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It is shown that the set of conservation laws for the nonlinear system of equations describing

plane steady potential barotropic flow of gas is given by the set of conservation laws for the

linear Chaplygin system. All the conservation laws of zero order for the Chaplygin system are

found. These include both known and new nonlinear conservation laws. It is found that the

number of conservation laws of the first order is not more than three, assuming that the laws

do not depend on the velocity potential and are not non-obvious ones. The components of

these conservation laws are quadratic with respect to the stream function and its derivatives.

All the Chaplygin functions are found, for which the Chaplygin system has three non-obvious

conservation laws of the first order that are independent of velocity potential. All such

non-obvious first-order conservation laws are found.

Key words: Conservation laws; Steady barotropic flow; Chaplygin equation; Chaplygin

system

1 Introduction

This paper is devoted to the calculation of conservation laws for the system of differential

equations describing the plane steady potential barotropic (isentropic) flow of gas. The

conservation laws are powerful tools for the study of nonlinear systems of differential

equations and can be applied for the construction of weak solutions. Some additional

conservation laws for steady potential flow were found early in the work of Loewner [7],

where he identified some useful conservation laws for more general system (also see

Morawetz [9]). The importance of entropy functions (i.e. where additional conservation

laws hold) in constructing weak solutions for transonic flow problems has been recognised

in some recent papers, such as Chen et al. [1].

We use the following basic concepts of the theory of conservation laws [2, 10, 14].

Let (S) be an arbitrary system of differential equations for m � 1 unknown functions u =

(u1, u2, . . . , um) of n � 2 independent variables x = (x1, x2, . . . , xn). Denote by [S] the

submanifold of the prolongation manifold [10,14], defined by the equations of system (S)

and all its differential prolongations.
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A conservation law for system (S) is a vector A = A(x, u, u
1
, u
2
, . . .) = (A1, A2, . . . , An)

such that

(D · A)[S ] = 0,

where D = (D1, D2, . . . , Dn) and Dj = Dxj (j = 1, 2, . . . , n) – an operator of total differ-

entiation with respect to the variable xj . The highest order for the derivatives of the

dependent functions u1, u2, . . ., um with respect to the independent variables x1, x2, . . ., xn,

appearing in the expression A, is called the order of the conservation law.

Any conservation law is determined within a constant factor. Any conservation law A

is called trivial [10] if

(D · A)[S ] = D ·
(
A|[S ]

)
= 0.

Two conservation laws are equivalent if their linear combination is a trivial conservation

law.

The set of conservation laws for system (S) is divided into non-intersecting classes of

equivalent conservation laws. The conservation law can be trivial for two reasons [10].

The triviality of the first type consists of A|[S ] = 0. This triviality is easy to eliminate if

we consider only a projection of vector A on manifold [S]. The second possible type of

triviality arises when the condition on divergence

D · A ≡ 0

is valid for all functions u1, u2, . . . , um of variables x1, x2, . . ., xn irrespective of whether

or not these functions are solutions of the given system of differential equations. A

description of all conservation laws of the second type is presented, for example, in [10,

Theorem 4.24].

Generally speaking, by definition the trivial conservation law is a linear combination

of trivial conservation laws of two specified types.

The set of conservation laws for system (S) is divided into non-intersecting classes of

equivalent conservation laws.

A classification of conservation laws is of interest only within equivalence so

that the conservation law will be understood as a class of equivalent conservation

laws.

If system (S) is the linear system of differential equations, i.e. has a form

L [u] = 0, (1.1)

where L is a linear operator then using the operator Green’s formula we obtain

v · L [u] − u · L∗ [v] = D · A, (1.2)

where L∗ is a conjugate operator. It follows that any linear system (1.1) has the con-

servation law A = A (u, v, . . .), determined by the operator Green’s formula (1.2), where

v = v (x) is any solution of the conjugate system of equations

L∗ [v] = 0.
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This functional arbitrariness of the conservation law, given by the function v, is a

consequence of the linearity of the system of equations (1.1).

A conservation law for the linear system of equations (1.1) that is a linear combination

of trivial conservation laws and conservation laws generated by the operator Green’s

formula (1.2) is called an obvious conservation law [2, 3], otherwise it is non-obvious

conservation law.

2 Basic equations and relations

The plane steady potential barotropic flow of gas is described by the following equations

[8, 13]:

uux + vuy + c2

ρ
ρx = 0, uvx + vvy + c2

ρ
ρy = 0,

uρx + vρy + ρ
(
ux + vy

)
= 0, vx − uy = 0,

(2.1)

where x = (x, y) ∈ R2, u = u (x) = (u, v) is the velocity, ρ = ρ (x) is the density, c2 = dp
dρ

,

c = c (ρ) > 0 is the speed of sound, and p = p (ρ) is the pressure.

Introduction of a velocity potential φ = φ (x) and a stream function ψ = ψ (x) by using

formulas

φx = u, φy = v, ψx = −ρv, ψx = ρu (2.2)

allows us to write system (2.1) in terms of new variables ζ and σ

ζ =

∫
ρ

q
dq, σ = arctg

v

u
, q = |u| . (2.3)

This hodograph transformation recasts the initial system (2.1) into the form of the

Chaplygin system [4, 12, 13]

φσ = ψζ, φζ = −K (ζ)ψσ (2.4)

with the Chaplygin function

K (ζ) =
1 −M2

ρ2
,

(
Kζ (ζ) > 0

)
,

where M = q/c is Mach number.

Elimination of velocity potential from equations (2.4) leads to the Chaplygin equation

[4, 11, 13] for the stream function ψ

ψζζ +K (ζ)ψσσ = 0. (2.5)

We now find conservation laws for systems of differential equations (2.1), (2.4), and

(2.5).

3 Transformation of conservation laws

Let us consider a correspondence for the conservation laws of the initial system (2.1) and

the conservation laws of the Chaplygin system (2.4).
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The conservation laws for the system (2.1) are given by a relation

(D · B)[(2.1)] = 0, (3.1)

here B = B(x, u, ρ, u
1
, ρ

1
, u
2
, ρ

2
, . . . ) = (B1, B2), D =

(
Dx, Dy

)
.

The conservation laws for the Chaplygin system (2.4) are given by

(D · A)[(2.4)] = 0, (3.2)

here A = A(ζ, σ, ψ, φ, ψ
1
, φ

1
, ψ

2
, φ

2
, . . .) = (A1, A2), D =

(
Dζ, Dσ

)
.

Theorem 3.1 Let the Jacobian J = ∂(u,v)
∂(x,y)

� 0. Then any conservation law for the nonlinear

system of equations (2.1) is one of the form B = (B1, B2), defined by

B1 = − 1

|u|2
((
uyv − uvy

)
A1 + ρ

(
uuy + vvy

)
A2

)
,

B2 = 1

|u|2 ((uxv − uvx)A1 + ρ (uux + vvx)A2) ,
(3.3)

where A = (A1, A2) is the conservation law for the linear Chaplygin system (2.4). Conversely,

if B = (B1, B2) is the conservation law for the nonlinear system (2.1), then A = (A1, A2) is

the conservation law for the linear Chaplygin system (2.4), where

A1 =
q

J

(
qxB1 + qyB2

)
, A2 =

q2

ρJ

(
σxB1 + σyB2

)
. (3.4)

Proof. By direct calculations it is established that for any two functions B1, B2 the

following identity holds:

DxB1 + DyB2 =
ρJ

|u|2
Dζ

(
1

J

(
(uux + vvx)B1 +

(
uuy + vvy

)
B2

))

+
ρJ

|u|2
Dσ

(
1

ρJ

(
− (uxv − uvx)B1 +

(
uyv − uvy

)
B2

))
.

The theorem follows.

This theorem allows us to reduce the problem of finding conservation laws for the

nonlinear system of equations (2.1), describing the plane steady potential barotropic flow

of gas, to the problem of finding conservation laws for the linear Chaplygin system (2.4).

It should also be noted that the set of conservation laws for the Chaplygin system (2.4),

which do not depend on the velocity potential φ, coincides with the set of the conservation

laws for the Chaplygin equation (2.5).

4 Conservation laws of zero order

The conservation laws of zero order for the Chaplygin system (2.4) have the form of (3.2),

in which

A = A (ζ, σ, ψ, φ) = (A1, A2) . (4.1)

https://doi.org/10.1017/S095679251300017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679251300017X


Conservation laws for plane steady potential barotropic flow 793

4.1 Obvious conservation laws

The Chaplygin system (2.4) has the form of (1.1) with the linear operator

L =

(
∂ζ −∂σ

K (ζ) ∂σ ∂ζ

)

and a dependent vector function u = (ψ,φ)T .

In this case an adjoint operator is determined by the formula

L∗ = −LT ,

and the operator Green’s formula (1.2) takes the form

v · L [u] − u · L∗ [v] = Dζ (v1ψ + v2φ) + Dσ (−v1φ+K (ζ) v2ψ) , (4.2)

where v = (v1, v2)
T is any solution of the adjoint system of equations

L∗ [v] = 0,

or, because of the similar structure of operators L and L∗, the vector-function w = (v2, v1)
T

is a corresponding solution of the Chaplygin system

L [w] = 0. (4.3)

The Green’s formula (4.2) generates an infinite number of obvious conservation laws

of zero order for the Chaplygin system (2.4), determined by the vector A = (A1, A2) with

components

A1 = v1ψ + v2φ, A2 = −v1φ+K (ζ) v2ψ. (4.4)

It should be noted that by virtue of (3.3) and (3.4) the conservation laws for system

(2.1) up to a trivial conservation law, obtained in [15], are generated by the first-order

conservation laws (4.4). In fact, the conservation laws for system (2.1) of [15] are

B1 = fρu+ gv, B2 = fρv − gu, (4.5)

where w = (g, f)T is an arbitrary solution of the Chaplygin system (4.3).

For

v1 = −fσ, v2 = −gσ,

the conservation laws for the Chaplygin system (2.4), generated by the conservation laws

(4.5) and with the help of (3.4), have the form

A1 = Dσ (fψ + gφ) + (v1ψ + v2φ) ,

A2 = −Dζ (fψ + gφ) + (−v1φ+K (ζ) v2ψ)

and are the sum of a trivial conservation law and the conservation law (4.4).
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4.2 Non-obvious conservation laws

Finding non-obvious conservation laws of zero order for the Chaplygin system (2.4)

corresponds to solving (3.2) with (4.1).

Splitting (3.2) for parametric derivatives leads to a system of determining equations

∂ψA1 + ∂φA2 = 0, ∂ψA2 −K (ζ) ∂φA1 = 0, ∂ζA1 + ∂σA2 = 0. (4.6)

To investigate the consistency of this over-determined system it is necessary to prolong

or differentiate it [10].

After the first prolongation, the following equations are added

∂2
ψA1 +K (ζ) ∂2

φA1 = 0, ∂ψ∂σA1 − ∂φ∂ζA1 = 0, ∂ψ∂ζA1 +K (ζ) ∂φ∂σA1 = 0. (4.7)

After the second prolongation, the following equations are added

∂φ∂ψ∂ζA1 +K (ζ) ∂2
φ∂σA1 = 0, ∂φ

(
∂2
ζA1 +K (ζ) ∂2

σA1

)
= 0,(

∂ζK (ζ)
)

∂2
φA1 +K (ζ)

(
∂2
φ∂ζA1 − ∂φ∂ψ∂σA1

)
= 0.

(4.8)

As a result, the system is an involution and it is possible to find its general solution.

From the last equation of system (4.8), the second equation of (4.7) and conditions

∂ζK (ζ) > 0 for the Chaplygin function, it follows that

∂2
φA1 = 0. (4.9)

From this relation, the first equations of systems (4.7) and (4.8) respectively are reduced

to

∂2
ψA1 = 0, ∂φ∂ψ∂ζA1 = 0, (4.10)

and the second equation of (4.6) gives

∂φ∂ψ∂σA1 = 0. (4.11)

The general solution of systems (4.6)–(4.11) is easily found and has the form

A1 = 2cψφ+ (v1ψ + v2φ) + Dσf,

A2 = c
(
K (ζ)ψ2 − φ2

)
+ (−v1φ+K (ζ) v2ψ) − Dζf,

where c is an arbitrary constant, f = f (ζ, σ, ψ, φ) is an arbitrary function and the vector

function w = (v2, v1)
T is any solution of system (4.3).

Thus, the Chaplygin system (4.3) has a unique solution up to the obvious conservation

laws

A1 = 2ψφ, A2 = K (ζ)ψ2 − φ2. (4.12)

The corresponding conservation law for system (2.1) is obtained from (4.12) by (3.3)

and has the form

B1 = − 1

|u|2
[
2ψφ

(
uyv − uvy

)
+ ρ

(
uuy + vvy

) (
K (ζ)ψ2 − φ2

)]
,
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B2 =
1

|u|2
[
2ψφ (uxv − uvx) + ρ (uux + vvx)

(
K (ζ)ψ2 − φ2

)]
.

For system (2.1) this is the non-local conservation law of the first order with two non-local

variables ψ and φ.

5 Conservation laws of the first order

The conservation laws of the first order for the Chaplygin system (2.4) is given by (3.2),

in which

A = A
(
ζ, σ, ψ, φ, ψζ, ψσ

)
= (A1, A2) . (5.1)

Substitution of (5.1) in (3.2) and splitting of parametric derivatives lead to a system of

determining equations

K (ζ) ∂ψζA1 − ∂ψσA2 = 0, ∂ψσA1 + ∂ψζA2 = 0,

∂ζA1 + ψζ∂ψA1 −K (ζ)ψσ∂φA1 + ∂σA2 + ψσ∂ψA2 + ψζ∂φA2 = 0.
(5.2)

After the first continuation, the following equations are added

∂2
(ψσ)

2A1 +K (ζ) ∂2

(ψζ)
2A1 = 0, ∂ψζΦ1 − ∂ψσΦ2 + ∂ψA1 + ∂φA2 = 0,

∂ψσΦ1 +K (ζ) ∂ψζΦ2 −K (ζ) ∂φA1 + ∂ψA2 = 0,

Φ1 = ∂ζA1 + ψζ∂ψA1 −K (ζ)ψσ∂φA1, Φ2 = ∂σA1 + ψσ∂ψA1 + ψζ∂φA1.

(5.3)

Next, we consider two special cases: (1) the conservation laws are linear in the derivatives

ψζ , ψσ; (2) the conservation laws do not depend on the potential φ.

5.1 Conservation laws linear in derivatives

We consider the conservation laws for the Chaplygin system that are linear with respect

to the derivatives and have the following form:

A1 = f1 (ζ, σ, ψ, φ)ψζ + f2 (ζ, σ, ψ, φ)ψσ + f3 (ζ, σ, ψ, φ) ,

A2 = g1 (ζ, σ, ψ, φ)ψζ + g2 (ζ, σ, ψ, φ)ψσ + g3 (ζ, σ, ψ, φ) .
(5.4)

Substituting (5.4) in (5.2) and (5.3) and the splitting of the parametric derivative ψζ , ψσ
yield an over-determined system

g2 = K (ζ) f1, g1 = −f2,

∂φf2 = ∂ψf1, ∂ψf3 + ∂φg3 = ∂σf2 − ∂ζf1,

K (ζ) ∂φf3 − ∂ψg3 = ∂ζf2 +K (ζ) ∂σf1,

∂ζf3 + ∂σg3 = 0.

(5.5)

https://doi.org/10.1017/S095679251300017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679251300017X


796 Y. A. Chirkunov and S. B. Medvedev

After the first prolongation, the following equations are added

∂ζ∂φg3 + ∂2
ζf1 +K (ζ)

(
∂2
σf1 − ∂σ∂φf3

)
,

∂2
φg3 + ∂ζ∂φf1 − ∂σ∂ψf1 + ∂φ∂ψf3,

∂φ∂ψg3 + ∂ζ∂ψf1 +K (ζ)
(
∂σ∂φf1 − ∂2

φf3

)
= 0.

(5.6)

After the second prolongation, the following equations are added(
∂ζK (ζ)

)
∂φP = 0, ∂2

ψP = ∂ζ∂ψP = ∂σ∂ψP = 0,

∂2
ζP +K (ζ) ∂2

σP = 0, P = ∂φf3 − ∂σf1.
(5.7)

The system (5.5)–(5.7) is in involution and its general solution is easily found. Substi-

tuting this solution into (5.4) gives all the conservation laws for the Chaplygin system,

linear with respect to the derivatives

A1 = −Dσ
[
Q+ aψ2

∫
K (ζ) dζ −

∫
v1dσ

]
+ 2aψφ+ (v1ψ + v2φ) ,

A2 =Dζ

[
Q+ aψ2

∫
K (ζ) dζ −

∫
v1dσ

]
+ a

(
K (ζ)ψ2 − φ2

)
+

+ (−v1φ+K (ζ) v2ψ) .

Here Q = Q(ζ, σ, ψ, φ) is an arbitrary function, a is an arbitrary constant, and w = (v2, v1)
T

is any solution of the Chaplygin system (4.3).

It follows that all the conservation laws of the form (5.4) for the Chaplygin system

(2.4) are given by zero-order conservation laws, defined by (4.4) and (4.12), up to trivial

conservation laws of the first order.

5.2 Conservation laws independent on potential

We now find the conservation laws of the first order for the Chaplygin system which do

not depend on the velocity potential φ. We consider the conservation laws of the form

A = A
(
ζ, σ, ψ, ψζ, ψσ

)
= (A1, A2) . (5.8)

The set of conservation laws of type (5.8) for the Chaplygin system (2.4) coincides with

the set of conservation laws of the first order for the Chaplygin equation (2.5).

The obvious conservation laws for the Chaplygin equation (2.5), generated by the

operator Green’s formula are

A1 = vψζ − vζψ, A2 = K (ζ) (vψσ − vσψ) ,

where v = v (ζ, σ) is any solution of equation (2.5). Substitution of these conservation laws

in (3.3) gives the conservation laws for system (2.1).

Next we solve the classification problem of the Chaplygin equation (2.5) for the non-

obvious conservation laws of the first order.
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With the help of characteristic variables

λ =

∫ √
−K (ζ)dζ + σ, μ =

∫ √
−K (ζ)dζ − σ (5.9)

equation (2.5) is written as

ψλμ − 1

4
θ′ (ζ)

(
ψλ + ψμ

)
= 0, (5.10)

where

θ = θ (ζ) =
1√

−K (ζ)
, (5.11)

and ζ is implicitly defined by the equation

λ+ μ = 2

∫ √
−K (ζ)dζ.

A set of conservation laws of the first order, A =
(
A1

(
ζ, σ, ψ, ψζ, ψσ

)
,

A2

(
ζ, σ, ψ, ψζ, ψσ

))
for equation (2.5) such that

(
DζA1 + DσA2

)
[(2.5)]

= 0

lies in the set of conservation laws with components

A1 = F1 (λ, μ, ψ, ξ, η) + F2 (λ, μ, ψ, ξ, η) ,

A2 =
√

−K (ζ) (F1 (λ, μ, ψ, ξ, η) − F2 (λ, μ, ψ, ξ, η)) ,
(5.12)

where λ, μ are defined by (5.9),

ξ =
1

2

(
ψζ√

−K (ζ)
+ ψσ

)
, η =

1

2

(
ψζ√

−K (ζ)
− ψσ

)

and the vector F =
(
F1

(
λ, μ, ψ, ψλ, ψμ

)
, F2

(
λ, μ, ψ, ψλ, ψμ

))
is the conservation law of the

first order for equation (5.10) such that

(
DλF1 + DμF2

)
[(5.10)]

= 0.

The Laplace invariants for equation (5.10) are [5, 6, 11]

k = h =
1

16

((
θ′)2 − 2θθ′′

)
. (5.13)

The Chaplygin equation (2.5) with the Chaplygin function K (ζ) � 0 is equivalent to

the Laplace equation for k = h = 0. From (5.13) this is possible only if K (ζ) = − 1
(aζ+b)4

,

where a� 0, b are arbitrary constants. In this case, the Chaplygin equation has infinitely

many non-obvious conservation laws of the first order.

If K (ζ) = − 1
(aζ+b)4

then the transformation ψ = ω(λ,μ)
λ+μ

reduces equation (5.10) to the

form ωλμ = 0. It follows that in this case the non-obvious conservation laws of the first
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order for equation (2.5) are determined by formulas

A1 = f1

(
aσ +

1

aζ + b
, (aζ + b)ψζ − 1

aζ + b
ψσ + aψ

)

+ f2

(
aσ − 1

aζ + b
, (aζ + b)ψζ +

1

aζ + b
ψσ + aψ

)
,

A2 =
1

(aζ + b)2
f1

(
aσ +

1

aζ + b
, (aζ + b)ψζ − 1

aζ + b
ψσ + aψ

)

− 1

(aζ + b)2
f2

(
aσ − 1

aζ + b
, (aζ + b)ψζ +

1

aζ + b
ψσ + aψ

)
,

where f1 and f2 are arbitrary analytic functions.

If h� 0, then the first Ovsyannikov invariant I1 = k
h

= 1 [2, 11, 14]. Using classification

of conservation laws of the first order for linear differential equations of the second order

with two independent variables [2, 3], we get two partial results for equation (5.10). The

first partial result for equation (5.10) has no more than three non-obvious conservation

laws of the first order and their components are quadratic functions on stream function

ψ and its derivatives ψλ, ψμ. The second partial result for equation (5.10) has three

non-obvious conservation laws of the first order if and only if the second Ovsyannikov

invariant I2 is identically constant, i.e.

I2 =
1

h
(ln h)λμ = γ = const. (5.14)

The classifying equation (5.14), which determines all the Chaplygin functions K (ζ), is

written by using (5.11), in the form

4θ

(
θ

(
ln

((
θ′)2 − 2θθ′′

))′
)′

= γ
((
θ′)2 − 2θθ′′

)
. (5.15)

The general solution of the ordinary differential equation (5.15) is given in [11] and has

the form

K (ζ) =
α0

(α1ζ + α2)
4
K0

(
α3ζ + α4

α1ζ + α2

)
, (5.16)

where αj (j = 0, 1, 2, 3, 4) are arbitrary complex constants satisfying α0 (α1α4 − α2α3)� 0

and the generating function K0 (ζ) is such that

1. for γ = 0 there will be two generating functions

or

K0 (ζ) = − 1

ζ2
(5.17)

or

K0 (ζ) = (J0 (t))4 , (5.18)

where t is implicitly defined by equation ζJ0 (t)−Y0 (t) = 0 and J0 (t) is the Bessel function

of the first kind and order zero, Y0 (t) is the Bessel function of the second kind and order

zero.
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2. For γ� 0 it is convenient to introduce a new parameter α instead of γ. We put

2

γ
= α (α+ 1) , α� −1, 0. (5.19)

In this case, there will be three generating functions:

K0 (ζ) = −ζ− 4α
2α+1

(
α� −1, −1

2
, 0

)
(5.20)

or

K0 (ζ) = eζ ,

(
α = −1

2

)
(5.21)

or

K0 (ζ) = (Pα (t))4 , (5.22)

where t is implicitly defined by equation ζPα (t)−Qα (t) = 0, Pα (t) is the first kind Legendre

function of degree α, and Qα (t) is the second kind Legendre function of degree α.

The results for the classification of linear differential equations of the second order

with two independent variables with respect to the conservation laws of the first order,

obtained in [2], allow us to find all non-obvious conservation laws of the first order

for equation (5.10) with canonical Chaplygin functions K (ζ) = K0 (ζ) given by formula

(5.17)–(5.22), and, consequently, by (5.12), and for Chaplygin equation (2.5).

If K (ζ) = − 1
ζ2 then

F1 = e− λ+μ
2

(
(c1 + c2μ)

(
ψμ −

(
λ+

1

4

)
ψ

)2

+ (c1λ+ c3μ)

(
ψμ −

(
λ+

1

4

)
ψ

)
ψ +

(
c3

(
λμ− 1

2

)
− c2λ

2μ

)
ψ2

)
(5.23)

F2 = e− λ+μ
2

(
(c3 − c2λ)

(
ψλ −

(
μ+

1

4

)
ψ

)2

+ (c1λ+ c3μ)

(
ψλ −

(
μ+

1

4

)
ψ

)
ψ +

(
c1

(
λμ− 1

2

)
− c2λμ

2

)
ψ2

)
,

where c1, c2 and c3 are arbitrary constants.

If K (ζ) = (J0 (t))4 then

F1 = J0 (iτ)
((
c1e

2μ + c2
) (

4ψμ + (2τ− 1)ψ
)2

− 2
(
c1e

−2λ + c3e
−2μ

) (
4ψμ + (2τ− 1)ψ

)
ψ

+ 4e−2μ
(
c3 (τ− 2) − c2τe

−2λ
)
ψ2

)
(5.24)

F2 = J0 (iτ)
((
c3e

2λ − c2
)
(4ψλ + (2τ− 1)ψ)2

− 2
(
c1e

−2λ + c3e
−2μ

)
(4ψλ + (2τ− 1)ψ)ψ

+ 4e−2λ
(
c1 (τ− 2) + c2τe

−2μ
)
ψ2

)
,

where τ = e−2(λ+μ), i2 = −1, and c1, c2 and c3 are arbitrary constants.
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If K (ζ) = −ζ− 4α
2α+1 , α� −1, − 1

2
, 0 then

F1 = (λ+ μ)−2α

((
c1 + c2μ+ c3μ

2
) (

ψμ +

(
τ− 1

4

)
ψ

)2

− α (α+ 1)ψ

(
(c2 + c3 (μ− λ))

(
ψμ +

(
τ− 1

4

)
ψ

)

−
(

τ

λ+ μ

(
−c1 + c2λ− c3λ

2
)

+
c3

2

)
ψ

))
(5.25)

F2 = (λ+ μ)−2α

((
−c1 + c2λ− c3λ

2
) (

ψλ +

(
τ− 1

4

)
ψ

)2

− α (α+ 1)ψ

(
(c2 + c3 (μ− λ))

(
ψλ +

(
τ− 1

4

)
ψ

)

−
(

τ

λ+ μ

(
c1 + c2μ+ c3μ

2
)

− c3

2

)
ψ

))
,

where τ = α(α+1)
λ+μ

and c1, c2 and c3 are arbitrary constants.

If K (ζ) = eζ then the components F1, F2 of the conservation law of the first order for

equation (5.10) are determined by formulas (5.25), in which one has to put α = − 1
2
.

If K (ζ) = (Pα (t))4 then

F1 = Pα (ξ)

((
c1e

2γμ − c2e
γμ + c3

) (
φμ +

(
τ− 1

4

)
φ

)2

− 2
(
c2e

γμ − c3
(
1 + eγ(λ+μ)

)) (
φμ +

(
τ− 1

4

)
φ

)
φ

+
(
τ2

(
−c1 + c2e

γλ − c3e
2γλ

)
e2γμ + c3γ

)
φ2

)
,

(5.26)

F2 = Pα (ξ)

((
−c1e−2γλ + c2e

−γλ − c3
) (

φλ +

(
τeγ(λ+μ) − 1

4

)
φ

)2

− 2e−γ(λ+μ) (c2eγμ − c3
(
1 + eγ(λ+μ)

)) (
φλ +

(
τeγ(λ+μ) − 1

4

)
φ

)
φ

+
(
τ2

(
c1e

2γμ − c2e
γμ + c3

)
− c3γ

)
φ2

)
,

where α and β are related by (5.19), τ = 2
eβ(λ+μ)−1

, ξ = −cth λ+μ
α(α+1)

and c1, c2 and c3 are

arbitrary constants.

6 Conclusion

Consequently, the Chaplygin equation (2.5) has at most three non-obvious conservation

laws of the first order and their components are quadratic functions of the stream

function ψ and its derivatives ψζ , ψσ . The Chaplygin equation (2.5) has three non-obvious

conservation laws of the first order only for the Chaplygin functions of the form (5.16)

with the function K0 (ζ) given by any of the formulas (5.17), (5.18), (5.20)–(5.22). The

substitution of (5.23)–(5.26) into (5.12) gives the non-obvious first-order conservation laws
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for the Chaplygin equation (2.5) with canonical Chaplygin functions; these are the first-

order conservation laws, independent of the velocity potential, for the Chaplygin system

(2.4).

By virtue of (3.3) these conservation laws generate nonlinear, non-local (with non-local

variable – stream function ψ) conservation laws of the first order for the nonlinear system

(2.1), describing the plane steady potential barotropic gas flow.
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