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To achieve more accurate navigation performance in the landing process, a multi-resolution
visual positioning technique is proposed for landing assistance of an Unmanned Aerial System
(UAS). This technique uses a captured image of an artificial landmark (e.g. barcode) to provide
relative positioning information in the X, Y and Z axes, and yaw, roll and pitch orientations. A
multi-resolution coding algorithm is designed to ensure the UAS will not lose the detection of
the landing target due to limited visual angles or camera resolution. Simulation and real world
experiments prove the performance of the proposed technique in positioning accuracy, detection
accuracy, and navigation effect. Two types of UAS are used to verify the generalisation of the
proposed technique. Comparison experiments to state-of-the-art techniques are also included
with the results analysis.
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1. INTRODUCTION. Due to the decreasing cost and increasing capability, Unmanned
Aerial Systems (UAS) are widely employed in military, commercial and personal scenarios,
including reconnaissance, surveillance, photography, entertainment, etc. Due to low cruis-
ing capability and power storage, common UAS often need frequent take offs and landings
in real applications. As a fundamental requirement, accurate landing is critical. However,
this is a very tough task for many environments. At higher attitude, UAS hardly encounter
obstacles, but when the UAS approach the ground, trees, buildings, high-voltage power
cables, ground vehicles and so on will cause a lot of trouble. Accidents occur with high
frequency during UAS landing processes. To improve this and reduce equipment damage,
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it is essential to provide an accurate, reliable positioning and navigation technique during
assisted landing.

In practice, Global Navigation Satellite System (GNSS)-based assisted positioning and
traditional vision-based assisted positioning techniques are two common methods for
navigation in UAS landing processes, however each of them has obvious defects.

1.1. GNSS-based assisted positioning technique. The most widely used GNSS in
UAS outdoor positioning is the Global Positioning System (GPS). However, due to the
following defects, GPS-assisted positioning and navigation techniques are not suitable for
accurate landing processes in outdoor and indoor environments (Lee et al., 2008).

• For adopting single frequency GNSS (Global Navigation Satellite System)
receivers, GPS positioning accuracy for civil usage is only 2–5 metres in commercial
UASs (Groves, 2011).

• If adopting double frequency GNSS receivers and differential real time correc-
tions (known as Real Time Differential GNSS Technique), civil users can achieve
centimetre-level positioning accuracy. This technique is used in some high-end
commercial UASs like the DJI Matrice 210 RTK. However, because of the sys-
tem complexity and expense, this technique is not widely used in middle-end and
low-end commercial UASs.

• Military GNSS systems are expensive and usually not available for commercial
UASs.

• GPS signals cannot generally be used in an indoor environment.

1.2. Traditional vision-based assisted positioning technique. In traditional vision-
based positioning techniques, artificial patterns are used to mark the landing target (Li
et al., 2013). Common marker shapes include: ‘H’, ‘H’ surrounded by circles (Yang et al.,
2014), concentric circles (Cocchioni et al., 2014), different shapes within a round marker,
etc.

• Even though these common artificial patterns can mark the landing target for UASs,
they cannot feed back numerical positioning information. Without positioning
information, the system cannot achieve an accurate landing performance.

• Another limitation is that all these patterns are of single resolution, and if only a
part of the marker pattern is captured by a visual sensor, the positioning and assisted
landing capability could be lost or unreliable.

• The traditional system cannot differentiate multiple landing targets in one area.

In this paper, a Multi-Resolution Visual Positioning and Navigation (MVPN) technique
is proposed. This technology can fix the issues that earlier systems cannot solve.

In the next section, we review and analyse the current state-of-the-art in UAS posi-
tioning and assisted landing techniques. In Section 3, we describe the main princi-
ple of our MVPN technique. In Section 4, we focus on design and implementation
of the multi-resolution visual positioning algorithm. Section 5 focuses on the assisted
landing control strategy. Section 6 shows experiment results obtained in simulation
and real flight. Section 7 concludes this work and sets out the direction of future
work.
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2. CURRENT STATE-OF-THE-ART TECHNIQUES. Many researchers have focussed
on vision-based positioning and assisted landing problems by capturing the images of arti-
ficial or natural markers. In Guan and Bai (2012), the proposed method is based on image
matching between the current view from a monocular video camera and a previously known
database of geo-referenced images. The key points of the image features are extracted using
SURF (Speeded-Up Robust Features). The feature tracking algorithm only considers natu-
ral landmarks, without the help of visual beacons or artificial landmarks. Yang et al. (2014)
presents a novel solution for micro aerial vehicles to autonomously search for and land on
an arbitrary landing site using real-time monocular vision. The multi-scale ORB (ORiented
Brief) features are extracted and integrated into the monocular visual SLAM (Simultane-
ous Localisation And Mapping) framework for landing site detection. In Cocchioni et al.
(2014), an autonomous vision navigation and landing system is proposed with a predefined
marker based on ellipse geometry. The developed vision algorithm provides the measure-
ment of UAS position with respect to the landing platform using the predefined visual
marker. At the same time, this system can automatically switch to an estimation of position
which is independent from the visual marker. In Jung et al. (2014), the authors design a
novel landing marker using concentric circles and the letter ‘H’ to overcome the problem
that the entire shape of the landing marker cannot be captured as the UAS approaches it
due to the limited field of view of the UAS’s camera. By calculating the conic parame-
ters from portions of ellipse curves, they can estimate accurate relative positioning for the
precise autonomous landing system. Lee et al. (2014) presents a novel method of cooper-
ation between two UASs at high altitude and low altitude for autonomous navigation and
landing. With high flexibility and extensive vision, the high-altitude UAS estimates the
position of the low-altitude UAS and controls it to finish the tracking marker and landing
processes. In Roozing and Göktoŏan (2013), the authors propose a low-cost vision-based
positioning solution for UAS. An on board infrared tracking sensor with built-in vision pro-
cessing is used to detect infrared markers and a point-based pose estimation algorithm is
implemented to obtain six Degree Of Freedom (DOF) positioning estimation at high rates.
In Lange et al. (2009), the authors describe their method for multirotor UAS autonomous
landing and position control. They propose a landing pad and a vision-based detection
algorithm that estimates the Three-Dimensional (3D) position of the UAS relative to the
landing pad. A cascaded controller structure stabilises velocity and position in the absence
of GPS signals by using a dedicated optical flow sensor. Li et al. (2015) discussed the
solution for a small-scaled quad-rotor UAS to autonomously search for and land on a
pre-designed marker placed on a rooftop. The UAS navigates to the landing site based
on GPS and transitions to vision-guided positioning once the UAS identifies the targeted
marker. Benini et al. (2016) proposes a real-time system for pose estimation of a UAS using
parallel image processing of a known artificial marker. The system exploits the capabili-
ties of a high-performance Central Processing Unit/Graphics Processing Unit (CPU/GPU)
embedded system to provide autonomous take-off and landing.

3. PRINCIPLE OF MVPN SYSTEM. In this paper, we propose a Multi-Resolution
Visual Positioning and Navigation (MVPN) technique for UAS landing assistance. Firstly,
we design the specific multi-resolution visual barcode and coding algorithm. The multi-
resolution coding algorithm ensures the UAS will not lose target barcode detection due to
limited visual angle or camera resolution. It ensures the provision of consistent navigation
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for the UAS during the whole landing process. Secondly, we design the visual positioning
algorithm. This algorithm uses the captured image of a multi-resolution barcode to pro-
vide six DOF of relative positioning information in the X, Y and Z axes, and yaw, roll and
pitch orientations to the flying UAS. With the six DOF positioning information feedback,
the UAS can achieve a more accurate landing performance both in indoor and outdoor
environments.

3.1. Six DOF positioning feedback relies on MVPN barcode’s special design. To
achieve a precise navigation performance in the landing process, the UAS should know
the accurate ground truth of the relative position between landing target and itself. The
MVPN system uses a Two-Dimensional (2D) barcode (Olson, 2011) as the landmark of
the expected landing target. When the camera carried by the UAS captures the MVPN bar-
code, the barcode image can provide six DOF of relative positioning information feedback
to the flying UAS, including relative displacements in X, Y and Z axes, and relative yaw,
roll and pitch orientations.

Thus, if the physical size of target MVPN barcode is known, and the UAS camera is
calibrated, then the relative position and orientation transform between the MVPN barcode
and the UAS camera in a World Coordinate System (WCS) can be determined. Here, Carte-
sian coordinates of the target MVPN barcode in WGS84 (World Geodetic System 1984)
are used to represent its absolute position. Because WGS84 is also the reference system of
GPS, the absolute position of target MVPN barcode in WCS is determined with the pro-
vided GPS location. Then through coordinate system transformation (detailed in the next
section), the UAS can determine its absolute position in X, Y and Z axes and its absolute
yaw, roll and pitch orientations from a single image of MVPN barcode.

3.2. Differentiating multiple landing targets relies on unique barcode coding number.
In real applications, the visual angle and resolution of the UAS’s camera are limited. To
provide a consistent assisted landing signal for positioning and navigating the UAS, we
propose a multi-resolution coding method to combine multiple nested barcodes. Each small
nested barcode is encoded with a unique Identification (ID) number. This ensures the UAS
can detect at least one barcode at varying heights during the whole landing process, and
can parse absolute positioning information by decoding the ID number.

Our solution can provide a low-cost, high-scalability and easy to use positioning and
navigation technique for assisted landing for various standardised UASs on the market.

4. MULTI-RESOLUTION VISUAL POSITIONING AND NAVIGATION. The MVPN
barcode detection process is comprised of five phases. The overall flow chart is illustrated
in Figure 1.

4.1. Pre-processing. In this phase, we change the original captured MVPN image
into greyscale and blur the frame to facilitate the calculation of gradient. In this phase,
blur operation is necessary and useful, because it can greatly reduce the small noise in the
original frame. Moreover, the pre-processing operations can also simplify the calculation
of gradient.

4.2. Line Segments Detection. A graph-based line segmentation method (Felzen-
szwalb and Huttenlocher, 2004) is adopted to precisely estimate all lines in the captured
MVPN image in this phase. This method starts by calculating gradient direction and
magnitude at each pixel. Then adjacent pixels with a similar gradient are clustered into
connected components based on graph theory. If two components x, y satisfy the following
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Figure 1. Flow chart of detection process for MVPN barcode.
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two conditions, they are clustered together to generate a larger connected component.

Dg(x ∪ y) ≤ min
(
Dg(x), Dg(y)

)
+ TD/|x ∪ y| (1)

Mg(x ∪ y) ≤ min
(
Mg(x), Mg(y)

)
+ TM /|x ∪ y| (2)

Symbols Dg() and Mg() represent the difference between maximum and minimum values
of gradient direction and magnitude respectively. TD/|x ∪ y| and TM /|x ∪ y| denote the
intra-component variation threshold which shrinks as the connected component becomes
larger.

4.3. Quadrangle Detection. The purpose of this phase is to find the quadrangle
formed by a sequence of four line segments. The detection method is based on a recur-
sive tree search with a depth of four. In the first depth, we choose one line segment as the
tree root. From the second to the fourth depth, the line segment which is within the “gap
threshold” to its previous line segment terminal point will be added as the child node. If
four edges of this tree wind in same order (clockwise or counter-clockwise), the detection
method regards it as a candidate quadrangle.

To improve the robustness of the quadrangle detection algorithm against uneven illumi-
nation, geometric transformation and even partial omissions, we set the “gap threshold” as
a relatively large value. As a result, this setting leads to a very low false negative rate and
a high false positive rate at the same time. The coding system in the following process is
designed to reduce the false positive rate for the whole MVPN system.

4.4. Position and Orientation Estimation. This phase is to estimate the position
transformation and orientation rotation from MVPN barcode in the 3D WCS to the 2D cap-
tured image coordinate system. The process needs three coordinate system transformations
between the four coordinate systems.

The first transformation is from the 2D Pixel Coordinate System to the 2D Captured
Image Coordinate System. Coordinate (u, v) represents the relative pixel position of target
point (PTarget) in the 2D Pixel Coordinate System (u and v in pixels). Coordinate (x, y)
represents the real physical position of PTarget in the 2D Captured Image Coordinate System
(x and y in millimetres). Coordinate (u0, v0) represents the intersection of the optical axis
and the 2D Captured Image Coordinate System. The real physical sizes of each pixel are
depicted as dx, dy (millimetres/pixel). Then the transformation relation is expressed as
follows.

⎡
⎣u

v

1

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

1
dx

0 u0

0
1

dy
v0

0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎣x

y
1

⎤
⎦ (3)

The second transformation is from the 2D Captured Image Coordinate System to the
3D Camera Coordinate System. Coordinate (Xc, Yc, Zc) represents the position of PTarget in
the 3D Camera Coordinate System. f represents the camera focal length. According to the
pinhole camera model, the transformation relation is expressed as follows.

ZC

⎡
⎣x

y
1

⎤
⎦ =

⎡
⎣f 0 0 0

0 f 0 0
0 0 1 0

⎤
⎦

⎡
⎢⎢⎣

Xc
Yc
Zc
1

⎤
⎥⎥⎦ (4)
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From Equation (4) we can discover that Zc represents the scale factor from the 2D
Captured Image Coordinate System to the 3D Camera Coordinate System.

The third transformation is from the 3D Camera Coordinate System to the 3D WCS.
Coordinate (XT, YT, ZT) represents the absolute position of PTarget in the 3D WCS. It is the
Cartesian coordinates of PTarget in WGS84 (World Geodetic System 1984). WGS84 is an
Earth-centred, Earth-fixed terrestrial reference system and geodetic datum, and it is the
reference system for GPS. R represents the 3 × 3 orientation rotation matrix. T represents
the 3 × 1 position transformation vector. According to the 3D object imaging theory, the
transformation relation is expressed as follows.

Xc = R11XT + R12YT + R13ZT + Tx

Yc = R21XT + R22YT + R23ZT + Ty

Zc = R31XT + R32YT + R33ZT + Tz

The elements Rn1(n = 1, 2, 3) represent the rotation weights in the X axis. The elements
Rn2(n = 1, 2, 3) represent the rotation weights in the Y axis. The elements Rn3(n = 1, 2, 3)
represent the rotation weights in the Z axis. The elements Tx, Ty and Tz separately represent
the position transformation weights in the X, Y and Z axes. The transformation relation can
be summarised into matrix format:⎡

⎢⎢⎣
Xc
Yc
Zc
1

⎤
⎥⎥⎦ =

[
R T
0T 1

] ⎡
⎢⎢⎣

XT
YT
ZT
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

R11 R12 R13 Tx
R21 R22 R23 Ty
R31 R32 R33 Tz
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

XT
YT
ZT
1

⎤
⎥⎥⎦ (5)

Summarising the results of three times of the coordinate system transformation,
Equation (6) can be derived from Equations (3), (4) and (5) as follows.

ZC

⎡
⎣u

v

1

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

1
dx

0 u0

0
1

dy
v0

0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎣f 0 0 0

0 f 0 0
0 0 1 0

⎤
⎦[

R T
0T 1

]
⎡
⎢⎢⎣

XT
YT
ZT
1

⎤
⎥⎥⎦

=

⎡
⎣fx 0 u0 0

0 fy v0 0
0 0 1 0

⎤
⎦

⎡
⎢⎢⎣

R11 R12 R13 Tx
R21 R22 R23 Ty
R31 R32 R33 Tz
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

XT
YT
ZT
1

⎤
⎥⎥⎦ (6)

The homographic matrix can represent the projection relation from the MVPN barcode
in the 3D WCS to the 2D Pixel Coordinate System. The 3 × 3 homographic matrix can be
calculated with a Direct Linear Transform algorithm (Hartley and Zisserman, 2003). It can
be expressed as follows.

⎡
⎣u

v

1

⎤
⎦ = sH

⎡
⎢⎢⎣

XT
YT
ZT
1

⎤
⎥⎥⎦ (7)
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Because the homographic matrix is the product of the 3 × 4 camera projection matrix
and the 4 × 4 camera extrinsic matrix, from Equations (6) and (7), we can obtain Equation
(8) as follows:

⎡
⎣h11 h12 h13

h21 h22 h23
h31 h32 h33

⎤
⎦ =

1
sZC

⎡
⎣fx 0 u0 0

0 fy v0 0
0 0 1 0

⎤
⎦

⎡
⎢⎢⎣

R11 R12 R13 Tx
R21 R22 R23 Ty
R31 R32 R33 Tz
0 0 0 1

⎤
⎥⎥⎦ (8)

The parameters in the 3 × 4 camera projection matrix are determined by the cam-
era’s characteristics, which can be assumed as known in this paper. Nine elements of the
3 × 3 homography matrix can provide nine constraint conditions. Moreover, because the
columns of the rotation matrix must be of unit magnitude and the columns of the rota-
tion matrix must be orthonormal, there are four more constraint conditions. Then we can
calculate the 13 unknown parameters including the scale factor: 1/sZC, nine elements of
the 3 × 3 orientation rotation matrix R and three elements of the 3 × 1 position trans-
formation vector T. So eventually the position transformation and orientation rotation
from the MVPN barcode in the 3D WCS to the 2D captured image coordinate system
is well-determined.

4.5. Multi-Resolution Calculation. In real applications, visual angles and resolution
of UAS cameras are limited. To provide a consistent MVPN signal for navigating the UAS,
we propose a multi-resolution coding algorithm to combine multiple nested MVPN bar-
codes. The more limited the visual angle and the lower the resolution, the more layers
and nested barcodes are needed. Each small nested barcode is encoded with a unique ID
number. This ensures the UAS can detect at least one barcode at varying heights during
the whole landing process, and can parse absolute positioning information by decoding
the ID number. One example of generated MVPN barcode with four layers and nine small
barcodes nested in each layer is depicted in Figure 2.

When the UAS is at greater height, the nine smaller nested barcodes in the lower layer
appear to be the black squares in the higher layer barcode, so the UAS’s camera will obtain
its positioning and navigation information from the higher layer barcode. When the UAS
descends to a lower height, the camera can only capture a part of the higher layer barcode
due to the limited visual angle. However, the lower layer nested barcodes can be captured
with higher resolution. Then the UAS switches to obtain positioning and navigation infor-
mation from the lower layer barcode. Since MVPN barcodes can be nested in a hierarchical
structure, this can provide a robust and general multi-resolution coding solution to gener-
ate a MVPN barcode for the UAS to track during the whole landing process. Moreover,
the coding system adds to the complexity of the barcode, as the square pattern consists of
many rectangles and high complexity rarely occurs in a natural scene, so it helps to fil-
ter potential barcode candidates and lower the false positive ratio for the whole MVPN
technique.

5. ASSISTED LANDING CONTROL STRATEGY. To set up the assisted landing con-
trol strategy, the UAS’s flight state in the environment should first be defined. At each time
moment t, UAS has a set of flight states st ∈ S, which includes its absolute positions in X,
Y and Z axes, its absolute yaw, roll and pitch orientations, six speed components in X, Y
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Figure 2. Four-layer nested MVPN barcode (Partial enlarged).

and Z axes and yaw, roll and pitch orientations, i.e.

S =
{
x, y, z, yaw, roll, pitch, vx, vy , vz, vyaw, vroll, vpitch

}

The final goal of landing assistance is navigating the UAS to land exactly on the
target point PTarget = (XT, YT, ZT) in 3D WCS, with no offset in yaw, roll and pitch ori-
entations, and each speed component is at zero. So the final optimal landing state is:
ST = {XT, YT, ZT, 0, 0, 0, 0, 0, 0, 0, 0, 0}. The assisted landing control strategy is meant to:

• Minimise the total offsets in X, Y and Z axes.
• Minimise the total offsets in yaw, roll and pitch orientations.
• Reduce each speed component to zero.
• Minimise the total assisted landing time.
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Figure 3. UAS platform for experiments: Parrot AR. Drone 2.0 (left), DJI Mavic Pro (right).

Then the landing control strategy can be expressed as the following set of optimisation
issues.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
t

{
ωXY

[
(x − XT)

2 + (y − YT)
2] + ωZ (z − ZT)

2 + ωyrp
(
yaw2 + row2 + pitch2)}

min
t

{
ωv_XYZ

(
v2

x + v2
y + v2

z

)
+ ωv_yrp

(
v2

yaw + v2
row + v2

pitch

)}

min
Landing∑

origination
t

Where ωXY is the weight for position offsets in the X and Y axes, wZ is the weight for
position offset in the Z axis, ωyrp is the weight for orientation offsets in yaw, roll and pitch,
ωv_XYZ is the weight for speed offset of speed components in X, Y and Z axes and wv_yrp
is the weight for speed offset of speed components in yaw, roll and pitch orientations.
Different control strategies can be easily configured with the different combinations of these
weight values. In the flight process, the values of yaw, roll and pitch orientations are derived
from the Inertial Measurement Unit (IMU) installed on the UAS, while in the assisted
landing process, the value of relative yaw, roll and pitch orientations are obtained from the
MVPN barcode detection process.

6. EXPERIMENTAL SETUP AND RESULTS. In this paper, two types of UAS: the
Parrot AR. Drone 2.0 and DJI Mavic Pro are used as the testing platforms to verify the
feasibility and performance of the proposed MVPN technique, which are shown in Figure 3.

AR. Drone 2.0 is a quad-rotor UAS with a size of 55 cm from rotor-tip to rotor-tip
and 380 to 420 grams in weight. It is equipped with a Micro-electromechanical System
(MEMS)-based nine DOF miniaturised IMU, including an upgraded three-axis gyroscope,
along with a three-axis accelerometer and magnetometer. The AR. Drone 2.0 uses a High
Definition (HD) (720p, 30 frame per second (fps)) front-facing camera. This camera
can be configured to stream either 360p (640 × 360) or 720p (1280 × 720) images. The
bottom-facing camera is a QVGA (320 × 240, 60fps) camera. This camera pictures will be
upscaled to 360p or 720p for video streaming.

DJI Mavic Pro is also a quad-rotor UAS with a diagonal size of 33.5 cm and is 734
to 743 grams in weight. It is equipped with an IMU, as well as GPS and GLONASS
modules. DJI Mavic Pro uses a high-resolution front-facing camera. This camera can be
configured to capture 4000 × 3000 resolution images, and to stream C4K (4096 × 2160,
24fps), HD (3840 × 2160, 30fps), 2.7K (2720 × 1530, 30fps), FHD (1920 × 1080, 96fps),
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Figure 4. MVPN barcode detection failure examples.

HD (1280 × 720, 120fps) videos. The gimbal can turn the front facing camera to allow
working as a down-facing camera.

6.1. MVPN Barcode Detection Performance. To evaluate the MVPN barcode detec-
tion process, we captured 211 images with various UAS cameras, distances and angles.
Then we achieved data augmentation by rotating each of the original images every one
degree to generate a testing set of 77015 images. The detection accuracy of the MVPN
barcode is 98.578%, while all the failure cases are due to images being excessively fuzzy.
Some examples of detection failure images are shown in Figure 4.

The C++ implementation of the MVPN barcode detection system runs at 7.3 fps on
4000 × 3000 resolution images, 10 fps on 2592 × 1944 resolution images, and 30 fps on
320 × 240 resolution images with an Intel Core i7 CPU. From time consumption analysis,
the major time cost comes from segmentation and clustering operations. In future research,
we will accelerate the MVPN barcode detection algorithm with GPU as well as on-chip
solutions.

6.2. Positioning and Navigation Performance in Simulation. To verify the posi-
tioning and navigation performance of the MVPN system, we built an experimental
environment in Gazebo with Robot Operating System (ROS) libraries. We used the simula-
tion environment because it can imitate various situations (different wind, height, velocity,
payload weight, indoor, outdoor, etc.) for us to verify the performance of the MVPN
technique in a safe manner. The experimental UAS type is AR. Drone 2.0.

The simulation landing experiments in indoor and outdoor environments are shown in
Figures 5 and 6. From the main window, we can see the AR. Drone 2.0 hovering in the
indoor or outdoor environment. The left upper window shows the image captured by the
front-facing camera of the UAS. The left middle window shows the MVPN barcode image
which is captured by the bottom-facing camera of the UAS. The left bottom window and
the right upper window give the positioning and navigation feedback of positions in X,
Y and Z axes and absolute yaw, roll and pitch orientations after processing the MVPN
barcode image. The positioning and navigation error is only 0.7 cm in X, Y and Z axes, and
6.3◦ in yaw, roll and pitch orientations.

6.3. Positioning and Navigation Performance on Real UAS. To further check the
positioning and navigation performance of the MVPN system, we made similar experi-
ments on a real UAS. The experimental UAS type is DJI Mavic Pro. DJI mobile Software
Development Kit (SDK) was utilised to send the control commands and obtain sensor feed-
back from the DJI Mavic Pro. Another UAS testing platform was adopted for the following
reasons:
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Figure 5. Simulation UAS landing experiment with MVPN technique in indoor environment (AR. Drone 2.0).

Figure 6. Simulation UAS landing experiment with MVPN technique in outdoor environment
(AR. Drone 2.0).

• DJI Mavic Pro can turn its front facing camera to bottom facing, so it can provide
higher resolution images when capturing the MVPN barcode.

• DJI Mavic Pro has a gimbal for camera stabilisation, which will improve the quality
of captured MVPN images.

• AR. Drone 2.0 is very light in weight, so it can be affected by the surrounding airflow.
DJI Mavic Pro is heavier in weight, so it is more suitable to be used as the landing
performance testing platform, especially in the outdoor environment.

• By using two different UAS models, we can prove the generalisation capability of
proposed the MVPN technique and assisted landing strategy.
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Figure 7. Real UAS landing experiment with MVPN technique in indoor environment (DJI Mavic Pro).

The real landing experiment in an indoor environment is shown in Figure 7. We chose
a lobby as the testing environment. The temperature of the indoor environment was 20◦

Celsius. There was nearly no wind and the landing altitude was 4.5 metres. The results of
the real UAS landing experiment with the MVPN technique in an indoor environment are
pretty close to ideal. The positioning and navigation error is only 0.3 cm in X, Y and Z axes,
and 3.5◦ in yaw, roll and pitch orientations. In the simulation experiments, the resolution
of the bottom-facing camera for AR. Drone 2.0 is only 320 × 240, while in the real indoor
experiment, the resolution of the bottom-facing camera for DJI Mavic Pro is 1234 × 651.
Thus, it is reasonable that the positioning and navigation performance is better in the real
indoor experiment.

6.4. Comparison Experiments. Table 1 provides a comparison of the state-of-the-art
research on vision-based positioning and assisted landing solutions. The positioning error
is the square root of the sum of squares of positioning errors in X, Y, and Z axes.

Epositioning =
√

E2
X + E2

Y + E2
Z
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Table 1. State-of-the-art vision-based UAS assisted navigation and landing systems.

Heading Image Positioning
References Marker Shape Estimation Asymmetry Dimension Error

Yang et al., 2014 ‘H’ surrounded by a circle Yes No 640 × 480 1.5 cm
Cocchioni et al.,

2014
Concentric circles +

triangle for heading
Yes Yes 640 × 480 2.0 cm

Guan and Bai, 2012 Natural landmarks No N/M(1) 320 × 240 N/M
Jung et al., 2014 ‘H’ surrounded by 3

circles
No No N/M N/M

Lee et al., 2014 ‘H’ No No 176 × 144 26 – 38 cm
Roozing and

Göktoğan, 2013
IR pattern Yes Yes N/M 10.0 cm

Lange et al., 2009 Concentric circles No No 320 × 240 N/M
Li et al., 2015 Different shapes within

the marker
Yes Yes N/M 10.0 cm

Benini et al., 2016 Concentric circles Yes Yes 640 × 480 2.0 cm
Our technique MVPN barcode Yes Yes Multi-resolution 0.3 cm/0.4 cm/

0.7 cm(2)

(1)N/M is the abbreviation of Not Mentioned. It means the corresponding data is not provided by the reference papers.
(2)0.3 cm positioning error is achieved on 4000 × 3000 resolution image, 0.4 cm positioning error is achieved on 2592 × 1944
resolution image, while 0.7 cm positioning error is achieved on 320 × 240 resolution image.

From the comparison results, we can see our MVPN technique outperforms the state-
of-the-art solutions on positioning accuracy and resolution flexibility.

7. CONCLUSION AND FUTURE DIRECTION. In this paper, we propose a multi-
resolution visual positioning and assisted navigation technique and prove its performance
in simulation and real experiments. Comparing with existing solutions like GPS-based
assisted positioning techniques and traditional vision-based assisted positioning tech-
niques, our solution has the following advantages.

7.1. VS. GPS-based assisted positioning technique. Centimetre-level positioning
accuracy provided by the MVPN technique versus metre-level positioning accuracy of
the GPS technique with single frequency GNSS receivers. GPS positioning accuracy for
civil usage is only 2–5 metres with only single frequency GNSS receivers in commercial
UASs. Our solution can achieve less than one centimetre positioning accuracy both in the
indoor and outdoor environments. We have an enhanced design of a more condensed bar-
code grid on the ground (each barcode’s size is 10 cm × 10 cm). Then we use the smaller
barcodes to build up a giant barcode for far-sight recognition. Finally, we can provide
centimetre-level accuracy positioning technique for commercial UASs from high-end to
low-end types.

Because of its high cost, weight and volume, a real time differential GPS system with
centimetre-level positioning accuracy cannot be widely used in all types of commercial
UASs. By contrast, visual sensors are relatively low-cost, lightweight and small in volume.
When close to the ground, visual sensors can typically provide more accurate position-
ing information than GPS, so our solution is a better choice to complete the positioning
task in an assisted navigation and landing system, especially for middle-end and low-end
commercial UASs.

A GNSS signal cannot be used in an indoor environment, while our solution is effective
both in indoor and outdoor environments.
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7.2. VS. Traditional vision-based assisted positioning technique. Traditional tech-
niques use some common shapes like: ‘H’, ‘H’ surrounded by circles, and concentric circles
to mark the landing place. However, these markers cannot provide relative positioning and
numerical information to the UAS in the landing process. Without this positioning informa-
tion feedback, the assisted landing effect is quite limited. In contrast, our visual positioning
algorithm and multi-resolution visual barcode solution can provide six DOF of relative
positioning information with regard to the landing place in X, Y and Z axes and yaw,
roll and pitch orientations to the UAS. With this numerical positioning information feed-
back, our solution can achieve a more accurate landing effect both in indoor and outdoor
environments.

In traditional techniques, another obvious limitation is that all the markers are of single
resolution. If only a part of the marker pattern is captured by the UAS’s visual sensor, the
navigation and assisted landing capability would be lost. In our solution, we use a multi-
resolution coding method to combine multiple nested barcodes. This ensures that the UAS
can detect at least one barcode at varying heights during the whole landing process. Our
solution can provide consistent navigation and assisted landing effect even if only a part of
the whole MVPN barcode is captured by the UAS’s visual sensor.

Our solution can embed much more landing navigation information than the traditional
techniques. In our solution, we can fill the white areas with one set of barcodes (yellow +
orange). The black areas can be filled with another set of barcodes (black + blue) as well.
Then if the processing software uses a blue colour as the filter, the UAS’s camera can still
see the big black/white barcode. When the UAS comes closer, its camera can recognise the
smaller barcodes with different colours.

Our solution is more extendable than the traditional techniques. In our solution, we can
extend such MVPN barcodes to the vertical level. These can then provide precise height
positioning and navigation for the best soft UAS landing.

7.3. Future Direction. In the future, we will go on with our research in the following
directions.

In the current work, to achieve better computation performance, we use WiFi on the
AR. Drone 2.0 to send the captured MVPN barcode to a Personal Computer for processing,
then send the calculated navigation information back to the AR. Drone 2.0. This may lead
to some latency in the real flight. We will try to optimise the MVPN detection algorithm in
the embedded board to make the technique a full online solution.

The proposed MVPN barcode for UAS landing assistance can only be applied to the
tasks performed on areas which are pre-prepared for landing the UAS. The application
scope is restricted. There are also many scenarios in which a UAS needs to land in areas
previously unreached or not equipped with the MVPN. One possible solution is to install
the proposed MVPN barcode on the flat top of a ground vehicle. If the UAS needs to
land in an unrecognised area, the ground vehicle can drive to that area as a moving air-
port. The UAS can safely land on the top of the ground vehicle through visual navigation
provided by the MVPN barcode. The prototype we have made for this idea is shown in
Figure 8.

In the 2016 DJI SDK Challenge, a similar challenge is mentioned, and requires partici-
pants to design an unmanned rescue aircraft which can take off from and land on a moving
Ford pickup truck. We will further study the more general navigation techniques for UAS
in the future.
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Figure 8. Prototype of landing UAS on the top of a ground vehicle.
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