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Abstract

Seed is a fertilized mature ovule, which possesses an embryonic plant. When the dry, mature
seeds are subjected to imbibition, they release a wide range of organic substances, which
include low molecular weight carbonyl compounds (gases and volatiles) and water-soluble
organic substances (enzymes and polysaccharides). The volatile organic compounds
(VOCs) are molecules of low molecular weight (300 gmol_l) and high vapour pressure
(0.01 kPa at 20°C) and include diverse chemical compounds. The nature and emission
kinetics of volatiles produced from seeds vary, depending on the moisture content of the
seeds. Orthodox seeds stored at ‘low seed moisture content’ undergo seed deterioration, pre-
dominantly due to lipid peroxidation, initiated by autoxidation or enzymatic oxidation of
unsaturated or polyunsaturated fatty acids. This peroxidation leads to emission of volatile
compounds. The quantity of VOCs emitted is positively correlated with the advancement
of seed deterioration. With respect to the seed germination process, exposure of seeds to
‘high moisture conditions’ leads to increased respiration, triggers glycolysis and mobilization
of storage reserves, resulting in the emission of volatile metabolic products. The quantity of
VOCs emitted on commencement of metabolic activity in germinating seeds depends on
(1) vigour status and (2) amount of storage reserves. Since it has been established that
there is a significant difference between high and low vigour seeds with respect to quantity
and profile of VOCs emitted, there is great potential for utilizing the VOC profile to obtain
a quick and reproducible test of vigour status of crop seeds. In order to harness the VOC pro-
file for quick assessment of vigour status of seeds, research has to be taken up to develop
standard protocols for fingerprinting of VOCs for the purpose of seed vigour assessment
and to fix the standard volatile biomarker(s) specific to crop and vigour status of seeds.

Introduction

Seeds are formed subsequent to pollination, fertilization and accumulation of storage reserves,
accompanied by morphological, physiological and functional changes such as maturation dry-
ing, finally culminating in the formation of a dehydrated, quiescent and mature seed. When
these dehydrated seeds are subjected to imbibition, the germinating seed releases a wide
range of organic substances into the environment, which includes (1) low molecular weight
carbonyl compounds, such as volatiles (lower alcohols, aldehydes, fatty acids and ketones)
and gases (carbon dioxide, ethylene and propylene), that escape into the air space and (2)
water-soluble organic substances such as amino acids, sugars and organic acids (Miiller
et al,, 1962; Vancura and Stotzky, 1971) besides proteins (enzymes) and polysaccharides
which are advanced glycation end-products (Chan, 1987; Grosch, 1987; Halliwell and
Gutteridge, 1999; Knutson et al., 2000).

Volatile organic compounds (VOCs) are molecules with low molecular weight (300 g mol™")
and high vapour pressure (0.01 kPa at 20°C) that include diverse chemical compounds such as
aldehydes, alcohols and ketones (Fincheira et al., 2017). One of the earliest reports on volatile
compound emission from seeds was made by Hatch and Turner (1958) who found that extracts
from pea seeds evolved CO, and ethanol from starch, glucose or fructose by the glycolytic path-
way. Bailey et al. (2006) reported that gas samples of flasks with freshly ground cocoa beans con-
tained various volatile compounds in the aroma, such as isovaleraldehyde, isobutyraldehyde,
propionaldehyde, methanol, acetaldehyde, methyl acetate, N-butyraldehyde and diacetyl.
Bengtson and Bosund (1964) found the existence of acetaldehyde, ethanol and hexanal in vola-
tiles from frozen unblanched pea seeds, obtained by heating the seeds at 100°C in a water bath
for 1 min. Ku et al. (2000) reported that ethylene evolved from seeds from methionine metab-
olism. Pattee et al. (1969) identified pentane, acetaldehyde, methyl formate, octane, 2-butanone,
acetone, methanol, ethanol, pentanal and hexanal from a slurry of raw peanut seeds. Many other
reports also suggested that oxidation of macromolecules can give rise to small molecular weight
carbonyl compounds that escape to the airspace as volatile molecules (Frankel, 1983; Grosch,
1987; Halliwell and Gutteridge, 1999; Knutson et al., 2000).
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Moore and Stotzky (1974) reported that germinating seeds of
bean and cucumber evolved unidentified volatile compounds that
reduced spore formation of some fungi. Vancura and Stotzky
(1976) found that most of the oxidizable volatile substances pro-
duced by several plant species during the first hours and days of
germination were found to be lower alcohols, aldehydes and fatty
acids. However, Schenck and Stotzhy (1975) reported that vola-
tiles from various germinating seeds served as a sole carbon
source for the in vitro growth of numerous bacteria and fungi iso-
lated from soil. Volatile aldehyde compounds emitted by the seeds
often stimulate the germination of spores of soil-borne fungi and
this may indicate the susceptibility of low vigour seeds to attack by
soil-borne fungi (Harman et al., 1982). Honing and Rackis (1975)
reported high emission of volatiles such as acetaldehyde, ethanol,
propanol, acetone, pentane, pentanal and hexanal in aqueous
slurries of yellow immature seeds of the soybean. They suggested
that the contents of volatiles compounds in seeds decreased as the
seeds developed and completely ripened.

Gas chromatographic and chemical analyses of the volatiles
from various seeds and seedlings showed that all of the seeds lib-
erated ethanol and most of them also released methanol, formal-
dehyde, acetaldehyde, propionaldehyde, acetone, formic acid,
ethylene and propylene, which are expected to be the products
of seed metabolism (Stotzky and Schenck, 1976). Zhang et al.
(1993) investigated seeds of about 47 species and observed that
methanol, ethanol, acetaldehyde and acetone were the major com-
pounds produced by many dry seeds. Other than acetaldehyde,
ethanol and methanol longer chain aldehydes, such as butanol,
pentanol or hexanol, were also frequently observed in the air
space of dry seeds (Zhang et al, 1993, 1995a; Trawatha et al,
1995; Lee et al., 2000a). Among the wide array of volatile alde-
hydes reported to be emitted from the seeds, the most common
volatile compounds are acetaldehyde, ethanol, hexanal, pentane,
methanol, ethylene, pentanal and acetone.

Thus, it is amply clear that metabolic chemical activities con-
sidered to occur in seeds liberate a slew of VOCs, concomitant
with subtle changes in the seed physiology and loss of seed viability.
It is hypothesized that the strong correlation that exists between
the emission of VOCs and seed deterioration (Mira et al., 2010)
may provide an opportunity to develop a novel and quick method
of seed vigour estimation, using gas chromatography (GC) or gas
chromatography/mass spectrometry (GC-MS). Many earlier
reports have proposed that the presence of ethanol and methanol
in the headspace above stored seeds can be used as biomarkers of
seed quality (Taylor et al., 1999; Zhang et al., 1993, 1994, 1995b;
Rutzke et al., 2008). Grotto et al. (2009), Mira et al. (2010), Aldini
et al. (2010) and Colville et al. (2012) suggested that the assessment
of hexanol and hydroxy alkenes (4-hydroxynonenal) produced due
to lipid peroxidation reactions are common biomarkers of lipid
peroxidation.

The goal of this review paper is to gain better insight into the
metabolism of emission of VOCs from the seeds under dry and
humid conditions and to appraise the possibilities of utilizing
the fingerprint of the VOC profile as biomarkers for quick assess-
ment of vigour status of the seeds.

Chemical reactions initiating emission of VOCs

Emission of volatile compounds is a dynamic process that
involves chemical reactions, mobility of molecules within drying
cells and sorption/desorption processes (Mira et al., 2016).
Varied chemical reactions such as glycolysis, glycoxidation, auto-
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oxidation or non-enzymatic oxidation, Strecker degradation of
Maillard reactions and others have been identified as source reac-
tions that lead to the production of volatile compounds of varied
categories. Breakdown of pectin methyl ester by pectin esterases in
mature seeds might lead to methanol formation (Obendorf et al.,
1990). Enzymatic oxidation of ethanol (Lehninger et al., 1993;
Halliwell and Gutteridge, 1999; Lee et al., 2000a), non-enzymatic
glycoxidation reactions (Halliwell and Gutteridge, 1999) or auto-
oxidation of unsaturated fatty acids (Grosch, 1987) leads to the
production of acetaldehyde. Pentane and ethane are commonly
derived from the oxidation of polyunsaturated fatty acids such
as linoleic and linoleic acid and reported as products of ageing
in plant tissue culture (Rodriguez et al., 1989). Strecker degrad-
ation of alanine, valine, isoleucine and leucine, at high tempera-
tures, leads to the formation of acetaldehyde, methylpropanal,
2-methylbutanal and 3-methylbutanal, respectively (Rooney
et al., 1967). Glycolysis leads to the production of ethanol and
methanol (Lehninger et al., 1993; Lee et al, 2000a). Volatile
alkenes and aldehydes are formed as major by-products of lipid
peroxidation (Rodriguez et al., 1989; Grotto et al., 2009; Aldini
et al.,, 2010). Lipid peroxidation mediated by lipoxygenase is a
major source of volatile aldehydes emission (Frankel et al.,
1981). Non-enzymatic oxidation of macromolecules produces a
plethora of by-products of linoleic acid, which includes three to
six carbon alkanes (e.g. propane, butane and pentane), aldehydes
(e.g. propanal, butanal, pentanal and hexanal), ketones (e.g.
2-heptanone), alcohols (e.g. propanol, butanol and pentanol),
acids (e.g. pentanoic acid) and esters (e.g. methyl formate)
(Frankel, 1983; Grosch, 1987; Knutson et al., 2000). Lipid perox-
idation also yields unsaturated aldehydes, such as hexanal and
hydroxyalkenals (4-hydroxynonenal), which is a common bio-
marker of lipid peroxidation and oxidative stress (Zhang et al.,
1995a; Grotto et al.,, 2009; Aldini et al., 2010; Mira et al., 2010;
Colville et al., 2012).

Colville et al. (2012) summarized the several processes that
may lead to the emission of volatile compounds from seeds.
They stated that lipid peroxidation may occur in seeds due to the
auto-oxidative process initiated by free radical or lipoxygenase.
Lipid peroxidation may give rise to products such as aldehydes
that may get converted into alcohols by alcohol dehydrogenase.
The aldehydes produced by lipid peroxidation can participate in
Maillard reactions (M) with reducing sugars, to give rise to dicar-
bonyl compounds, e.g. 2,3-butanedione, which may, in turn, take
part in Strecker degradation (S) of free amino acids. Under con-
ditions of stress, the likelihood of alcoholic fermentation
increases, in which pyruvate formed by glycolysis (G) is, in
turn, converted to acetaldehyde by pyruvate decarboxylase
which may later be converted into ethanol by alcohol dehydro-
genase or be oxidized to acetic acid by aldehyde dehydrogenase.
Decarboxylation of pyruvate esterases may form methyl acetate
through esterification with acetic acid. Methyl ketones may also
be produced due to lipid peroxidation (Fig. 1).

The commonly observed volatiles and the corresponding reac-
tions are summarized in Table 1.

Role of seed moisture content in regulating biochemical
events

The moisture content of the seed is a major regulator of biochem-
ical events, and it ultimately decides over the nature and emission
kinetics of volatiles produced from seeds (Obroucheva and
Antipova, 1997). Seeds may be exposed to two extreme moisture
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Fig. 1. Major processes associated with the emission of Propanal

VOCs (Colville et al., 2012, with permission). Star sym- Butanal
bol = reactive oxygen species. 1 - lypoxygenase; 2 - Pentanal
alcohol dehydrogenase; 3 - pyruvate decarboxylase; Hexanal

4 - aldehyde dehydrogenase; 5 - pectine esterase.
G - glycolysis; M - Maillard reactions; S - Strecker
degradation.

contents depending on whether the quiescent seed is maintained
for safe storage (low moisture regime) or subjected to seed ger-
mination (high moisture regime). Walters (1998) and Walters
et al. (2005) envisaged that humid conditions favoured glycolysis,
while dry storage condition induced peroxidation reactions. Thus,
a shift in biochemical reaction mechanisms occurs in seeds,
depending on whether the seeds are exposed to above or below
30% RH.

Mira et al. (2016) reported that the VOC profile of seeds stored
under dry conditions was markedly different from humid condi-
tions. The headspace composition of vials containing Eruca vesi-
caria seeds was found to comprise of over 83% by acetaldehyde
and acetone under humid conditions (water content
<0.100 g g~'). When the same seeds were stored under dry con-
ditions (water content <0.048 g g~'), the acetaldehyde had been
replaced by butane and pentane. Pentane, hexanal and short-
chain ether or peroxide like compounds were consistently
detected in dry Lactuca sativa (water content <0.042 g g~') sam-
ples. Correspondingly, methanol and ethanol were found to be
prevalent in headspace under humid conditions (water content
<0.099 gg™") (Fig. 2). In both species, molecules associated
with glycolysis (ethanol and methanol) were preferentially pro-
duced under humid conditions, and molecules associated with
non-enzymatic peroxidation (5-7 carbon alkanes, alcohols and
aldehydes) were preferentially produced under dry conditions.
The VOCs emitted from the seeds stored in humid conditions
reflected fermentation type of reactions with methanol and etha-
nol being predominant in L. sativa, and acetaldehyde and acetone
being predominant in E. vesicaria. Under dry conditions, L. sativa
and E. vesicaria seeds emitted higher level of pentane and hexanal
indicating peroxidation of polyunsaturated fatty acids. It is con-
ceivable that in aqueous domains witnessed in imbibing seeds,
fermentation - type reactions (glycolytic reactions) take place,
whereas in dry seeds, there is increasing propensity for
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triacylglycerol degradation (peroxidative reactions). Thus, it is
established that storage of dry seeds will expedite the ‘peroxidative
reactions’ as a manifestation of seed deterioration, while the
exposure of seeds to high moisture content will facilitate ‘glyco-
Iytic reactions’ that correspond to seed germination metabolism.

Lipid peroxidation mechanism and emission of VOCs in dry
stored seeds

Orthodox seeds which develop on the mother plant reach max-
imum seed germination and vigour at physiological maturity;
from that point of time seeds undergo physiological and biochem-
ical degenerative changes that lead to progressive seed deterior-
ation, loss of seed vigour and, ultimately, to seed death (Helmer
et al, 1962). Seed deterioration follows a sigmoidal pattern
wherein viability remains relatively constant for a period, followed
by an abrupt decline in viability, and finally, by a lag period dur-
ing which a few seeds remain viable (Walters, 1998; Walters et al.,
2005). The most visible symptoms of seed deterioration are
delayed germination, decreased tolerance to sub-optimal environ-
mental conditions, lowered tolerance to adverse storage condi-
tions, reduced germinability and increased number of abnormal
seedlings. The rate of seed deterioration is influenced by factors
such as initial seed quality, genetic background and seed produc-
tion conditions; however, seed moisture content and temperature
of storage atmosphere are the most significant factors which influ-
ence seed deterioration (Ellis and Roberts, 1980; Walters et al.,
2004).

Lipid peroxidation is suggested to play a major role in causing
seed deterioration and might occur both in the absence or pres-
ence of enzyme catalysis (Walters, 1998; McDonald, 1999;
Bailly, 2004; Job et al., 2005; Kranner et al., 2006). Lipid peroxida-
tion initiated by autoxidation (atmospheric oxygen) or enzymatic
oxidation (lipoxygenase) of unsaturated or polyunsaturated fatty
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Table 1. Plethora of volatile compounds emanated by the seeds and the
corresponding source reactions

Carbonyl Volatile
group compound Source reaction Reference
Acids Acetic acid Glycolysis/ Mira et al.
peroxidation (2010),
Lehninger
et al. (1993)
and Lee et al.
(2000a)
Alcohols Methanol Glycolysis Mira et al.
(2010)
Break down of Obendorf et al.
pectin methyl (1990)
ester
Ethanol Glycolysis Mira et al.
. (2010)
Isobutanol Peroxidation
Propanol Peroxidation
Butanol Peroxidation
Isopentanol Peroxidation
Pentanol Peroxidation
Hexanol Peroxidation
Heptanol Peroxidation
Aldehydes Acetaldehyde Glyoxidation Halliwell and
Gutteridge
(1999)
Auto-oxidation Grosch (1987)
Peroxidation Mira et al.
(2010)
Stecker Daneehy
degradation (1986)
Glycolysis Rooney et al.
(1967)
Enzymatic Mira et al.
oxidation of (2010)
ethanol
Propanol Peroxidation
Butanal Peroxidation
Pentanal Peroxidation
Hexanal Peroxidation Mira et al.
. (2010)
Alkanes Hexane Peroxidation
Butane Peroxidation
Pentane Peroxidation
Ketone Acetone Peroxidation
Butanone Peroxidation

acids, such as oleic and linoleic acids, leads to the generation of
free radicals (an atom or a molecule with an unpaired electron),
mainly hydrogen free radicals (H®) from a methylene group of
the fatty acid, adjacent to double bonds. Once these free radicals
are initiated, they continue to propagate other free radicals that
ultimately combine, terminating the destructive reactions. In
this process, unsaturated fatty acids are converted to free radicals
and then to hydroperoxides. The hydroperoxides subsequently
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follow a variety of reactions leading to the formation of more
free radicals and hydroperoxides. The final consequence of this
chain reaction is the loss of the membrane structure, leakiness
and an inability to complete normal metabolism, ultimately
resulting in seed deterioration (Wilson and McDonald, 1986).

In the process of lipid peroxidation, a portion of the final
products from hydroperoxide decompose into a variety of volatile
aldehydes, ketones (Harman et al., 1982) and alkenes (Rodriguez
et al., 1989; Grotto et al., 2009; Aldini et al., 2010). Some n-type
aldehydes, especially hexanal, a product of oxidation of fatty acids
is found to be the most abundant aldehyde in seeds, apart from
acetaldehyde (Wilson and McDonald, 1986; Hailstones and
Smith, 1988). The high production of pentane in L. sativa seeds
indicates peroxidation of linoleic acid (Frankel, 1983; Knutson
et al, 2000). Pentane production might reflect the fluidity of
lipid bodies and, if so, suggests an interesting probe of the non-
aqueous environment within seeds and water interactions.
Acetaldehyde, the most toxic endogenous volatile (Zhang et al.,
1994) was found to be very abundant in tissues of dry seeds
(Donohue-Rolfe et al, 1984) and could accelerate seed deterior-
ation by attacking proteins and DNA in dry seeds storage.

Acetaldehyde dehydrogenase (ADH) in dry seeds can trans-
form acetaldehyde to relatively non-poisonous ethanol (Esashi
et al, 1997), which perhaps is a detoxification path in dry
seeds. On the other hand, it is also possible that ethanol accumu-
lated within seeds is converted back to acetaldehyde via ADH
(Esashi et al., 1997). Therefore, the acetaldehyde content in
seeds would also depend upon the interconversion of ethanol
and acetaldehyde via ADH. Israel et al. (1986) reported that acet-
aldehyde is transient and can form ethanol by ADH or
non-enzymatically react with proteins to form acetaldehyde-
protein adducts (APA).

The volatile compounds released from the heating of dry seeds
of wheat (Triticum aestivum L.), lettuce (Lactuca sativa L.) and
soybean (Glycine max L. Merrill) were suggested to be related
to seed viability and vigour (Fielding and Goldsworthy, 1982;
Hailstones and Smith, 1989; Smith and Adamson, 1989). Grotto
et al. (2009), Mira et al. (2010), Aldini et al. (2010) and Colville
et al. (2012) put forth that assessment of hexanal and hydroxyalk-
enals (4-hydroxynonenal) produced from lipid peroxidation reac-
tions are common biomarkers of seed deterioration. Mira et al.
(2016) observed that the VOC profile of certain dry stored
seeds was predominantly comprised of low alcohol content and
high aldehyde (hexanal) and alkane (pentane) contents. In the
headspace of dry stored seeds of C. carvi, and L. sativa molecules
such as butane, pentane, hexanal, butanal, acetone and short-
chain ether or peroxide, while the E. vesicaria seeds were found
to emit acetaldehyde, predominantly.

These studies have envisaged that the emission of VOCs, such
as hexanal, pentane, acetaldehyde and ethanol, may be exploited
as the biomarkers of assessing the level of deterioration processes
that have occurred in the seeds.

Metabolic activity and emission of VOCs in wet germinating
seeds

During imbibition and germination of seeds, many metabolic
changes associated with respiration and hydrolysis of storage sub-
stances result in the release of many metabolic products, among
which some are found to be volatile in nature (Juo and Stotzky,
1970). Vancura and Stotzky (1976) studied the emission of vola-
tiles in bean, cabbage, corn, cotton, cucumber, pea, radish,
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Fig. 2. Volatile emissions by L. sativa, E. vesicaria and C. carvi seeds during storage at 35°C and three moisture treatments: Humid (H, 0.099-0.131 g g%), Dry (D,
0.042-0.063 g g™*) and Very Dry (VD, 0.030-0.039 g g™*). Bars represent average quantities (in percentage over total quantity) among storage times (<1200 days or
when monitoring stopped) of major components: ethanol, methanol, acetaldehyde, hexanal, butane, pentane, acetone and a low carbon ether or peroxide. Values
above the bars are the average of total quantity of VOCs emitted (nmol g™). Total VOCs included all detected compounds except terpenes; bars do not sum to
100% because amounts of individual minor compounds are not shown (Mira et al., 2016).

squash, tomato, slash pine, longleaf pine, yellow pine, loblolly
pine red alder, etc. and observed that germinating seeds of
bean, corn and cotton liberated the largest amounts of oxidizable
volatiles during 8 days of incubation. The maximum evolution
from bean and cucumber seeds occurred during the 1st day and
from corn and cotton seeds during the 2nd day. The liberation
of volatile substances from the germinating seeds was attributed
to respiration and other associated metabolic activities that
occur upon imbibition.

Seed germination is a process which commences once the qui-
escent dry seed imbibes water in a triphasic manner, correspond-
ing to 67-150% of their weight. Phase I of imbibition is found to
be steep. At the end of this phase, water uptake stagnates for a few
hours up to a few days, depending on the crop species (Phase II).
Eventually, the imbibition once again increases to a high rate
(Phase III), when the radicle emerges and continues until the ger-
minating seed possesses 70-90% moisture (Ching, 1972). These
stages of water imbibition are closely followed by four phases of
respiration. Corresponding to Phase I of imbibition, Phase I of
respiration is also steep, favoured by the activation and hydration
of existing respiratory enzymes. Increased gas exchange, which
starts within few minutes of swelling of the seed, is the first indi-
cation that metabolic processes have commenced. During this
period, storage reserve substances are beginning to be mobilized.
Phase II is the lag phase in respiration, in which O, uptake is
restricted due to complete hydration of all the cells of seeds. In
Phase III, increased oxygen uptake and active respiration are
resumed due to the formation of new enzymes in the dividing cells
that leads to protrusion of the radicle, during which imbibition
also increases rapidly. Phase IV of respiration refers to a decline
in respiration as the entire seed storage reserves have been
exhausted, and the new seedling has begun to photosynthesize.

During these phases of imbibition/respiration, three respira-
tory pathways become active in the seed, namely (1) the glycolytic
or EMP (Embden-Meyerhof-Parnas) pathway, (2) the pentose
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phosphate pathway, and (3) the Krebs cycle ETC (Electron
Transport Chain). All three pathways are concurrently operational
in the germinating seeds (Koller et al., 1962).

As the seeds undergo maturation drying or further deterior-
ation, the cells accumulate damages with respect to DNA and
mitochondrial membranes, which leads to a decrease in vigour
(Bewley and Black, 1994). The mitochondria in dry seeds are
functionally and structurally deficient, due to poor internal differ-
entiation, although they contain sufficient Krebs’ cycle enzymes
and terminal oxidases to produce adequate amounts of ATP.
Eventually, concurrent with the advancement of seed imbibition,
the mitochondrial efficiency increases with time, due to both
increased proficiency of existing mitochondria and an increase
in their numbers, enabling the completion of seed germination.

During the seed germination process, both the glycolytic and
oxidative pentose phosphate pathways resume during Phase I of
imbibition, due to activation and hydration of mitochondrial
enzymes leading to a very sharp increase in respiration and pro-
duction of pyruvate, a three-carbon compound (Nicolas and
Aldasoro, 1979; Botha et al., 1992). The pyruvate may be further
metabolized in the mitochondria through Kreb’s cycle ETC, in the
presence of O,, to generate NADH and FADH, which are oxi-
dized in the ETC. During electron transport, a proton gradient
is established over the inner mitochondrial membrane, which
drives the production of ATP via ATPase.

In Phase II, due to complete hydration of cells and corre-
sponding stagnation of O, uptake, a partially anaerobic condition
engulfs the seed tissues temporarily and the glycolytic pathway
becomes very active since mitochondria are non-functional. The
deterioration of mitochondrial membranes and reduced mito-
chondrial activity might cause an imbalance between glycolysis
and Kreb’s cycle ETC, leading to accumulation of pyruvate
(Stewart and Bewley, 1980). Accumulation of excess pyruvate
leads to temporary diversion to the fermentation pathway,
which does not require O,, resulting in the formation of
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acetaldehyde. Acetaldehyde is converted to ethanol in a reversible
reaction by ADH. This oxidation-reduction reaction is mediated
by NADH, and the equilibrium greatly favours ethanol formation.
Both acetaldehyde and ethanol are volatile and can diffuse out of
the seeds into the storage atmosphere. Thus, when mitochondria
are not functional due to structural deficiencies or anaerobic con-
ditions, pyruvate is converted into ethanol or lactic acid due to
commencement of fermentation pathway (Smith and Rees,
1979; Feireira de Sousa and Sodek, 2002). Thus, acetaldehyde
and ethanol are the two important volatile compounds which
are emitted by germinating seeds due to lower mitochondrial
activity. It is thus agreeable that low vigour seeds will produce
higher levels of acetaldehyde and ethanol during germination
compared to the high vigour seeds. The relation between ethanol
production and seed deterioration, as evidenced by a decline in
germination or seedling growth, has been suggested by
Woodstock and Taylorson (1981), Kataki and Taylor (2001)
and Rutzke et al. (2008). Reports on the quantity of VOCs emitted
by seeds upon commencement of metabolic activity in germinat-
ing seeds have been reported to be dependent on mitochondrial
activity and amount of storage reserves in seeds.

Mitochondrial activity commences when seeds are exposed to
>75% RH (Zhang et al., 1995c), under these conditions high-
quality seeds accumulate little ethanol. As the seeds undergo deteri-
oration, peroxidative changes in lipids result in membrane deterior-
ation and subsequent detrimental effect on the ordered system of
membrane-associated enzymes of mitochondria takes place.

Many reports endorsed that acetaldehyde and ethanol are two
important volatile compounds emitted at elevated concentrations
from low vigour seeds compared to high vigour seeds, due to
lower mitochondrial activity. Ultimately, a definite negative asso-
ciation has been observed between the quantity of ethanol and
acetaldehyde produced during early germination and seed vigour
(Woodstock and Taylorson, 1981; Harman et al, 1982).
Woodstock and Taylorson (1981) found that, after imbibition,
aged soybean seeds produced greater quantities of ethanol and
acetaldehyde than non-aged seeds. They observed that in low vig-
our soybean seeds, acetaldehyde and ethanol increased from near
trace amounts in dry tissues to maximum levels at 4 h of imbibi-
tion. Amable and Obendorf (1986) stated that the enhanced pro-
duction of ethanol from imbibed aged seeds was attributable to
impaired mitochondrial function. Kataki and Taylor (1997)
observed that in soybean, ethanol concentration increased with
seed ageing, even when germinated under aerobic conditions.
Zhang et al. (1995c) also reported that ethanol accumulation in
imbibing seeds was high in low vigour seeds compared to high
vigour seeds.

Apart from the volumes of acetaldehyde and ethanol released,
quickness of release of VOCs from the imbibing seeds is also an
indicator of mitochondrial activity and efficiency. Mitochondria
are the primary site of deterioration, especially during seed ageing.
As ethanol production is most likely initiated or enhanced by the
loss of mitochondrial membrane integrity, an ethanol assay has
good potential as a test to examine the level of deterioration in
seeds (Bewley and Black, 1994). The ethanol levels measured at
40°C after 3.5h of imbibition of cabbage seeds were negatively
correlated (r=-0.92) with the number of normal seedlings
observed after 5 d (Kodde et al., 2012).

Unlike the evolution of ethanol and acetaldehyde, which is
negatively correlated with seed vigour, the ‘total volatile organic
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compounds’ produced by the seeds have been suggested to be dir-
ectly proportional to seed vigour. Influences of mitochondrial
activity, respiratory metabolism and subsequent emission of
VOC:s from seeds were assessed by subjecting the seeds to optimal
and sub-optimal temperatures by Grass and Burris (1995) and
Vanwonterghem et al. (2014). They suggested that enzyme activ-
ity increases with temperature up to an optimum level, but with
further temperature increase, enzymes get inactivated and cause
weakening of mitochondrial metabolic processes ultimately lead-
ing to low ATP production, with the corresponding reduction in
the quantity of VOCs emitted (Egigu et al., 2014) as well as the
change in composition (Motsa et al., 2017). Seethalakshmi and
Umarani (unpublished results) observed a very clear trend in
the emission of volatiles from unprimed and hydroprimed tomato
seeds. They found that the volume of volatiles emitted was very
high in hydroprimed seeds during the initial 3 h of imbibition
(21-30 s of retention time), which was 2.7 times higher than
unprimed seeds. The higher amount of volatile compounds dur-
ing the early hours of imbibition could be indicative of the higher
metabolic activity in hydroprimed, high vigour seeds compared to
non-primed, low vigour seeds.

Thus, it has been clearly established that the higher the effi-
ciency of mitochondria (higher seed vigour), the faster will be
the emission of VOCs from imbibing seeds. However, the quan-
tity of acetaldehyde and ethanol emitted by dry and imbibing
seeds is likely to be indirectly proportional to the efficiency of
mitochondria, as well as vigour of seeds.

Developing seeds accumulate storage reserves such as carbohy-
drates, lipids and storage proteins. Subsequent to seed imbibition,
the seed germination process is triggered and seeds reserves are
mobilized by the action of hydrolytic enzymes (Stotzky and
Schenck, 1976) so as to provide the essential energy for seedling
growth until it becomes photoautotrophic (Yu et al., 2014).
Stotzky and Schenck (1976) indicated that metabolic changes
that occur in germinating seeds liberate VOCs, corresponding
to the storage reserves present in the seeds. Frankel (1983),
Grosch (1987), Halliwell and Gutteridge (1999) and Knutson
et al. (2000) found that oxidation of macromolecules, such as car-
bohydrates, lipids and proteins, may give rise to small molecular
weight carbonyl compounds that escape to the airspace as volatile
molecules. Therefore, the amount of gaseous and volatile metabo-
lites or VOCs liberated during the imbibition and germination
process is expected to be related to the amount of organic sub-
stances present in seeds (Vancura and Stotzky, 1976). In general,
larger seeds evolved greater quantities than smaller seeds. They
appraised that a relation was apparent between the rate of seed
germination and the evolution of volatiles. Faster germinating
seeds recorded sharper evolution peaks, but the more slowly ger-
minating seeds evolved volatiles over longer periods.

Mira et al. (2016) observed the nature and kinetics of reactions
in dry seeds and suggested that the most abundant VOCs arise
from degradation of storage reserves. They determined the relative
lipid content of L. sativa and C. carvi to be 32 and 10%, respect-
ively. Correspondingly, L. sativa produced higher levels of pentane
as an indication of peroxidation of linoleic acid (Frankel, 1983;
Knutson et al., 2000). They proposed that high rates of lipid perox-
idation reactions probably reflect the high level of the available sub-
strate in the form of storage reserves in the seed. Motsa et al. (2017)
reported that more volatile fatty acids and volatile phenols were
detected in germinating seeds of Cyclopia subternata as compared
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Table 2. Variations in methodologies adopted for analyses of VOCs emitted by different crop seeds
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State of seed Sample size Incubation
Gas
Time Temperature sample Retention

Crop Dry Imbibed Dry Imbibed (min) (°C) size (ml) time (min) Instrument Manufacturer Reference
Soybean Dry 8h at 16 or 5 nos 100 30 80 2 - GC Varian 2740 Woodstock and

25°C axes Taylorson

(1981)

Carrot, sunflower Dry - lg - 20 80 1 - GC-MS -QP Shimadzu Zhang et al.
and soybean 1000 (1993)
Lettuce, soybean, Dry - 2g - 40 85 50 - GC-MS - QP Shimadzu Zhang et al.
sunflower, carrot 2000A (1994)
and rice
Lactuca sativa - 50 and 80% 0.1- - Stored 35 1 5 GC Perkin Elmer Mira et al.

moisture 0.15g seeds (2010)
Soybean Dry - 2g - 45 85 10 GC-MS - QP Shimadzu Lee et al. (2015)

2000A

Lactuca sativa, Dry - 0.5- - Stored 35 1 5 GC Perkin Elmer Mira et al.
Eruca vesicaria, 20g seeds (2016)
Carum carvi
Cyclopia spp. - Germinated - 200 nos 5 min 50 - 2 GC-MS Agilent Motsa et al.

seeds (2017)

‘JD 18 1ueJRWN Y


https://doi.org/10.1017/S0960258520000252

Seed Science Research

to C. genestoides. They suggested that the higher number of VOCs
detected in C. subternata underscores its higher accumulation of
reserves during seed development. This can be expected to affect
the timing and speed of germination, leading to earlier germination
in C. subternata than in C. genistoides. A germinating embryo of C.
subternata may grow and develop better during early successive
vegetative growth than C. genistoides, due to an adequate supply
of accumulated energy resources that nourish the developing seed-
ling (Motsa et al., 2017).

Thus, we may infer that (1) higher amounts of storage reserves
(reflecting higher seed vigour) will result in greater quantities of
total VOCs emitted during germination; (2) higher efficiency of
mitochondria (higher seed vigour) will result in faster emission
of VOCs from imbibing seeds and (3) the quantities of acetalde-
hyde and ethanol emitted by dry and imbibing seeds are likely to
be indirectly proportional to the efficiency of mitochondria, as
well as vigour. Estimation of quickness and volume of total
VOC emission, as well as total emission of acetaldehyde and etha-
nol, may serve as tools for assessing the mitochondrial activity of
seeds. The higher and quicker production of ‘total VOCs’ may be
inferred as an indicator of higher seed vigour, while higher pro-
duction of acetaldehyde and ethanol can be inferred as an indica-
tor of lower seed vigour.

Thus, it is clear that there is immense potential to harness the
total VOCs emitted from imbibed seeds and total acetaldehyde
and ethanol evolved from both dry and imbibed seeds as vital bio-
markers of seed vigour, irrespective of species.

Fingerprinting of VOCs as biomarkers for quick assessment
of seed vigour status

VOCs have been established as major by-products of catabolic
reactions that occur in the seeds both in the dry and imbibed
states. The evaluation of VOC profile in dry and imbibed seeds
will enable the assessment of the level of seed deterioration and
the propensity of mitochondria for higher ATP production,
respectively. Firstly, VOCs such as hexanal, pentane, acetaldehyde
and ethanol emitted in the dry state can be exploited as the bio-
markers of the level of seed deterioration processes. Secondly, esti-
mation of acetaldehyde and ethanol emitted after a defined period
of imbibition, and quickness of appearance of a 2nd peak of
VOCs in imbibing seeds, can be explored as potential tools to
evaluate mitochondrial activity and seed vigour status.
Therefore, it is concluded that fingerprinting of VOCs emitted
by individual crop seed with the help of GC-MS, both in the
dry and imbibed states will enable to detect the vigour status of
a particular seed lot, accurately and quickly.

Future research should be programmed to characterize the
profile and quantity of specific VOCs emitted by the both dry
and imbibed seed samples of a particular seed lot at various dura-
tions of emission, by experimenting with seeds of different vigour
status, in fresh as well as old seed lots. A part of a particular sam-
ple should also be submitted for seed germination testing and cer-
tain other promising vigour tests such as field emergence,
accelerated ageing, radicle emergence, dry matter production, tol-
erance to temperature and water stress. The specific fingerprint
profile and the quantity of the individual VOC biomarker pro-
duced should be compared and correlated with the seed germin-
ation and vigour test results, so as to arrive at a competent
biomarker fingerprint profile specific to the crop species. There
seems to be an immense scope to recommend the fingerprint as
a ‘universal standard’ for quick assessment of seed vigour.
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Methodologies to quantify VOCs emitted by seeds

During the past four decades, many improvements have been in
instrumentation and methodology for the assessment of volatile
compounds, with the sole objective of achieving higher accuracy
of estimation. This is extremely important because volatile pro-
duction from seeds is low and compounds vary by species, sample
preparation, storage moisture and storage duration (Zhang et al.,
1995a,b; Jorgesen, 2000; Lee et al, 2000b; Schwember and
Bradford, 2005).

It is observed that a wide variation exists in the methodology
adopted to estimate VOC profiles (Table 2). Collection and detec-
tion of volatiles can be affected by several parameters, such as the
duration of incubation, sample handling, substrate and their com-
binations, since they determine the compounds which constitute
the complete volatile profile (Rowan, 2011; Morath et al,, 2012).
Hence, it is important to develop a standard methodology for fin-
gerprinting of volatile biomarkers in seeds, so that it can be per-
formed in laboratories across the world and still obtain
comparable and reproducible results. The standardized procedure
should address such factors as (1) sample size, in terms of the
number or weight of seeds; (2) methodology to eliminate oxygen
interference, in terms of evacuation of nitrogen flushing; (3) prep-
aration of samples, in terms of dry or imbibed, duration of imbi-
bition; (4) sample heating method, temperature and duration of
heating; (5) sample trapping method; (6) volume of sample gas
and (7) retention time. The specifications of the GC system and
the mass spectrometer, used for assessment of the VOCs, should
also be well-specified, so as to assure homogeneity of test results.

Conclusion

VOGCs, being a major by-product of catabolic reactions that occur
both in the dry and imbibed seeds, offer great potential for utilizing
them as biomarkers for quick and reproducible assessment of the
vigour status of crop seeds. In order to utilize the VOC profile
for quick assessment of vigour status of seeds, research has to be
carried out to develop standard protocols for fingerprinting of
standard volatile biomarker(s) along with retention time, with
respect to crop species and vigour status of seeds. Most import-
antly, the identified biomarkers should also be specified, with
respect to the particular crop species, in terms of corresponding
‘peaks in specific retention times’. When this task is accomplished,
minimum standards for VOC fingerprints can be fixed as a score of
acceptable vigour status of seeds, for obtaining high crop product-
ivity. Development of a common standard protocol and minimum
standards of volatile biomarkers can be adopted across laboratories
to obtain dependable, reproducible and concordant results on seed
vigour levels. This VOC fingerprint-based quick test of seed vigour
can be incorporated in the regular quality control programmes of
the seed industry. Based on the results, seed companies can ensure
disbursement of high-quality seed lots for sowing in the ensuing
season, thereby assuring higher crop productivity and better remu-
neration to crop growers.
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