.

The discharge increase is achieved by rearranging the bulk velocity distribution
in the transverse (y–z) plane with the largest fluid flux flowing through the widest
channel opening. The grooves do not suppress the TKE production and the Reynolds
stress. Change of the phase shift between the groove systems at the upper and
lower walls affect the bulk flow. The largest discharge increase is achieved for the
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FIGURE 25. (Colour online) Distributions of the shear stress in the y–z plane for α= 0.5
and S= 1 with different phase shifts ϕ at Reτ = 180.

converging–diverging form of the channel while no discharge increase can be achieved
for the wavy form of the channel.
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