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Superimposing Electronic Navigational Chart (ENC) data on marine radar images can enrich
information for navigation. However, direct image superposition is affected by the performance
of various instruments such as Global Navigation Satellite Systems (GNSS) and compasses
and may undermine the effectiveness of the resulting information. We propose a data fusion
algorithm based on deep learning to extract robust features from radar images. By deep learning
in this context we mean employing a class of machine learning algorithms, including artificial
neural networks, that use multiple layers to progressively extract higher level features from raw
input. We first exploit the ability of deep learning to perform target detection for the identifi-
cation of marine radar targets. Then, image processing is performed on the identified targets
to determine reference points for consistent data fusion of ENC and marine radar information.
Finally, a more intelligent fusion algorithm is built to merge the marine radar and electronic
chart data according to the determined reference points. The proposed fusion is verified through
simulations using ENC data and marine radar images from real ships in narrow waters over a
continuous period. The results suggest a suitable performance for edge matching of the shoreline
and real-time applicability. The fused image can provide comprehensive information to support
navigation, thus enhancing important aspects such as safety.
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1. INTRODUCTION. Modern shipping requires ever-increasing accuracy and reliabil-
ity from navigation systems. Marine radars offer live real-time information about targets
above the water surface, but they cannot offer any comprehensive hydrographic infor-
mation. The Electronic Navigational Chart (ENC), however, enhances ship navigation
by displaying static information including coastlines and fixed/floating aids to naviga-
tion. Multi-sensor data fusion allows analysing and synthesising information from multiple
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sources according to certain criteria to improve decision-making and control (Hall and
Llinas, 2002). Radar echo images are the primary non-visual source of information for
ship collision avoidance, whereas ENCs provide hydrological information for the waters in
which the ship is sailing. These two sources of information are complimentary in provid-
ing information to support navigation safety. Therefore, fusing ENC data and marine radar
images could facilitate the identification and positioning of moving ships and improve both
the automation level and navigation safety (Zhang and Fan, 2011).

Suitable marine radar performance and test standards from the International Electrotech-
nical Commission (IEC), IEC 62388 (2013), enable overlaying ENC on marine radar
images, conforming a chart radar (IEC 62388, 2013: 115), which provides a more intuitive
understanding of the ship navigation scenario and quickly illustrates the Global Navigation
Satellite System (GNSS) accuracy and proper operation of other navigation instruments.
Nevertheless, mismatching occurs between the objects obtained from radar and Electronic
Chart Display and Information System (ECDIS) due to transmitting heading signals, shield-
ing of electromagnetic waves, and the extension of echoes in range. Mismatching can
be manually compensated if the causes of such mismatching are identified. However, the
process of manual compensation is cumbersome and requires experience.

Data fusion for navigation instruments usually addresses aspects such as filtering opti-
misation and image fusion from different sensors. For instance, Hu et al. (2015) and Gao
et al. (2018) explored filtering algorithms for GNSS/Inertial Navigation System (INS) inte-
grated navigation. Likewise, an adaptive data-fusion fuzzy algorithm has been proposed
by Al-Sharman et al. (2018) to improve estimation accuracy while an aircraft approaches
the landing surface. Radar/Automatic Identification System (AIS) fusion is also a basis for
navigational decision support systems, as demonstrated by Borkowski and Zwierzewicz
(2011). A target tracking fusion algorithm for data from radar and AIS was proposed by
Kazimierski and Stateczny (2015). Du and Gao (2017) proposed a method for image fusion
of data from different navigation instruments and multi-focus image fusion using orienta-
tion information excitation on a pulse-coupled neural network. Similarly, image registration
based on feature points or edges has been intensively explored (Ma et al., 2018).

Extensive research has been conducted on fusion (including superposition) of ENC data
and marine radar images. Donderi et al. (2004) conducted simulations on navigation, con-
firming the suitability of overlaying ENC on radar images for navigation safety. Some
empirical research on integrating marine radar images and ENC was conducted by Kaz-
imierski and Stateczny (2015) by superimposing fused AIS and radar signals on ECDIS.
A method for evaluating the accuracy of overlaying surveillance marine radar images has
been proposed by Lubczonek (2015). Liu et al. (2005) and Yang et al. (2010) thoroughly
evaluated the real-time overlapping of ECDIS and superposition of ENC and radar images.
Zhang and Fan (2011) proposed automatic image fusion of radar images and ENC data
based on the Harris corner to detect image features. These types of methods use differ-
ent operators to detect features often affected by echo quality and target deformation. The
detection results of the features are often not ideal.

High-level fusion of ENC data and marine radar images has been addressed to a lim-
ited extent. Moreover, apart from classical algorithms for estimation and recognition,
recent approaches such as artificial intelligence, information theory and advanced filter-
ing algorithms are being increasingly applied to multi-sensor data fusion (Zhao et al.,
2014). Deep learning has been successfully applied in computer vision for determining
high-level abstraction. Specifically, a Convolutional Neural Network (CNN) processes
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inputs to maintain important features and exclude irrelevant information (Goyal et al.,
2017).

In this study, we propose an algorithm employing deep learning for extracting target
features from marine radar images to enable feature-level fusion of ENC data and radar
images taking the characteristics of marine radar signals into consideration. We verified the
performance of the proposed method and explored solutions for fusion failure due to sensor
errors in ship positioning and heading. Section 2 of this paper introduces the proposed target
detection method, which is based on the characteristics of marine radar images and details
of the proposed fusion algorithm are presented in Section 3. Simulation results to verify the
performance of the method are presented in Section 4 and the conclusions of the study are
summarised in Section 5.

2. MARINE RADAR IMAGE PROCESSING. The working principles of marine radar
mean that clutter pixels in the resulting radar image and irregular expansion and adhe-
sion deformation in the echoes from some objects is inevitable. Other objects easily
identified from high-quality echoes are typical targets, which include land, islands, naviga-
tion equipment, ships, navigation aids and bridges. These targets reflect electromagnetic
waves with less distortion and can be used as suitable references for fusion of ENC
data and marine radar images. However, some typical targets such as shoreline echoes,
present variations whose shape changes with the tide and their positions are not sta-
ble. Likewise, the shapes of radar echoes from targets are affected by aspects such as
meteorological conditions and ship draughts. Before fusion, we applied target detection
based on deep learning to identify typical targets in marine radar images. These tar-
gets then serve as reference points for consistent radar image fusion with ENC data.
In the following subsections, details of the proposed marine radar image processing are
presented.

2.1. Marine radar data pre-processing. To apply deep learning to marine radar
images, we first compiled the images into a dataset. This was then augmented to improve
detection. Subsequently, we performed annotation of typical targets.

Before target detection, a typical radar target dataset should be constructed. We selected
real-time ship radar images referenced by duty officers or pilots from vessels in different
narrow channels as samples for typical target detection. After the vessels docked, we used
the Voyage Data Recorder (VDR) monitor to acquire ENC data and marine radar images
from the corresponding narrow channel over the previous 12 hours.

We used a data augmentation method to avoid overfitting and increase data availability
during training as the obtained dataset was small for deep learning (Wu et al., 2017). This
data augmentation approach consists of geometrical transformations, such as horizontal
flipping, resizing, rotation and cropping to generate synthetic images.

Our team was supported by ten senior seafarers who manually annotated typical targets
from marine radar images using bounding boxes and then labelled their classes. These
annotations were verified with reference to the chart, and typical targets were placed at the
centre of the bounding boxes.

2.2. Target detection using neural networks. For efficient and robust marine radar
typical target detection, we selected two models with strong generalisation capability,
namely, Faster Region-based CNN (Faster R-CNN) and Region-based Fully Convolu-
tional Network (R-FCN) (Dai et al., 2016). In addition, we selected the Oxford Visual
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Geometry Group (VGG) VGG-16 deep CNN (VGG-16) and the 101-layer residual neural
network (ResNet-101) in imageNet Large Scale Visual Recognition Challenge (He et al.,
2016; Simonyan and Zisserman, 2015) with fast training and testing, respectively, to be the
feature extractors.

2.2.1. Faster R-CNN. Faster R-CNN performs detection in two stages. In the first
stage, a Region Proposal Network (RPN) accepts a marine radar image as input and extracts
its features to indicate the subsequent detection model of the regions it should analyse. We
slid a small network over the obtained convolutional feature map of the radar image to
generate region proposals. Each feature is mapped into a lower-dimensional feature, which
is fed into box-regression and box-classification layers. To train the RPN, we assigned
a binary class label determined from the intersection-over-union overlap compared to a
threshold with any ground-truth box to each anchor indicating whether it is an object. The
loss function for the image is defined as:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi + p∗
i ) + λ

1
N

∑
i

p∗
i Lreg(ti, t∗i ) (1)

where i is the anchor index in a mini-batch, pi is the probability of anchor i being an object,
ti is a vector representing the four parameterised coordinates of the predicted bounding
box, t∗i is the vector of the ground-truth box associated with a positive anchor, and λ is a
balancing weight (Ren et al., 2015). The classification loss is the log loss over two classes
as follows:

Lcls
(
pi, p∗

i

)
= log[pip∗

i + (1 − p∗
i )(1 − pi)] (2)

and the regression loss is given by:

Lreg
(
ti, t∗i

)
=

{
0·5(ti − t∗i )2 if

∣∣ti − t∗i
∣∣ < 1∣∣ti − t∗i

∣∣− 0·5 otherwise
. (3)

For bounding box regression, we adopted the parameterisation of the four coordinates as
follows:

tx = (xp − xa)/wa, ty = (yp − ya)/ha

tw = log(wp/wa), th = log(hp/ha)

t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha

t∗w = log(w∗/wa), t∗h = log(h∗/ha)

(4)

where xp , xa and x∗ correspond to the predicted box, anchor box and ground-truth box,
respectively (likewise for wp , yp , hp ). Variables xp , yp , wp and hp denote the two cen-
tre coordinates of the bounding box and its width and height. The RPN and subsequent
detection are illustrated in Figure 1.

In the second stage, the box proposals are used to detect marine radar image features
from the feature map. These features are fed into the remaining layers of the feature
extractor for predicting the class probability and bounding box for each proposal.

The entire process is implemented on a unified network as shown in Figure 2, enabling
sharing of full-image convolutional features with the detection network and significantly
reducing the number of weights for simplifying and speeding-up training.
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Figure 1. Diagram of the RPN architecture (left) and example of detections using RPN outcomes (right).

Figure 2. Block diagram of Faster R-CNN (ROI, region of interest).

2.2.2. R-FCN. The R-FCN illustrated in Figure 3 uses convolution for prediction and
then performs region-of-interest pooling. Adding location information before pooling pre-
vents the fully convolutional network from losing such information and specifying different
score maps allows detection of different locations of the target. After pooling, the score
maps obtained from different locations can be combined to reconstruct the original location
information, whereas the fully convolutional structure reduces training time.

We evaluated the performance of the models using the mean average precision (Ever-
ingham et al., 2010). The average precision is the area under the precision (p)–recall (r)
curve of the detection task, and its mean is computed over all the classes in a task. The
average precision and mean average precision are respectively given by:

AP =
nd∑
i

pi�r
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Figure 3. R-FCN with fully convolutional network.

(a) (b)

Figure 4. Diagram of transfer learning to improve target detection.

mAP =
1
C

C∑
C=1

APC (5)

The average precision AP is a dimensionless quantity and integrates both the precision
and recall indicators, which are commonly used to measure the ability of neural networks
to detect targets, with higher values indicating the model more suitable for the data set.
Likewise, the mean average precision mAP is the average precision (including background)
of each object, which is used to measure the target detection ability of the model for a
category of targets.

2.3. Transfer learning. We used transfer learning to fine-tune the detection model
as the employed dataset is small. In fact, modern object detection considers a large
number of data samples and over a thousand class labels. Then, the hidden layers in a
CNN provide distinct feature representations, with lower layers providing general fea-
ture extraction and higher layers providing more specific information about the intended
task (Dai et al., 2016). For instance, lower layers would be edge detectors, whereas
higher layers provide more specific representations belonging to the input image. There-
fore, generalisation is provided by feature extraction and representation of lower layers
and fine-tuning of the specific problem is provided by higher layers. The transfer learn-
ing employed in this study to improve detection is illustrated in Figure 4. In this study,
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we used a dataset available online, namely UC Merced Land Use Dataset with 21 object
classes (Yang and Newsam, 2010) to perform pre-training. The main purpose was to guide
the lower layers of the network to extract features in the proper direction. Then, fine-
tuning was performed on higher layers using the radar data set generated in the present
study.

3. FUSION BASED ON DETECTED TARGETS.
3.1. Scaling and display area of ENC. The coordinate systems of the ENC and corre-

sponding radar images are different, leading to superposition errors, which can be mitigated
by performing real-time coordinate transformations. For the ENC, the projection mode
defaults to the Mercator projection as this type of projection is simpler to calculate and
yields higher accuracy in a small scanning range than similar methods. We used the Mer-
cator projection by considering the scanning range of the radar, which is usually within six
nautical miles when ships sail in confined waters.

The effect of the curvature of the Earth between the radar detection coordinate system
and the Mercator coordinate system can be ignored as this value is too small compared
to the radius of the Earth. When the range is small, the detection distance of the radar is
approximately equal to the geographical distance considering the curvature of the earth.
The conversion of the geodetic coordinate system into Mercator projection proceeds as
follows (Yang et al., 2010):{

xm = r0q
ym = r0λ

r0 =
α√

1 − e2 sin ϕr
× cos ϕr

q = ln tan
(π

4
+

ϕ

0

)
− e

2
ln

1 + e sin ϕ

1 − e sin ϕ

(6)

where xm and ym are the Mercator Cartesian coordinates, λ and ϕ are the longitude and
latitude, respectively, α is the major axis of the Earth’s ellipsoid, e is the first eccentricity
of the Earth, ϕr is the reference dimension, q is the equivalent dimension, and r0 is the
radius of the base circle of the latitude.

According to the projection transformation of chart pixels, the latitude and longitude of
the radar scan can be obtained as:{

(λmin, λmin) = φ−1
org (φ (λ0, ϕ0) − (L, L))

(λmax, λmax) = φ−1
org (φ (λ0, ϕ0) + (L, L))

(7)

where λ0 and ϕ0 are the longitude and latitude of the radar centre, respectively, (λmin, ϕmin)
and (λmax, ϕmax) are the longitude and Lattitude ranges of the radar scanning, respectively,
φ(λ0, ϕ0) is the longitude and Lattitude of the radar centre in Cartesian coordinates with
φ being the map for Mercator projections, respectively, φ−1 is the inverse of the Mercator
map for chart projection, and L is the detection range of the radar. Then, we searched the
area of the ENC to be registered using the results obtained.

In terms of the registration, the ENC and marine radar scales must be consistent. Mod-
ifying the radar scale is achieved by several variation ranges, whereas ENC data can be
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arbitrarily set to the desired scale. Therefore, we matched the electronic chart to radar data
(Yang et al., 2010). A radar image scale and the display scale of the ENC are determined
by:

1
Sr

=
c × d

R

z =
(c × d × s0)

R

(8)

where R is the detection radius of the radar, c pixels at distance d are contained in the
radius scan line, and 1/sr is the original scale of the radar. However, the remaining area,
excluding the radar image area, is displayed in black on the radar display screen. Thus, 1/sr
can also be regarded as the scale of the external square of the radar circular image. 1/s0 is
the original scale of the ENC, and z is the scaling parameter of the ENC.

According to the azimuth and distance of the corners of the bounding boxes obtained
from radar target detection with respect to the registration reference point, areas outside the
bounding box in the ENC are treated as background, whereas the area within the bounding
box of the ENC data and radar image is the Registration Interest Area (RIA).

3.2. RIA processing.
3.2.1. Filtering algorithm. Unlike registration based on entire radar images, filtering

and parameter selection considering only RIAs can be more accurate for extracting the
edges. For enhanced applicability, we consider real-time fusion and adaptive mean filtering,
which is expressed as:

K(x) = ck k
(‖x‖2) (9)

where x is a pixel in the plane, ck is a constant greater than 0, k(x) satisfies
∫

k(x)dr < 0,
and K(x) is a kernel function. The kernel density estimate is given by:

f (x) =
1
n

n∑
i=1

KH(x − xi)

KH(x) = |H |−1/2K
(
H−1/2x

) (10)

where H = h2I . Simplifying the density function, we obtain:

f (x) =
1

nhd

n∑
i=1

k
(∥∥∥∥x − xi

h

∥∥∥∥
)

(11)

whose gradient is given by:

∇f (x) =
2Ck

nhd+2

n∑
i=1

k′
(∥∥∥∥x − xi

h

∥∥∥∥
2
)

. (12)
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Assuming g(x) = −k′(x), G(x) = ckg
(‖x‖2), and G(x) is the opacification function of K(x),

we obtain:

∇f (x) =
2ck

nhd+2

[
n∑

i=1

g
(∥∥∥∥x − xi

h

∥∥∥∥
)2
]⎡⎢⎢⎢⎣

n∑
i=1

xig
(∥∥ x−xi

h

∥∥)2

n∑
i=1

g
(∥∥∥∥x − xi

h

∥∥∥∥
)2 − x

⎤
⎥⎥⎥⎦

=
2ck

nhd+2

[
n∑

i=1

g
(∥∥∥∥x − xi

h

∥∥∥∥
)2
]

[mh (x) − x]

(13)

with mh(x) being the weighted average of the sample points used to update the search area
with radius h and mh(x) − x being a drift vector, which terminates the iteration process
when it is below a certain tolerance level.

3.2.2. Binarization. To avoid intensive processing of colour images, we binarized
greyscale images using the method by Otsu (1979) to prevent disparity between the RIA
foreground and the background size ratio. This method adaptively searches for a threshold
according to the characteristics of the image and converts a greyscale image into a binary
one. The transformation can be expressed as:

u = w0 ∗ u0 + w1 ∗ u1

g(t) = w0(u0 − u)2 + w1(u1 − u)2
(14)

where w0 is the ratio of foreground to image with u0 being its average greyscale value and
w1 is the ratio of background to image with u1 being its average greyscale value. The high-
est variance g maximises the foreground and background difference, and the corresponding
threshold t is the optimum.

3.2.3. Morphological processing. Binarization may produce some isolated noise pix-
els besides the foreground target, affecting its integrity. We performed noise removal by
applying corrosion, expansion, opening, and closing, which can be expressed using the
standard set theory as:

A�B = {w ∈ Z|w + b ∈ A, b ∈ B}
A ⊕ B = {w ∈ Z|w = a + b, a ∈ A, b ∈ B}
A ◦ B = (A�B) ⊕ B

A • B = (A ⊕ B)�B

(15)

where Z represents the foreground, w is a pixel at different positions in the foreground
image, and a and b are members of structural element sets A and B, respectively.

We used the improved canny operator (Othman and Abdullah, 2018) to extract the edge
of the radar image and boundary of the echoes in the RIAs:

Ex =
∂P
∂x

∗ f (x, y) Ey =
∂P
∂y

∗ f (x, y)

A(i, j ) =
√

E2
x (i, j ) + E2

y (i, j )
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(a) (b) (c) (d)

Figure 5. Image processing of RIA. (a) RIA; (b) Filtering and Binarization; (c) Morphological processing;
(d) Canny.

a(i, j ) = arctan
(

Ex (x, y)
Ey (x, y)

)
(16)

where P(x, y) is a two-dimensional Gaussian function, f (x, y) is the image data, A(i, j ) is
the edge feature of point (i, j ) in the image, and a(i, j ) is the normal vector of the image at
point (i, j ). Figure 5 illustrates the complete image processing for an RIA.

3.3. Image registration. Image registration can be based on transformations of
greyscale images, features and domain. Considering the notable divergence between
marine radar images and ENC, we used a feature-based affine transformation for their
fusion. Three or more reference points should be selected for the transformation, and its
principle can be expressed as:[

x′
i

y ′
i

]
= k′

[
cos θ sin θ

− sin θ cos θ

] [
xi
yi

]
+
[

x0
y0

]
(17)

where (xi, yi) are the coordinates of a pixel in the ENC, k′, θ , xo and yo are parameters for
the affine transformation, where θ corresponds to the image rotation, k is a scale factor and
x0 and y0 correspond to the image shift. Thus, we obtain:{

x′
i = a11xi + a12yi + a13

y ′
i = a21xi + a22yi + a23

(18)

with a11 = a22 = k′ cos θ , a13 = xo, a12 = −a21 = k′ sin θ , and a23 = yo.
Therefore, correlating radar images with ENC data requires at least three pairs of refer-

ence points with accurate correspondence to determine the transformation parameters. The
accuracy of the reference points directly determines the fusion outcome. After the transfor-
mation, however, some deformation may occur, but it is generally negligible. On the other
hand, if the deformation undermines fusion, then according to “the display of radar infor-
mation shall have priority” from IEC 62388 (2013), priority should be given to the display
of radar images.

To determine the reference points for registration, we considered various aspects. After
target detection from the radar image, targets with small sizes and inconspicuous shapes
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(a) (b)

(d) (e)

(c)

Figure 6. Complete process for automatic registration from detected typical targets. (a) Detection result;
(b) Binarization; (c) Morphological processing; (d) Canny; (e) Registration.

may interfere with the detection results, as registration is less effective for small objects
such as buoys. However, according to the International Convention on Standards of Train-
ing, Certification and Watchkeeping for Seafarers, when ships are sailing along the coast
in crowded waters, the crew should check the position of the ship at appropriate intervals
through independent positioning methods, and reference objects are mainly used for navi-
gation. Therefore, small reference objects that can accurately correspond to the ENC goal
should not be ignored. Consequently, pixels between the radar image and ENC are suitable
as registration reference points.

Depending on the target resolution of the radar, manual selection of registration refer-
ence points cannot be performed on large ranges. Therefore, we implemented the automatic
registration algorithm, illustrated in Figure 6, which focused on objects that perform well
in target detection as reference points for registration. The algorithm first locates a pair
of accurate reference points on the ENC and radar images whose respective coordinates
are (x1, y1) and (x′

1, y ′
1). When two or more bounding boxes are found, a ray is emitted

from (x1, y1) and (x′
1, y ′

1) to the geometric centre of the RIA in the ENC and radar images
to acquire two or more groups of coordinates in front of the radar echo edge. If there is
only one bounding box, a specific angle on the bow is selected, emitting two rays to the
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Table 1. Detection result of Faster R-CNN and R-FCN for typical radar target.

Model mAP(%) Cape Breakwater Ship Shoreline Bridge Racon

Faster R-CNN 0·2973 0·3856 0·3931 0·2260 0·4986 0·4356 0·065
R-FCN 0·3649 0·4017 0·3960 0·2446 0·5498 0·5032 0·064

(a) (b)

(c) (d)

Figure 7. Typical target with undistinguishable echoes: (a) ENC of a shoal; (b) radar echoes of a shoal;
(c) ENC of a breakwater; (d) Civil Marine Radar (CMR) echoes of a breakwater.

areas around (x1, y1) and (x′
1, y ′

1) to obtain the coordinates of the two registration reference
points.

4. RESULTS AND DISCUSSION.
4.1. Typical target detection. We leveraged the UC Merced Land Use Dataset with

21 object classes (Yang and Newsam, 2010) as a dataset sample for pre-training the net-
work toward the problem domain of specific object classes for detection. The annotated
typical target dataset (ENC data and marine radar images acquired from the voyage data
recorder monitor) was used to fine-tune the pre-trained model using transfer learning. We
used stochastic gradient descent with momentum and weight decay of 0·9 and 0·0005,
respectively. The initial learning rate of 0·001 was divided by 10 using stepdown every
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(a)

(b)

Figure 8. Target detection of ships showing detection omission (a) without and (b) with radar persistence.

12,000 iterations. For the RPN in the Faster R-CNN and R-FCN, we set the batch size
to 256.

Table 1 lists the performance of the Faster R-CNN and R-FCN in the data set we
constructed. Both detection performances for typical marine radar targets are not ideal.
However, the R-FCN performed better than the Faster R-CNN as the mAP of the R-FCN
is higher than that of the Faster R-CNN; a detection model with a higher mAP value can
classify the target data set considering the precision and recall overall. Thus, the R-FCN
is considered more suitable to perform the detection task in our data set efficiently. From
these results, we determined that various factors should be considered for typical radar tar-
get detection. First, radar information from different target types may be very similar, thus
undermining the detection accuracy. Figure 7 shows examples of indistinguishable objects,
namely a shoal (Figure 7(b)) and a breakwater (Figure 7(d)).

In addition, targets with small sizes and inconspicuous shapes may interfere with the
detection results. In fact, such targets produce a low average precision that undermines
detection. Furthermore, although the position of the ship is stable, and its geometric shape
is regular with strong capability to reflect Civil Marine Radar (CMR) echoes, the aver-
age precision of the vessel is low; furthermore, there will be leakage detection and error
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Figure 9. Breakwater selected as typical target in the area of the Yangtze river and Kobe port.

detection, as illustrated in Figure 8. Therefore, ships cannot be used as reference points for
automatic registration.

To improve the detection performance, we considered typical targets in the radar images
with different characteristics and trained different models to reduce the detection classes and
avoid similarity among different targets. For example, we considered the waters near the
Yangtze River estuary (Figure 9). According to the Shanghai Gang sailing direction, arriv-
ing ships mostly rely on lights and lightships for positioning and navigation. However, it is
difficult to distinguish lighthouses and lightships from a large number of densely anchored
ships. In addition, the position and shape of echoes from smooth beach shorelines and mud-
flats can change with tide diversification. Moreover, radar images usually do not produce
notable distinctions between steep and smooth beach shorelines, which are thus not suit-
able as reference points for registration and navigation. In these types of waters, echo-stable
buildings are preferred as typical targets such as breakwaters and quayside edges, as shown
in Figure 9. When these targets were used for the R-FCN, we obtained better detection
performance. Specifically, target detection in the waters of the Yangtze River and waters
near the Kobe Port estuary yielded average precision for the breakwater of up to 0·4372,
which is higher compared to using other targets.
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Table 2. Detection of typical targets from multiple radar in
waters near the Port of Caledon, Vietnam.

mAP(%) Bridge Land Cape

0·5178 0·5348 0·5847 0·4338

Figure 10. Detection of typical targets near the Port of Caledon, Vietnam.

We also verified the feasibility of the R-FCN in the inland waters near the Caledon port,
Vietnam and the results obtained are listed in Table 2 and shown in Figure 10. The detec-
tion performance notably improved with a mAP of 0·5178, which is significantly higher
than the values previously obtained (0·2973 and 0·3649). This indicates that reducing the
classification category of the target helps to improve the target detection performance of
the model after considering the precision and recall rate.

4.2. Data fusion. The affine transformation parameters, k, θ , xo, and yo in
Equation (17) were determined to perform fusion simulations on ENC data and CMR
images at intervals of 5 min. The results are shown in Figure 11.

The algorithm yields a suitable performance because fusion of the shorelines from
the ENC and radar images coincide. Moreover, the shoreline and shoal are separated in
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(a) (b) (c)

Figure 11. Using fixed parameter to perform data fusion of ENC and radar images every five minutes.

Figures 12(a) and 12(b) without loss of radar information. The image details show suc-
cessful fusion by the consistent position of the land in Figure 11(a) and that of the buoys in
Figures 12(a)–(c). Thus, image fusion of ENC and marine radar images can be performed
even without the identification of accurate feature points.

We executed training and registration using a Nvidia GeForce GTX 1080 GPU and Intel
Core i5–7 processors. With this equipment, the average time for target detection on a single
test image was 0·15 s, and registration was completed within 0·5 s, which is below the
maximum update rate of the marine radar antenna (48 rpm), suggesting that the proposed
algorithm satisfies the requirement for real-time performance.

The success of the registration algorithm depends on the quality of marine radar image
processing. Moreover, if the radar detects contiguous objects for reference points near
the range, these objects will cause pixel adhesion, and the canny operator cannot extract
the edge features of these objects. We performed a simulation to demonstrate this situa-
tion. As shown in Figure 12(e2), the shoreline on the left side is steep without occlusion
from other objects. However, the shoreline on the right of the ship is covered by a
building. Taking the shoreline on the left and right of the ship as RIAs to perform auto-
matic registration with the corresponding reference points yields the results shown in
Figure 12.

Fusion using the RIA from the left of the ship successfully matches the shoreline and
the bridge, but that from the right of the ship fails. The failure is caused by limitations
in the working principle and performance of a CMR. Even with human assessment, it is
difficult to find pixels that can accurately correspond to the ENC position among many
erratic pixels. This complicates the search for registration reference points in such areas.
Therefore, registration reference points in the RIA should be searched only when no object
interference occurs.
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Figure 12. Image fusion using reference points on the left and right of the ship. (a) ENC; (b) CMR image; (c) Binarization; (d) Morphological; (e1) Left side of ship;
(e2) Right side of ship.

https://doi.org/10.1017/S0373463319000481 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0373463319000481


NO. 1 FUSION OF SHIP PERCEPTUAL INFORMATION 209
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(g)(f)

(d) (e)

Figure 13. Data fusion using other reference points detected by radar under large error of the ship
GNSS. (a) ENC; (b) Typical target detection; (c) Binarization; (d) Morphological; (e) Canny operator;
(f) Auto Registration Algorithm; (g) Registration.

Now, consider the case when the ship is being used as the reference point and the GNSS
is giving a large error, thus drastically undermining fusion. In this case, achieving fusion
demands reference points other than the ship. For instance, if the buoy detected by radar
with clear echoes and stable position on the ENC is used as a registration reference point
for fusion, the algorithm yields the result shown in Figure 13.

The automatic fusion of ENC data and marine radar image is realised using the buoy
echo detected by the radar, disregarding information on the ship position. The fusion results
show that the ship position on the radar is consistent with the GNSS signal on the ENC,
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and the radar echo of the shoreline is accurately integrated with ENC data, verifying the
high performance of the proposed algorithm under this scenario.

5. CONCLUSIONS. High-level data fusion is not realised by conventional chart radar,
as it depends on the measurement environment and is a cumbersome process requiring
much experience. Recent studies have mostly focused on target detection considering com-
plete images and demands the adjustment of several parameters more related to image
pre-processing than to RIAs. In addition, detection by different operators has the limita-
tion of fixed types of detection features and is affected by radar echo quality and target
deformation, often failing to produce ideal results. To avoid these limitations, we proposed
a method based on deep learning to detect RIAs on marine radar images. The proposed
method can detect different and robust image feature maps through a continuous convo-
lution layer, which results in more accurate and robust reference points for registration
obtained after contour extraction from detected targets. We employed an affine transfor-
mation to fuse corresponding ENC data and marine radar images. The proposed algorithm
was verified for fusion of ENC data and marine radar images retrieved from real ships
sailing in narrow channels. Fusion can be performed even under considerable errors in
both the ship positioning measurements and heading signal. Fusion results demonstrate
the effectiveness and consistency of the proposed algorithm. The results from data fusion
between ENC data and marine radar images can help in the interpretation of naviga-
tion scenarios. Moreover, the image retrieved from fusion can provide real-time dynamic
information of marine radar and suitably reflect ENC static navigation information, thus
improving aspects such as safety during navigation. In a broader sense, the proposed
method can serve as a guideline for future integration and data fusion of multiple navigation
sensors.

ACKNOWLEDGMENTS

This work was supported by the National Nature Science Foundation of China (Nos. 51579024,
51879027, 61374114) and the Fundamental Research Funds for the Central Universities (DMU
no. 3132016311)

REFERENCES

Al-Sharman, M.K., Emran, B.J., Jaradat, M.A., Najjaran, H., Al-Husari, R. and Zweiri, Y. (2018). Precision
landing using an adaptive fuzzy multi-sensor data fusion architecture. Applied Soft Computing, 69, 149–164.

Borkowski, P. and Zwierzewicz, Z. (2011). Ship course-keeping algorithm based on knowledge base. Intelligent
Automation & Soft Computing, 17(2), 149–163.

Donderi, D.C., Mercer, R., Hong, M.B. and Skinner, D. (2004). Simulated navigation performance with marine
electronic chart and information display systems (ECDIS). The Journal of Navigation, 57(2), 189–202.

Dai, J., Li, Y., He, K. and Sun, J. (2016). R-fcn: Object detection via region-based fully convolutional networks.
In E. Q. Chen, Y. H. Gong, and Y. Tie (Eds.), Advances in neural information processing systems, 379–387.
Barcelona, Spain: Springer.

Du, C. and Gao, S. (2017). Multi-focus image fusion algorithm based on pulse coupled neural networks and
modified decision map. Optik, 157, 1003–1015.

Everingham, M., van Gool, L., Williams, C.K., Winn, J. and Zisserman, A. (2010). The Pascal Visual Object
Classes (VOC) Challenge. International Journal of Computer Vision, 88(2), 303–338.

Gao, B., Hu, G., Gao, S., Zhong, Y. and Gu, C. (2018). Multi-sensor optimal data fusion for INS/GNSS/CNS
integration based on unscented Kalman filter. International Journal of Control, Automation and Systems, 16(1),
129–140.

https://doi.org/10.1017/S0373463319000481 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463319000481


NO. 1 FUSION OF SHIP PERCEPTUAL INFORMATION 211

Goyal, M., Yap, M. H., Reeves, N. D., Rajbhandari, S. and Spragg, J. (2017, October). Fully convolutional net-
works for diabetic foot ulcer segmentation. In 2017 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), 618–623. New Jersey, NJ: IEEE.

Hall, D.L. and Llinas, J. (2002). An introduction to multisensor data fusion. Proceedings of the IEEE, 85(1), 6–23.
He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep Residual Learning for Image Recognition. Computer vision

and pattern recognition, 770–778. USA: Las Vegas.
Hu, G., Gao, S. and Zhong, Y. (2015). A derivative UKF for tightly coupled INS/GPS integrated navigation. ISA

Transactions, 56, 135–144.
International Electrotechnical Commission. (IEC). (2013). IEC 62388: Maritime navigation and radiocommuni-

cation equipment and systems–Shipborne radar-performance requirements, methods of testing and required
test results. Geneva, Switzerland. Retrieved from https://webstore.iec.ch/publication/6967.

Kazimierski, W. and Stateczny, A. (2015). Radar and automatic identification system track fusion in an electronic
chart display and information system. The Journal of Navigation, 68(6), 1141–1154.

Lubczonek, J. (2015). Analysis of accuracy of surveillance radar image overlay by using georeferencing method.
In: Radar Symposium, Dresden, Germany. http://dx.doi.org/10.1109/IRS.2015.7226230.

Liu, W.T., Ma, J.X. and Zhuang, X.B. (2005). Research on radar image & chart graph overlapping technique in
ECDIS. Navigation of China, 62(1), 59–63.

Ma, J., Jiang, J., Zhou, H., Zhao, J. and Guo, X. (2018). Guided locality preserving feature matching for remote
sensing image registration. IEEE Transactions on Geoscience and Remote Sensing, 56(8), 4435–4447.

Othman, Z. and Abdullah, A. (2017). An adaptive threshold based on multiple resolution levels for canny edge
detection. In International Conference of Reliable Information and Communication Technology, 316–323.
Germany: Springer.

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man,
and Cybernetics, 9(1), 62–66.

Ren, S., He, K., Girshick, R. and Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region
proposal networks. In Advances in neural information processing systems, 91–99. Tokyo, Japan.

Simonyan, K. and Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition.
International Conference on Learning Representations, 1–14. USA: San Diego.

Wu, S., Xu, J., Zhu, S. and Guo, H. (2017). A deep residual convolutional neural network for facial keypoint
detection with missing labels. Signal Processing, 144, 384–391.

Yang, G.L., Dou, Y.B. and Zheng, R.C. (2010). Method of image overlay on radar and electronic chart. Journal
of Chinese Inertial Technology, 18(2), 184.

Yang, Y. and Newsam, S. (2010). Bag-of-visual-words and spatial extensions for land-use classification. In Pro-
ceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems,
270–279. New York NY: ACM.

Zhang, C. and Fan, Z. Z. (2011). Data Fusion of Radar Image and ECDIS Based on Matching of Harris Feature
Points. In Advanced Materials Research, 317, 2026–2029. Stafa-Zurich, Switzerland: Trans Tech Publications.

Zhao, Y., Gao, S.S., Zhang, J. and Sun, Q.N. (2014). Robust predictive augmented unscented Kalman filter.
International Journal of Control, Automation and Systems, 12(5), 996–1004.

https://doi.org/10.1017/S0373463319000481 Published online by Cambridge University Press

https://webstore.iec.ch/publication/6967
http://dx.doi.org/10.1109/IRS.2015.7226230
https://doi.org/10.1017/S0373463319000481

