Probability in the Engineering and Informational Sciencg&g 2003 205-212 Printed in the US.A.

PRESERVATION OF PROPERTIES
UNDER MIXTURE

HENRY W. BLock, YULIN LI, AND THOMAS H. SAvITS

Department of Statistics
University of Pittsburgh
Pittsburgh, PA 15260
E-mail: {hwb, yulst12, tsavits})@stat.pitt.edu

In generalfinite mixtures of distributions with increasing failure rates are not in-
creasingHowever conditions have been given by Lyng8] so that a mixture of
distributions with increasing failure rates has increasing failure Y&leeestablish
similar results for other standard classes and also give examples which show that
although the assumptions are stringeontinuous mixtures of standard families of
lifetime distributions do have increasing failure raté& also show that the result

of Lynch follows from Savit§12] and the techniques of the last-cited paper can be
applied to other classes as well

1. INTRODUCTION

It is well known that mixtures of distributions with decreasing failure rates have
decreasing failure rateslowever if the distributions which are mixed have failure
rates which do not decreaseany different types of behavior are possilhteBlock,

Mi, and Savit$4], a general result was given concerning the asymptotic behavior of
a mixture Under certain conditionst was shown that the limit of the failure rate of

a mixture was the same as the limit of the failure rate of the strongest mixed popu-
lation (we often refer to these as subpopulations or components of the mixture
Block and Jod2] extended this type of result to the asymptotic monotonicity of a
mixture In particulay if the strongest component has a failure rate which is even-
tually increasingthen the mixture failure rate has a similar propestge BlockLi,

and Savitg 3] for refinements of the previously cited articles as well as many ex-
amples The overall behavior of the mixture has recently been studied by Block
Savits and WondmagegneH]. These authors have determined that even for the
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mixture of distributions with increasing linear failure ratesany behaviors are
possibleIn fact, the mixture of two distributions with increasing linear failure rates
can have four changes of monotoniciBonsequentlyit is surprising that Lynch8]
obtained a closure theorem for mixtures of distributions with increasing failure rates
In this article we show several thing&irst, we discuss the conditions assumed
in Lynch[8] and show that his result is a special case of Sq¢R@$with the correct
interpretationNext, we explain why the Lynch result does not apply to finite mix-
tures We also show that similar closure theorems are possible for other nonpara-
metric classesncluding distributions that are increasing failure rate avetdgRA),
new better than use@dNBU), and decreasing mean residual [{eMRL). Bassan
and Spizzichind 1] also are working on the DMRL case and may have a result
similar to ours We give examples to show that these results apply to several well-
known distributions under continuous mixing
We generally use the terms increasing and decreasing instead of the nondecreas-
ing and nonincreasingespectivelyFor ease of expositigave also assume that our
lifetime distributions have no mass at zero

2. LYNCH’S RESULT

In Lynch[8], a result is given for mixtures of distributions with increasing failure
rates(IFR). The result can be restated as followst{F(t|0) : § = 0} be a family of
survival functions of lifetime distributions with univariate parametet 0. Let M

be the mixing distribution function of0,o0). The mixture survival function has
the form

Fu(t) = flf(t\ﬂ)dM(H).

The main result of Lynch8] is that ifM has an IFR distribution and F(t|6) is
log concave in the variablés 6) (i.e., In F(t|6) is concave irf(t,8)) and is increas-
ing in @ for eacht = 0, thenFy (t) is IFR. A converse result is also giveithe
bivariate condition orfr (t|#) is a type of multivariate IFR conditigsince margin-
ally, F(t|@) is log concave i for eachd (which is univariate IFRand similarly, log
concave i for eacht = 0. This condition was studied by Savit$2] in a multi-
variate contextThe main result of12] is Theorem 34, which we state

THEOREM 2.1: The lifetime® is IFR if and only if Hh(t, ®)] is log concave in t
for all functions Ht, #) which are log concave ift, §) and are increasing i for
eacht=0.

Inthe context of the present articlet ® be the mixing variable and assume that
it is IFR and also thaF(t|6) is log concave in(t,#) and increasing ird. As a
corollary to Theorem 2, it follows thatFy(t) is IFR.

It should be observed that in addition to the bivariate IFR assumgptieras-
sumption that the mixing distribution is IFR precludes the application of this result
to finite or even discrete mixtures since distributions with flat parts are nat IFR
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3. CLOSURE RESULTS

We now establish some results similar to the Lynch result for other reliability classes

3.1 IFRA

We give a direct proof of this resulbut as in the IFR casé¢he result also follows
from a comment in Savitsl 2]. The details of this are given in a note following the
theorem

In Block and Savit$5], the following lemma is used to show that the convo-
lution of IFRA distributions is IFRA

LemMa 3.1 (Block and Savit§5]): Fis IFRA iff

Va
fh(t) dF(t) = {fh“(t/a) dF(t)}

for all 0 < @ < 1 and all nonnegative increasing functions h.
We now state the IFRA result
TueoreM 3.1: Assumé-(t]6) is increasing ing for each t= 0 and satisfies
F(at|af) = F(t]6) (3.1)

forall 0 <« < 1andforallt=0and# = 0. Also assume that the mixing distribution
M(0) is an IFRA distribution. Then,ris IFRA. Conversely, if ffis IFRA whenever
F(t|9) satisfies the above two conditions, then M is IFRA.

Proor: The converse part follows by takirf§(t|#) = 1 (t < 6). The direct part of
the proof follows because for€ o < 1,

Fu(at) = flf(at\ﬁ)dM(O)

> flf"(t|0/a)dM(6)

= Ulf(tw)dM(e)]a

= F(t),
where in the first inequality we made use of the inequality in the statement of the
theoremand in the second inequality we used Lemnib&pplied toM. u
Note 3.1:

1. From inequality(3.1) and the monotonicity of in §, we obtain

F(at|d) = F(at|ad) = F(t|6);
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that is F(t|9) is IFRA for eachd = 0.
2. Inequality(3.1) can be written as

log F(at|af) = alogF(t]6), 0<a<l,

a condition which is called log subhomogeneous in Sq¢2%. Theorem 31
can be shown to follow from the last paragraph of Savif§ and the results
of Block and Savit$6]. Also see Savit§l1].

3. It is easy to see that i (t|6) is log concave ir(t,8), then it is log subho-
mogeneous ifft, ).

3.2 NBU

An NBU closure result can also be giverhe proof requires the following lemma

LeMmMmA 3.2: Fis NBU iff

[atatnia - 1ok < [g ar [ dre

for all nonnegative, increasing functions g and h andG# o < 1.

Proor: The sufficiency of the condition follows easily by lettimgt) = 1.5 .,)(t)
andh(t) = 1y, ., (t) for a,b > 0. The inequality becomes

Flmax(a/a, b/(1— a))] = F(a)F(b)

and choosingr = a/(a + b) yields NBU. The necessity uses a standard technique
(e.g., see Marshall and Shakéd]). First from the NBU inequality and the fact that
(a+b) =max(a/a,b/(1— a)) for all 0 < a < 1, the inequality holds for indicator
functions of the intervals of the tyg@,cc) and(b,c0) and this can also be extended
to any pair of open or closed intervals of this tyfiehen follows that the theorem
holds for finite weighted sums of such indicator functioBsce nonnegative in-
creasing functions are increasing limits of these finite suhesresult follows by the
monotone convergence theorem [ ]

THEOREM 3.2: Assumed=(t]@) is increasing ind for each t= 0 and satisfies
F(t|0) = F(at|ad®)F[(1— a)t|(1— a)6] (3.2)
forall 0 < a < 1landallt# =0, and also that the mixing distribution M is NBU.

Then, F, is NBU. Conversely, if fris NBU wheneveF (t |9) satisfies the above two
conditions, then M is NBU.
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Proor: The converse part follows by choosiRgt|9) = I (t < #). For the direct part
of the theoremlet 0 < a < 1. Then

Ful®) = [ Fitlo) ameo)
= flf(at|a0)|f[(l —a)t|(1— a)0]dM(0)

= flf(atw)dM(e)flf[(l—a)t|6]dl\/l(6)
Thus Fyy is NBU. .
Note 3.2:

1. Itis easy to show that the conditions of the theorem imply B{&t6) is NBU
for eachd = 0.
2. The inequality(3.2) in the theorem is also called log subadditivity

3.3 DMRL

A similar result holds for DMRLThe usual definition that a lifetime with survival
functionF is DMRL is that the quantity,” F (u) du/F(t) is decreasing it It is not

hard to show that this is equivalent f§’ F(u) du being log concave in This fol-

lows since the right-hand derivative of the log of the second quantity is equal to the
negative of the reciprocal of the first quantity and the right-hand derivative of a
concave function is a decreasing function

THeEOREM 3.3: Assumé=(t|6),0 =0, is increasing ird for each t=0, [, F(u|6) du
is log concave if(t,#), and M(0) is IFR. Then, k is DMRL. Conversely, if 7 is
DMRL wheneveF (t|#) is increasing ind for each t= 0 and [, F(u|¢) du is log
concave int,#), then M is DMRL.

Proor: The converse part follows by takirf(t|6) = | (t < ). The direct part of
the proof follows from Theorem.3 of Savits[12]. In fact, from that theorem we

know that
f lfM(U)dU=f U If(ulH)dM(a)} du
t t 0
=f {f If(u|0)du] dM(6)
0] t
is log concave in. Hence Fy is DMRL. u

https://doi.org/10.1017/5026996480317204X Published online by Cambridge University Press


https://doi.org/10.1017/S026996480317204X

210 H. W. Block, Y. Li, and T. H. Savits

Note 3.3:

1. The condition thaf,” F(u|6) duis log concave irit, §) implies that it is log
concave irt for eachd = 0. Thus F(t|6) is DMRL for eachd = 0.

2. It follows from Prekopd 10] that if F(t|6) is log concave int,#), then
J” F(u|@) duis log concave irt, 8) provided the integral exists

4. EXAMPLES

The following examples show that the conditions on the mixed distributions for the
various closure theorems are reasonable and are satisfied by many standard distri-
butions Itis enough to show that these satisfy the bivariate log concavity condition
The monotonicity condition is obvious

Example 4.1 (Weibull Distribution)The Weibull distribution is given by
F(t) = exp(—At®),
wherea, A > 0. Whena > 1, it is IFR. Reparameterize it as
F(t]0) = exp(—t*/6=1),

wheref > 0 anda > 1. LetH(t,6) = —In F(t|9) = t%/6*~ 1. It can then be shown
thatH is a convex function oft, §). Therefore F is log concave irt, 9).

Example 4.2 (Exponential Power Distributionthe exponential power distribu-
tion is given by

F(t) = exp{l— exp[(At)*]},
wherea, A > 0. Whena > 1, this is IFR Reparameterize it as
F(t|0) = exp{l— exp(t4/0*~1)},
wherea > 1 andd > 0. SetH(t,60) = —In F(t]9) = exp(t*/6%~ ') — 1. Sincet*/9*~1
is convex in(t, ) and the exponential function is increasing and conitéwllows

thatH (t]6) must be convexTherefore F is log concave ift, 8).

Example 4.3 (Gompertz Distribution)fhe Gompertz distribution is given by

F(t) = exp{ B [1- exp(at)]},
o
wherea, 8 > 0. This distribution is IFRWe reparameterize it as

F(t|6) = exp{6B[1— exp(t/0)]},
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whereé, 8 > 0. SetH(t,0) = —In F(t|8) = 8B[exp(t/8) — 1]. Since the Hessian
matrix

Bexp(t/e) [ 6% —6t
DH=——-—
0 -0t t2
is nonnegative definiteH is convex in(t, #) and soF(t]6) is log concave irt, §).

Example 4.4 (Generalized Gamma Distributiod)he density of the generalized
gamma distribution is

f(t) = arPtPtexp(—At®)/T(B),

wherea, 8, A > 0. Whena > 1 andB > 1, this is IFR We reparameterize it as

atf~t te
f(t|6) = gla—DB exp _ea_l F(IB)y

wherea > 1, 8 > 1, andd > 0. Denote its survival function bi#(t|9) and letG(t)
be the survival function of the IFR gamma distribution with density

g(t) = tF texp(—t)/T'(B)

for B > 1. It follows that F(t|8) = G(t*/6%~1). Since —In G(t) is convex and
increasingandt®/6*~* is convex in(t, #), it follows thatF(t|8) is log concave in
(t,0) whena > 1 andg > 1.
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